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1. Introduction

Let X be a real Banach space and Y ⊂ X be a finite-dimensional subspace.
LetP(X, Y ) denote the set of all linear and continuous projections fromX onto Y ,
recalling that an operator P : X → Y is called a projection onto Y if P |Y = IdY .
We define the relative projection constant of Y by

λ(Y,X) := inf{‖P‖ : P ∈ P(X, Y )}

and the absolute projection constant of Y by

λ(Y ) := sup{λ(Y,X) : Y ⊂ X}. (1)

The literature also deals with the maximal absolute projection constant, which is
defined by

λ(m) := sup{λ(Y ) : dim(Y ) = m}.

By the Kadec–Snobar theorem (see [17]), we have λ(m) ≤
√
m. Moreover, it has

been shown in [18] that this estimate is asymptotically the best possible. However,
the determination of the constant λ(m) seems to be difficult: apart from λ(1) = 1,
the only known value of λ(m) is λ(2) = 4/3 — this is Grünbaum conjecture,
formulated in [14] and proved in [6]. Numerical computations presented in [13]
indicate that λ(3) should equal (1 +

√
5)/2 — this was stated, with an erroneous

proof, in [19]. Other numerical experiments conducted by B. L. Chalmers (and
unfortunately unpublished) suggest that λ(5) ≈ 2.06919. In this article, we show
that

λ(5) ≥ 5(11 + 6
√

5)/59 ≈ 2.06919.

Viewed in isolation, this could seem anecdotal. However, several sources of
evidence hint that this is the actual value of λ(5). This comes as a surprise,
because it was growingly believed that obtaining exact formulas for λ(m) was an
unreasonable quest. Now there is hope that this quest could be realized after all.

To establish the announced lower bound, wemake a detour viamaximal relative
projection constants. Recent results concerning maximal relative and absolute
projection constants can be found in [1, 2, 4, 13, 21]. Here, we only give the
definition of the maximal relative projection constant for n ≥ m as

λ(m,n) := sup{λ(Y, l(n)∞ ) : dim(Y ) = m and Y ⊂ l(n)∞ }.

This is motivated by the fact that, in the expression (1) of λ(m), it suffices to take
the supremum over finite-dimensional l∞ superspaces (see e.g. [22, III.B.5]), so
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that the nondecreasing sequence (λ(m,n))n≥m converges to λ(m). In reality, there
even is anN ∈ N such that λ(m,n) = λ(m) for all n ≥ N (see [1, Theorem 1.4]).
Our estimation of λ(m,n) will rely on the following result proved in [5].

Theorem 1.1. For integers n ≥ m, one has

λ(m,n) = max

{ n∑
i,j=1

titj|U>U |ij : t ∈ Rn, ‖t‖2 = 1, U ∈ Rm×n, UU> = Im

}
.

Although this theoremprovides an essential tool for estimating themaximal relative
projection constants, computing their exact values remains a challenging problem,
carried out in just a few cases (see e.g. [1, 5, 13]). One particular situation
where an explicit formula is available involves equiangular tight frames. Let us
recall that a system of unit (i.e., l2-normalized) vectors (v1, . . . , vn) in Rm is called
equiangular if there is a constant c ≥ 0 such that

|〈vi, vj〉| = c for all i, j ∈ {1, . . . , n}, i 6= j.

It is called a tight frame if
V V > =

n

m
Im,

where V is the matrix with columns v1, . . . , vn. The system (v1, . . . , vn) of unit
vectors is called an equiangular tight frame if it is both equiangular and a tight
frame. For an equiangular tight frame of n unit vectors in Rm, it is well known
(see e.g. [12, Theorem 5.7]) that

|〈vi, vj〉| =
√

n−m
m(n− 1)

for all i, j ∈ {1, . . . , n}, i 6= j.

The above-mentioned explicit formula is presented as part of the result below.
Built from Theorems 1 and 2 of [20], it appeared in a slightly different form as
Theorem 5 in [13]. A new self-contained proof is included later as an appendix.

Theorem 1.2. For integers n ≥ m, the maximal relative projection constant
λ(m,n) is upper bounded by

δm,n :=
m

n

(
1 +

√
(n− 1)(n−m)

m

)
.

Moreover, the equality λ(m,n) = δm,n occurs if and only if there is an equiangular
tight frame for Rm consisting of n unit vectors.
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Remark 1.1. We note in passing that δm,n <
√
m for n ≥ m > 1 (thus providing

another justification forKadec–Snobar estimate). This is seen by applyingCauchy–
Schwarz inequality for the noncolinear vectors [1,

√
n− 1] and [1,

√
(n−m)/m]

in

δm,n =
m

n

(
1 +
√
n− 1

√
n−m
m

)
<
m

n

√
1 + n− 1

√
1 +

n−m
m

=
√
m.

In the rest of this paper, we present new explicit lower bounds for λ(m,n)
under the condition that certain mutually unbiased equiangular tight frames for Rm

exist (see Theorem 2.1). We then provide a construction of an infinite family
of such mutually unbiased equiangular tight frames (see Theorem 3.1). Finally,
combining these two ingredients, we highlight the resulting estimation of λ(5, 16)
to arrive at the promised lower bound for λ(5), conjectured to be its true value.

2. The Lower Bound

Before stating the main result, we start with an observation about mutually
unbiased equiangular tight frames, formally defined below.

Definition 2.1. Two equiangular tight frames (v1, . . . , vk) and (w1, . . . , wl) forRm

are mutually unbiased if there exists c ∈ R such that

|〈vi, wj〉| = c for all i ∈ {1, . . . , k} and j ∈ {1, . . . , l}.

This definition generalizes a concept introduced in [9] so as to permit the case
k 6= l. We point out that the scalar c is uniquely determined, as also noted in [3].

Lemma 2.1. The constant c appearing in the definition of mutually unbiased
equiangular tight frames for Rn necessarily satisfies

c =
1√
m
.

Proof. Let (v1, . . . , vk) and (w1, . . . , wl) be mutually unbiased equiangular tight
frames for Rm and let V ∈ Rm×k be the matrix with columns v1, . . . , vk. For any
j ∈ {1, . . . , l}, because the two frames are mutually unbiased, we have

‖V >wj‖22 =
k∑
i=1

|〈vi, wj〉|2 =
k∑
i=1

c2 = kc2.

4



Since (v1, . . . , vk) is a tight frame for Rm, we also have V V > = (k/m)Im, and so

‖V >wj‖22 = 〈V >wj, V >wj〉 = 〈wj, V V >wj〉 =
〈
wj,

k

m
wj

〉
=

k

m
‖wj‖22 =

k

m
.

It follows that kc2 = k/m, and hence c = 1/
√
m, as claimed. 2

We now present the main theorem of this section, whose statement involves
the quantity δm,n introduced in Theorem 1.2.

Theorem 2.1. If mutually unbiased equiangular tight frames (v1, . . . , vk) and
(w1, . . . , wl) forRm exist, then the maximal relative projection constant λ(m, k+l)
is bounded below as

λ(m, k + l) ≥ m− δm,kδm,l
2
√
m− δm,k − δm,l

.

Proof. Let V ∈ Rm×k be the matrix with columns v1, . . . , vk andW ∈ Rm×l the
matrix with columns w1, . . . , wl. For any θ ∈ [0, π/2], let us consider the vector
tθ ∈ Rk+l and the matrix Uθ ∈ Rm×(k+l) defined, in block notation, by

tθ :=

cos θ
1√
k

1k

sin θ
1√
l
1l

 and Uθ :=

[
cos θ

√
m

k
V sin θ

√
m

l
W

]
, (2)

where 1n denotes the n-dimensional vector with all entries equal to 1. We observe
that ‖tθ‖2 = 1, that

UθUθ
> = cos2 θ

m

k
V V > + sin2 θ

m

k
WW> = cos2 θ Im + sin2 θ Im = Im,

and that

Uθ
>Uθ =

 cos2 θ
m

k
V >V cos θ sin θ

m√
kl
V >W

cos θ sin θ
m√
kl
W>V sin2 θ

m

l
W>W

 . (3)

Therefore, according to the expression of λ(m,n) from Theorem 1.1, we can make
use of the tight frame and unbiasedness properties of U and V to obtain, with the
shorthand notation φm,n :=

√
(n−m)/(m(n− 1)),
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λ(m, k + l) ≥
k+l∑
i,j=1

(tθ)i(tθ)j|Uθ>Uθ|i,j

= cos2 θ
1

k
× cos2 θ

m

k
× k + cos2 θ

1

k
× cos2 θ

m

k
φm,k × k(k − 1)

+ sin2 θ
1

l
× sin2 θ

m

l
× l + sin2 θ

1

l
× sin2 θ

m

l
φm,l × l(l − 1)

+ 2× cos θ sin θ
1√
kl
× cos θ sin θ

m√
kl

1√
m
× kl

= cos4 θ

(
m

k
+
m

k
(k − 1)φm,k

)
+ sin4 θ

(
m

l
+
m

l
(l − 1)φm,l

)
+ 2 cos2 θ sin2 θ

√
m

=

(
1 + cos(2θ)

2

)2

δm,k +

(
1− cos(2θ)

2

)2

δm,l +
(

sin(2θ)
)2√m

2
.

Since this is valid for any θ ∈ [0, π/2], after setting x := cos(2θ), we arrive at

λ(m, k + l) ≥ max
x∈[−1,1]

(
δm,k(1 + 2x+ x2)

4
+
δm,l(1− 2x+ x2)

4
+

√
m

2
(1− x2)

)
=

1

4
max
x∈[−1,1]

(
ax2 + 2bx+ c

)
,

where a := δm,k + δm,l − 2
√
m, b := δm,k − δm,l, and c := δm,k + δm,l + 2

√
m.

Taking momentarily for granted that a < 0 and that x∗ := −b/a ∈ [−1, 1], we
deduce that

λ(m, k + l) ≥ 1

4

(
ax2∗ + 2bx∗ + c

)
=

1

4

(
−b

2

a
+ c

)
=

1

4

b2 − ac
−a

=
1

4

(δm,k − δm,l)2 + (2
√
m− δm,k − δm,l)(2

√
m+ δm,k + δm,l)

2
√
m− δm,k − δm,l

=
1

4

4m− 4δm,kδm,l
2
√
m− δm,k − δm,l

,

which is the announced lower bound. It now remains to notice that a < 0 and that
−b/a ∈ [−1, 1], but both follow from the general observation that δm,n <

√
m for

n ≥ m > 1, see Remark 1.1. 2
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Before uncovering a family of mutually unbiased equiangular tight frames in
the next section, we emphasize here two noteworthy properties relating the vector tθ
and the matrix Uθ that appeared in the above proof.

Proposition 2.1. Let γm,k,l be the lower bound for λ(m, k + l) from Theorem 2.1
and let θ ∈ [0, π/2] be the angle used in its proof, i.e.,

γm,k,l =
m− δm,kδm,l

2
√
m− δm,k − δm,l

and cos(2θ) =
δm,k − δm,l

2
√
m− δm,k − δm,l

.

Then, with tθ ∈ Rk+l, Uθ ∈ Rm×(k+l) defined as in (2) and with Tθ := diag[tθ],
one has

|U>θ Uθ| tθ = γm,k,l tθ, (4)

Tθsgn(U>θ Uθ)Tθ U
>
θ =

γm,k,l
m

U>θ . (5)

Proof. When establishing both (4) and (5), it will be useful to keep in mind that
δm,n is tied to φm,n =

√
(n−m)/(m(n− 1)) via

δm,n =
m

n

(
1 + (n− 1)φm,n

)
=
m

n

(
1 +

n−m
m

1

φm,n

)
.

Starting with the justification of (4), we notice that, since the matrix V >V has
diagonal entries equal to 1 and off-diagonal entries equal to φm,k in absolute value,
we have

|V >V | = (1− φm,k)Ik + φm,k1k,k,

where 1n,n′ denotes the n× n′ matrix with all entries equal to 1. It follows that

|V >V |1k = (1− φm,k)1k + kφm,k1k = (1 + (k − 1)φm,k)1k =
k

m
δm,k1k.

Likewise, we can obtain
|W>W |1l =

l

m
δm,l1l.

Moreover, since the matrices V >W andW>V have entries all equal to 1/
√
m in

absolute value, we have |V >W | = (1/
√
m)1k,l and |W>V | = (1/

√
m)1l,k, so

that
|V >W |1l =

l√
m

1k and |W>V |1k =
k√
m

1l.
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Therefore, according to the block-forms of tθ and U>θ Uθ (see (2) and (3)), we
observe that

|U>θ Uθ| tθ =

cos2 θ
m

k
cos θ

1√
k

k

m
δm,k1k + cos θ sin θ

m√
kl

sin θ
1√
l

l√
m

1k

cos θ sin θ
m√
kl

cos θ
1√
k

k√
m

1l + sin2 θ
m

l
sin θ

1√
l

l

m
δm,l1l


=

cos θ
1√
k

(
cos2 θδm,k + sin2 θ

√
m
)

1k

sin θ
1√
l

(
cos2 θ

√
m+ sin2 θδm,l

)
1l

 . (6)

Next, in view of

cos2 θ =
1 + cos(2θ)

2
=

√
m− δm,l

2
√
m− δm,k − δm,l

,

sin2 θ =
1− cos(2θ)

2
=

√
m− δm,k

2
√
m− δm,k − δm,l

,

we easily derive that

cos2 θδm,k + sin2 θ
√
m = cos2 θ

√
m+ sin2 θδm,l = γm,k,l. (7)

When substituting the latter into (6), the identity (4) immediately follows.
Turning now to the justification of (5), recalling that the matrix V >V has

diagonal entries equal to 1 and off-diagonal entries equal to φm,k in absolute
value, the diagonal entries of the matrix sgn(V >V ) are equal to 1 and its off-
diagonal entries are equal to those of V >V divided by φm,k. In short, we see
that sgn(V >V ) = (1 − 1/φm,k)Ik + (1/φm,k)V

>V holds, and a similar identity
holds for sgn(W>W ). Moreover, we also have sgn(V >W ) =

√
mV >W and

sgn(W>V ) =
√
mW>V , as a consequence of all the entries ofW>V andW>V

being equal to 1/
√
m in absolute value. All in all, according to the block-form (3)

of U>θ Uθ, we obtain

sgn(U>θ Uθ) =


(
1− 1

φm,k

)
Ik +

1

φm,k
V >V

√
mV >W

√
mW>V

(
1− 1

φm,l

)
Il +

1

φm,l
W>W

 .

8



In turn, using the block-form of Tθ = diag[tθ], we derive that Tθsgn(U>θ Uθ)Tθ
takes the formcos2 θ 1k

((
1− 1

φm,k

)
Ik +

1

φm,k
V >V

)
cos θ sin θ

1√
kl

√
mV >W

cos θ sin θ
1√
kl

√
mW>V sin2 θ

1

l

((
1− 1

φm,l

)
Il +

1

φm,l
W>W

)
 .

Multiplying on the right by the transpose of Uθ =

[
cos θ

√
m

k
V sin θ

√
m

l
W

]
and making use of the facts that V V > = (k/m)Im and WW> = (l/m)Im, the
matrix Tθsgn(U>θ Uθ)Tθ U

>
θ becomescos2 θ 1k cos θ

√
m

k

((
1− 1

φm,k

)
+
k

m

1

φm,k

)
V > + cos θ sin θ

1√
kl

√
m sin θ

√
m

l

l

m
V >

cos θ sin θ
1√
kl

√
m cos θ

√
m

k

k

m
W> + sin2 θ

1

l
sin θ

√
m

l

((
1− 1

φm,l

)
+

l

m

1

φm,l

)
W>



=

cos θ

√
m

k

(
cos2 θ

k

(
1 +

k −m
m

1

φm,k

)
+ sin2 θ

1√
m

)
V >

sin θ

√
m

l

(
cos2 θ

1√
m

+
sin2 θ

l

(
1 +

l −m
m

1

φm,l

))
W>



=

cos θ

√
m

k

(
cos2 θ

m
δm,k +

sin2 θ√
m

)
V >

sin θ

√
m

l

(
cos2 θ√
m

+
sin2 θ

m
δm,l

)
W>

 .
Similarly to (4), the identity (5) now simply follows by exploiting (7) again. 2

3. Construction of Mutually Unbiased Equiangular Tight Frames

To apply the result of Theorem 2.1 in practical situations, we evidently need
to uncover specific integers k, l, and m allowing mutually unbiased equiangular
tight frames to exist. As a simple example, one can take k = l = m and consider
(v1, . . . , vk) to be the canonical basis for Rm and (w1, . . . , wl) to be the columns
of an m × m Hadamard matrix — recall that m × m Hadamard matrices are
conjectured to exist when and only whenm is a multiple of 4 (the ‘only when’ part
being acquired, of course). This would yield the lower boundλ(m) ≥ (1+

√
m)/2,

m ∈ 4N, which is inferior to the lower bounds reported in [13] for m = 4 and
m = 8. As a slightly more elaborate example, one can take k = m and (v1, . . . , vk)

9



to be the canonical basis of Rm, together with l > m and (w1, . . . , wl) to be a
real equiangular tight frame for Rm that is flat, in the sense that every entry of
each vector wj is either 1/

√
m or −1/

√
m. Real flat equiangular tight frames

are equivalent to binary codes achieving equality in the Grey–Rankin bound and
infinite families are known (see [16, 8]). This would yield the lower bound
λ(m,m + l) ≥ (m − γm,l)/(2

√
m − 1 − γm,l). With m = 6 and l = 16, this

provides the lower bound λ(6) & 2.2741, which is superior to the lower bounds
reported in [13] but inferior to the numerical evaluation λ(6) ≈ 2.2857 performed
by B. L. Chalmers and corroborated by our own computations. In order to apply
Theorem 2.1 more effectively, we need further examples of mutually unbiased
equiangular tight frames. To this end, we now relate such frames to a type of
generalized Hadamard matrices.

Proposition 3.1. Given integers k, l ≥ m > 1, there are mutually unbiased
equiangular tight frames (v1, . . . , vk) and (w1, . . . , wl) for Rm if and only if there
is a k × l matrix X with the following five properties:

(i) Xij ∈ {−1,+1} for all i ∈ {1, . . . , k} and j ∈ {1, . . . , l};

(ii) XX>X = aX for some a ∈ R;

(iii) X has equiangular rows, i.e., |XX>|i,i′ is constant over all i 6= i′;

(iv) X has equiangular columns, i.e., |X>X|j,j′ is constant over all j 6= j′;

(v) X has rankm.

When this occurs, the following three quantities are necessarily integers:

kl

m
, k

√
l −m
m(l − 1)

, l

√
k −m
m(k − 1)

. (8)

Proof. Firstly, let us assume that there are mutually unbiased equiangular tight
frames (v1, . . . , vk) and (w1, . . . , wl) for Rm. With V ∈ Rm×k and W ∈ Rm×l

denoting the matrices with columns v1, . . . , vk andw1, . . . , wl, respectively, we set

X =
√
mV >W ∈ Rk×l.

By Lemma 2.1, we have |V >W |i,j = |〈vi, wj〉| = 1/
√
m for all i ∈ {1, . . . , k}

and j ∈ {1, . . . , l}, so Property (i) is immediate. In view of V V > = (k/m) Im
and ofWW> = (l/m) Im, it is also straightforward to see that

XX> = l V >V and X>X = kW>W. (9)
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From here, using the fact that V V > = (k/m) Im one more time, we obtain that
XX>X = (l V >V )(

√
mV >W ) = (kl/m)

√
mV >W , i.e., XX>X = aX with

a = kl/m, so Property (ii) is satisfied. Properties (iii) and (iv), too, are conse-
quences of (9), since e.g. the off-diagonal entries ofXX> are constant in absolute
value because those of V >V are. Finally, Property (v) is also implied by (9)
via rank(X) = rank(XX>) = rank(V >V ) = rank(V V >) = rank(Im) = m.

Conversely, let us assume that Properties (i)–(ii) are fulfilled by some matrix
X ∈ Rk×l. Consider the singular value decomposition of this matrix written as
X = PΣQ>, where the diagonal matrix Σ ∈ Rm×m has positive entries (by (v))
and where the matrices P ∈ Rk×m and Q ∈ Rl×m have orthonormal columns,
i.e., P>P = Im and Q>Q = Im. Property (ii) easily yields Σ3 = aΣ and hence
Σ =

√
a Im. Then, looking at the squared Frobenius norm of X =

√
aPQ>, we

derive from (i) that kl = am, i.e., that a = kl/m. We now set

V =

√
k

m
P> ∈ Rm×k and W =

√
l

m
Q> ∈ Rm×l

and we claim that the columns v1, . . . , vk of V and w1, . . . , wl ofW are mutually
unbiased equiangular tight frames for Rm. Indeed, using V >V = (k/m)PP> and
XX> = aPP>, we see that V >V = (1/l)XX>, so that the equiangularity of
the system (v1, . . . , vk) is clear from (iii). Note that each vi is a unit vector, since
‖vi‖22 = (V >V )i,i = (1/l)(XX>)i,i = (1/l)

∑l
j=1X

2
i,j = 1 by (i). The fact that

these vectors form a tight frame is seen from V V > = (k/m)P>P = (k/m) Im.
Similar arguments (using (iv)) would reveal that the system (w1, . . . , wl) is also an
equiangular tight frame. At last, to see that these systems are mutually unbiased,
it suffices to notice that V >W = (

√
kl/m)PQ> = (1/

√
m)X and to invoke (i)

once again.
It finally remains to establish that the three quantities in (8) are integers. For

the first one, we have seen (in the proofs of both implications) that a = kl/m and
(i)-(ii) show that a is an integer: any entry of XX>X = aX is on the one hand
an integer and on the other hand equal to ±a. For the third one, say, looking e.g.
at (9), any off-diagonal entry ofXX> = l V >V is on the one hand an integer and
on the other hand equal to l times the common absolute inner product in a k-vector
equiangular tight frame for Rm, i.e., to l

√
(k −m)/(m(k − 1)). 2

Although conditions (i)–(v) are restrictive, there are matrices X satisfying
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them withm < k < l. For instance, the 6× 10 matrix

X =


1 1 1 1 1 1 1 1 1 1
1 1−1 1−1−1 1−1−1−1
1−1 1−1 1−1−1 1−1−1
−1 1 1−1−1 1−1−1 1−1
−1−1−1 1 1 1−1−1−1 1
−1−1−1−1−1−1 1 1 1 1


is one such matrix4: it has ±1 entries, the identity XX>X = aX is easily
verified (at least computationally), and it was already observed in [11] that both its
rows and its columns form equiangular tight frames for their 5-dimensional spans.
Therefore, since X fulfills the conditions of Proposition 3.1 with m = 5, k = 6,
and l = 10, we are guaranteed the existence of mutually unbiased equiangular
tight frames (v1, . . . , v6) and (w1, . . . , w10) for R5. Remarkably, this example is
but the first member of the infinite family presented below.

Theorem 3.1. For any integer s ≥ 2, there are mutually unbiased equiangular
tight frames (v1, . . . , vk) and (w1, . . . , wl) for Rm, where

k = 2s−1(2s − 1), l = 2s−1(2s + 1), m =
22s − 1

3
.

Proof. For any such s, k, l and m, the requisite matrix X of Proposition 3.1 is
produced in the recent paper [7], albeit nonobviously so. In brief, let Q and B
be the canonical hyperbolic-quadratic and symplectic forms on the binary vector
space F2s

2 , respectively:

Q(x) = Q(x1, . . . , x2s) :=
s∑
r=1

x2r−1x2r,

B(x, y) = B((x1, . . . , x2s), (y1, . . . , y2s)) :=
s∑
r=1

(x2r−1y2r + x2ry2r−1).

Let Γ be the corresponding character table of F2s
2 , defined by Γ(x, y) = (−1)B(x,y)

for all x, y ∈ F2s
2 . Any submatrix of Γ obviously satisfies (i) from Proposition 3.1.

Let X be the specific submatrix of Γ whose rows and columns are indexed by

4As pointed out to us by Josiah Park, this same 6× 10matrix appeared in a recent investigation
of spherical half-designs (see [15]).
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{x ∈ F2s
2 : Q(x) = 1} and {x ∈ F2s

2 : Q(x) = 0}, respectively. By Lemma 4.2
of [7], these two subsets of F2s

2 are difference sets for F2s
2 of cardinality k and l,

respectively. As detailed in [7], this means that the rows and columns of X are
equiangular, namely that (iii) and (iv) hold. Theorem 4.4 of [7] moreover gives
that these two difference sets are paired, meaning that the columns of X form a
tight frame for their span, so that (ii) holds. Theorem 3.3 of [7] then implies that
the rank of X is indeedm, so that (v) holds. 2

We close this section by highlighting that real mutually unbiased equiangular
tight frames are rare objects. Precisely, we have obtained rather stringent necessary
conditions for their existence (not included here because too detached from our
main focus). For instance, these conditions imply that mutually unbiased k-vector
and l-vector equiangular tight frames for Rm can only exist for at most thirteen
triples of integers (m, k, l) with l > k > m + 1 when m ≤ 1000, and that they
cannot exist when l = k > m, in contrast with the complex setting.

4. Epilogue: the fifth maximal projection constant

By combining the main results derived in the two previous sections, namely
Theorems 2.1 and 3.1, and after some tedious algebraic manipulation, we can state
that the maximal relative projection constant at anym of the formm = (22s−1)/3
for some integer s ≥ 2 is bounded below as

λ(m, 4s) ≥ 22s − 1

23s − 3 2s−1 + 1

(
22s−1 + 2s − 1

3
+ 2s−1

√
m

)
. (10)

If this was to be an equality, then the vector tθ ∈ Rn+, n = 4s, and the matrix
Uθ ∈ Rm×n, m = (22s − 1)/3, appearing in the proof of Theorem 2.1 should
be maximizers of the expression for λ(m,n) from Theorem 1.1. For genuine
maximizers t̄ ∈ Rn+ and Ū ∈ Rm×n, we emphasize the following two necessary
conditions:

(a) t̄ is a maximizer of
∑

i,j titj|Ū>Ū |i,j subject to ‖t‖2 = 1, so is characterized
by the fact that t̄ is an eigenvector (in fact, the leading eigenvector) of |U>U |
— this is indeed satisfied by tθ and Uθ, according to (4);

(b) Ū is amaximizer of
∑

i,j t̄it̄jsgn(Ū>Ū)i,j(U
>U)i,j = tr(T̄ sgn(Ū>Ū) T̄U>U),

T̄ := diag[t̄], subject to UU> = Im, so is characterized by the fact that the
rows of Ū are eigenvectors corresponding to the m largest eigenvalues of
T̄ sgn(Ū>Ū)T̄ — this is indeed satisfied by tθ and Uθ, according to (5).

13



Remark 4.1. The necessary conditions (a)-(b) combine to show that the genuine
maximizers t̄ and Ū obey the noteworthy relation(

Ū>D̄Ū
)
i,i

= λ(m,n) t̄2i for all i ∈ {1, . . . , n},

where D̄ = diag[µ̄1, . . . , µ̄m] is the diagonalmatrix with them leading eignevalues
µ̄1 ≥ · · · ≥ µ̄m of T̄ sgn(Ū>Ū)T̄ on its diagonal. Indeed, by (a), we have

λ(m,n) t̄2i = t̄i

n∑
j=1

|Ū>Ū |i,j t̄j =
n∑
j=1

(Ū>Ū)i,j(T̄ sgn(Ū>Ū)T̄ )i,j

=
(
(Ū>Ū)(T̄ sgn(Ū>Ū)T̄ )

)
i,i
. (11)

Now, by (b), we have T̄ sgn(Ū>Ū T̄ )Ū> = Ū>D̄, or Ū T̄ sgn(Ū>Ū)T̄ = D̄Ū by
taking the transpose. Making use of the latter in (11) gives the expected relation.

The observation that tθ and Uθ do satisfy conditions (a)-(b) supports the belief
that (10) could be an equality. To the question of whether the right-hand side of
(10) also coincides with the value of the maximal absolute projection constant
λ(m), m = (22s − 1)/3, the answer is in general no. Indeed, for s = 3, hence
for m = 21, k = 28, and l = 36, we have γ21,28,36 ≈ 3.9397, while a real
equiangular tight frame for R21 made of 126 vectors is known to exist (see e.g.
[10]), so Theorem 1.2 yields λ(21) ≥ λ(21, 126) & 4.3333. However, for s = 2,
hence for m = 5, k = 6, and l = 10, there are convincing reasons to believe
that γ5,6,10 ≈ 2.06919 coincide with the value of λ(5). These reasons are the
extensive numerical investigations carried out B. L. Chalmers, as well as our own
computations (some of which can be found in a matlab reproducible available on
the authors’ webpages). All these clues prompt us to conclude with the following
assertion.

Theorem 4.1 (and Conjecture). The fifth absolute projection constant satisfies

λ(5) ≥ λ(5, 16) ≥ 5

59
(11 + 6

√
5) ≈ 2.06919,

and it is expected that the latter is indeed the true value of λ(5).
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Appendix

As bonus material, we present here a new proof of Theorem 1.2 as a immediate
consequence of the technical result below coupled with Theorem 1.1.

Proposition 4.1. For integers n ≥ m > 1, one has

max

{ n∑
i,j=1

titj|U>U |ij : t ∈ Rn, ‖t‖2 = 1, U ∈ Rm×n, UU> = Im

}

≤ m

n

(
1 +

√
(n− 1)(n−m)

m

)
, (12)

with equality if and only if there exists a matrix U ∈ Rm×n with UU> = Im,
(U>U)i,i = m/n for all i ∈ {1, . . . , n}, and |U>U |i,j =

√
(n−m)m/(n− 1)/n

for all i 6= j ∈ {1, . . . , n}.

Proof. For t ∈ Rn satisfying ‖t‖2 = 1 and U ∈ Rm×n satisfying UU> = Im,
we use the nonnegativity of (U>U)i,i (as the inner product of the ith column of U
with itself) and Cauchy–Schwarz inequality to write

Σ :=
n∑

i,j=1

titj|U>U |i,j =
n∑
i=1

t2i |U>U |i,i +
n∑

i,j=1
i 6=j

titj|U>U |i,j

≤
n∑
i=1

t2i (U
>U)i,i +

√√√√√ n∑
i,j=1
i 6=j

t2i t
2
j

√√√√√ n∑
i,j=1
i 6=j

(U>U)2i,j

=
n∑
i=1

t2i (U
>U)i,i +

√√√√ n∑
i,j=1

t2i t
2
j −

n∑
i=1

t4i

√√√√ n∑
i,j=1

(U>U)2i,j −
n∑
i=1

(U>U)2i,i

=
n∑
i=1

αiβi +

√√√√A−
n∑
i=1

α2
i

√√√√B −
n∑
i=1

β2
i ,

where we have set αi = t2i , βi = (U>U)i,i,A =
(∑

i t
2
i

)(∑
j t

2
j

)
= ‖t‖42 = 1, and

B =
∑

i,j(U
>U)2i,j = ‖U>U‖2F = tr(U>UU>U) = tr(UU>UU>) = m. Setting

also a = ‖t‖22 = 1, b = tr(U>U) = tr(UU>) = m, as well as

xi :=
αi − a/n√
A− a2/n

and yi :=
βi − b/n√
B − b2/n

,
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we notice that
∑n

i=1 xi = 0 and
∑n

i=1 yi = 0. We exploit these identities a few
times to derive

Σ ≤
n∑
i=1

(
a

n
+

√
A− a2

n
xi

)(
b

n
+

√
B − b2

n
yi

)

+

√√√√A−
n∑
i=1

(
a

n
+

√
A− a2

n
xi

)2

√√√√B −
n∑
i=1

(
b

n
+

√
B − b2

n
yi

)2

=
ab

n
+

√
A− a2

n

√
B − b2

n

n∑
i=1

xiyi

+

√√√√A− a2

n
−
(
A− a2

n

) n∑
i=1

x2i +

√√√√B − b2

n
−
(
B − b2

n

) n∑
i=1

y2i

=
ab

n
+

√
A− a2

n

√
B − b2

n

 n∑
i=1

xiyi +

√√√√1−
n∑
i=1

x2i

√√√√1−
n∑
i=1

y2i

 .
The latter term in square brackets is nothing but the inner product of the unit
vectors x̃ :=

[
x,
√

1− ‖x‖22
]
and ỹ :=

[
y,
√

1− ‖y‖22
]
, so it is bounded by one.

Thus, keeping the values of a = 1, b = m, A = 1, and B = m in mind, we arrive
at

n∑
i,j=1

titj|U>U |i,j ≤
m

n
+

√
1− 1

n

√
m− m2

n
.

Taking the supremum over t and U leads to the desired inequality (12) after
some algebraic manipulation. This inequality turns into an equality if the matrix
U ∈ Rm×n with UU> = Im satisfies (U>U)i,i = m/n for all i ∈ {1, . . . , n}
and |U>U |i,j =

√
(n−m)m/(n− 1)/n for all i 6= j ∈ {1, . . . , n}, simply by

choosing t ∈ Rn with entries ti = 1/
√
n for all i ∈ {1, . . . , n}.

Conversely, let us assume that (12) is an equality. Our goal is now to prove that
(U>U)i,i = m/n for all i ∈ {1, . . . , n} and |U>U |i,j =

√
(n−m)m/(n− 1)/n

for all i 6= j ∈ {1, . . . , n}, where U ∈ Rm×n satisfying UU> = Im achieves the
maximum, together with t ∈ Rn satisfying ‖t‖2 = 1. We start by taking into
account that equality must hold throughout the first part of the argument. Equality
in Cauchy–Schwarz inequality implies the existence of c ∈ R such that

titj = c |U>U |i,j for all i 6= j ∈ {1, . . . , n}
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and equality in 〈x̃, ỹ〉 ≤ 1 yields x = y, i.e.,

(U>U)i,i −
m

n
=

√
m−m2/n√

1− 1/n

(
t2i −

1

n

)
for all i ∈ {1, . . . , n}. (13)

Since the matrix T sgn(U>U)T has diagonal entries (T sgn(U>U)T )i,i = t2i and
off-diagonal entries

(T sgn(U>U)T )i,j = titjsgn(U>U)i,j = c |U>U |i,jsgn(U>U)i,j = c (U>U)i,j,

the necessary condition (b), written for all i ∈ {1, . . . , n} and h ∈ {1, . . . ,m} as
n∑
j=1

(T sgn(U>U)T )i,jU
>
j,h = µhU

>
i,h,

where µ1 ≥ · · · ≥ µm are them leading eigenvalues of T (sgn(U>U)T , becomes

t2iU
>
i,h +

n∑
j=1
j 6=i

c (U>U)i,jU
>
j,h = µhU

>
i,h.

In other words, for all i ∈ {1, . . . , n} and h ∈ {1, . . . ,m}, we have

t2iU
>
i,h + c (U>UU>)i,h − c (U>U)i,iU

>
i,h = µhU

>
i,h,

or equivalently, in view of UU> = Im,(
t2i + c− c (U>U)i,i

)
U>i,h = µhU

>
i,h. (14)

This actually shows that µh is independent of h ∈ {1, . . . ,m} and — thanks to
the alternate expression λ(m,n) = µ1 + . . . + µm (see e.g. [13, Theorem 1]) —
one must have µh = λ(m,n)/m. Now (14) reduces (say, by multiplying by U>i,h,
summing over h, and simplifying) to t2i + c− c (U>U)i,i = λ(m,n)/m. Summing
over i ∈ {1, . . . , n}) yields

1 + c (n−m) =
n

m
λ(m,n) = 1 +

√
(n− 1)(n−m)

m
,

which shows that

c =

√
n− 1

m(n−m)
.
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Invoking Remark 4.1, we notice that (U>U)i,i = mt2i for all i ∈ {1, . . . , n},
and therefore (13) becomes m(t2i − 1/n) =

√
m(n−m)/(n− 1)(t2i − 1/n).

Given that m 6=
√
m(n−m)/(n− 1) when m > 1, we consequently obtain

t2i = 1/n for all i ∈ {1, . . . , n}. In turn, we deduce from (U>U)i,i = mt2i
that (U>U)i,i = m/n for all i ∈ {1, . . . , n} and from c|U>U |i,j = titj that
|U>U |i,j =

√
m(n−m)/(n− 1)/n for all i 6= j ∈ {1, . . . , n}. The proof is now

complete. 2
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