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Abstract

The notion of generalization in classical Statistical Learning is often attached to the postulate

that data points are independent and identically distributed (IID) random variables. While

relevant in many applications, this postulate may not hold in general, encouraging the develop-

ment of learning frameworks that are robust to non-IID data. In this work, we consider the

regression problem from an Optimal Recovery perspective. Relying on a model assumption

comparable to choosing a hypothesis class, a learner aims at minimizing the worst-case error,

without recourse to any probabilistic assumption on the data. We first develop a semidefinite

program for calculating the worst-case error of any recovery map in finite-dimensional Hilbert

spaces. Then, for any Hilbert space, we show that Optimal Recovery provides a formula which

is user-friendly from an algorithmic point-of-view, as long as the hypothesis class is linear.

Interestingly, this formula coincides with kernel ridgeless regression in some cases, proving that

minimizing the average error and worst-case error can yield the same solution. We provide

numerical experiments in support of our theoretical findings.

Key words and phrases: Optimal Recovery, approximability models, worst-case errors, Hilbert

spaces.

1 Introduction

Let us place ourselves in a classical scenario where data about an unknown function f0 take the

form

(1) yi = f0(xi), i ∈ [1 : m].

The values yi ∈ R and the evaluations points xi ∈ Ω ⊆ Rd are available to the learner. The

goal is to ‘learn’ the function f0 from the data (1) by producing a surrogate function f̂ for f0.
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Supervised Machine Learning methods compute such an f̂ from a hypothesis class selected in

advance. The performance of a method then depends on the choice of this hypothesis class: a

good class should obviously approximate functions of interest well. This translates into a small

approximation error, which is one of the constituents towards the total error of a method. Another

constituent is the estimation error. In classical Statistical Learning [27], the latter is often analyzed

by adopting a postulate that the xi’s are independent realizations of a random variable with an

unknown distribution on Ω. While relevant in many applications, this postulate may not hold

in general, encouraging the development of learning frameworks that are robust to non-IID data.

In this work, we consider the regression problem from an Optimal Recovery perspective, without

recourse to any probabilistic assumption on the data. Indeed, in the absence of randomness, an

average-case analysis is not possible anymore. Instead, the learner aims at minimizing the worst-

case (prediction) error by relying on a model assumption comparable to choosing a hypothesis class.

We restrict our attention here to Hilbert spaces and provide the following contributions:

• We develop a numerical framework for calculating the worst-case error in the case of finite-

dimensional Hilbert spaces. In particular, we show that this error can be computed via a

semidefinite program (Theorem 1).

• We show that Optimal Recovery provides a formula which is user-friendly from an algorithmic

point-of-view when the hypothesis class is a linear subspace (Theorem 2). Interestingly, this

formula coincides with kernel ridgeless regression in some cases (Theorem 3), proving that

minimizing the average error and worst-case error can yield the same solution.

The theoretical findings are verified through some numerical experiments presented in Section 5.

1.1 Why Optimal Recovery?

The theory of Optimal Recovery was developed in the 70’s-80’s as a subfield of Approximation

Theory (see the surveys [18, 19]). Its development was shaped by concurrent developments in the

theory of spline functions (see e.g. [5, 10]). Splines provided a rare example where the theory

integrated computations [6]. But, at that time, algorithmic issues were not the high priority that

they have become today and theoretical questions such as the existence of linear optimal algorithms

prevailed (see e.g. the survey [22]). Arguably, this neglect hindered the development of the topic

and this work can be seen as an attempt to promote an algorithmic framework that sheds light on

similarities and differences between Optimal Recovery (in Hilbert spaces) and Statistical Learning.

Incidentally, what is sometimes called the spline algorithm in Optimal Recovery has recently made

a reappearance in Machine Learning circles as minimum-norm interpolation [2, 25, 17], of course

with a different motivation. Optimal Recovery also establishes a correspondence between numerical

Approximation Theory and Gaussian process regression from a game-theoretic point-of-view, see

e.g. [21]. We remark that Optimal Recovery is not the only framework dealing with non-IID data.

There are indeed other strands of Machine Learning literature (e.g. Online Learning [15] and
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Federated Learning [29]) that investigate learning from non-IID and/or non-random data. But, to

be clear, Optimal Recovery does not rely on any statistical assumptions and aims at worst-case

guarantees rather than average-case guarantees.

1.2 Noisy observations

A careful reader may wonder about the possibility of incorporating an error ei ∈ R in the data

yi = f0(xi)+ei, which is a common consideration in Machine Learning. We do not investigate such

a scenario in this work, as our main focus is on drawing interesting connections between Optimal

Recovery and some of the common Supervised Learning techniques in the simplest of settings first.

Future works1 will concentrate on this inaccurate scenario which, despite some existing results (see

[23, 11, 1]), presents some unsuspected subtleties. For instance, the results from [1] are only valid

in the complex setting and not in the real setting considered here.

2 The Optimal Recovery Perspective

In this section, we recall the general framework of Optimal Recovery and highlight some novel

results, including the computation of worst-case error and the explicit formula of optimal recovery

map.

2.1 The function space

Echoing the theory of Optimal Recovery, we consider the function f0 more abstractly as an element

from a normed space F . The output data yi’s, which are evaluations of f0 at the points xi’s, can

be generalized to linear functionals `i’s applied to f0, so that the data take the form

(2) yi = `i(f0), i ∈ [1 : m].

For convenience, we summarize these data as

(3) y = L(f0) = [`1(f0); . . . ; `m(f0)] ∈ Rm,

where the linear map L : F → Rm is called the observation operator. Relevant situations include

the case where F is the space C(Ω) of continuous functions on Ω, which is equipped with the

uniform norm, and the case where F is a Hilbert space H, which is equipped with the norm derived

from its inner product. It is the latter case that is the focus of this work. More precisely, after

1At the publication time of the current article, a portion of these works is already available, see [13].
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recalling some known results, we concentrate on a reproducing kernel Hilbert space H of functions

defined on Ω, so that the point evaluations at the xi’s are indeed well-defined and continuous linear

functionals on H.

2.2 The model set

Without further information, data by themselves are not sufficient to say anything meaningful

about f0. For example, one could think of all ways to fit a univariate function through points

(x1, y1), . . . , (xm, ym) ∈ R2 if no restriction is imposed. Thus, a model assumption for the functions

of interest is needed. This assumption takes the form

(4) f0 ∈ K,

where the model set K translates an educated belief about the behavior of realistic functions f0.

In Optimal Recovery, the set K is often chosen to be a convex and symmetric subset of F . Here,

our relevant modeling assumption is the one that occurs implicitly in Machine Learning, namely

that the functions of interest are well-approximated by suitable hypothesis classes. In this work, we

only consider hypothesis classes that are linear subspaces V of F . Thus, given an approximation

parameter ε > 0 (the targeted approximation error), our model set has the form

(5) K := {f ∈ F : dist(f, V ) ≤ ε},

where dist(f, V ) := inf{‖f − v‖F , v ∈ V }. In the case F = H of a Hilbert space, this model set

reads

(6) K = {f ∈ H : ‖f − PV f‖H ≤ ε},

where PV f is the orthogonal projection of f onto the subspace V . Such an approximability set

was put forward in [3], with motivation coming from parametric PDEs. When working with this

model, it is implicitly assumed that

(7) V ∩ ker(L) = {0},

otherwise the existence of a nonzero v ∈ V ∩ ker(L) would imply that each ft := f0 + tv, t ∈ R,

is both data-consistent (L(ft) = y) and model-consistent (ft ∈ K), leading to infinite worst-case

error by letting t→∞. By a dimension argument, the assumption (7) forces

(8) n := dim(V ) ≤ m,

i.e., we must place ourselves in an underparametrized regime where there are less model parameters

than datapoints. To make sense of the overparametrized regime, the model set (5) would need to

be refined by adding some boundedness conditions, see [12] for results in this direction.
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2.3 Worst-case errors

With the model set in place, we now need to assess the performance of a learning/recovery map,

which is just a map taking data y ∈ Rm as input and returning an element f̂ ∈ F as output. Given

a model set K, the local worst-case error of such a map R : Rm → F at y ∈ Rm is

(9) errlocK (L,R(y)) := sup
f∈K,L(f)=y

‖f −R(y)‖F .

The global worst-case error is the worst local worst-case error over all y ∈ Rm that can be obtained

by observing some f ∈ K, i.e.,

(10) errgloK (L,R) := sup
f∈K
‖f −R(L(f))‖F .

A learning/recovery map R : Rm → F is called locally, respectively globally, optimal if it minimizes

the local, respectively global, worst-case error. These definitions can be extended to handle not

only the full recovery of f0 but also the recovery of a quantity of interest Q(f0). That is, for a map

Q : F → Z from F into another normed space Z, one would define e.g. the global worst-case error

of the learning/recovery map R : Rm → Z as

(11) errgloK,Q(L,R) := sup
f∈K
‖Q(f)−R(L(f))‖Z .

Such a framework is pertinent even if we target the full recovery of f0 but with performance

evaluated in a norm � · �F different from the native norm ‖ · ‖F , as we can consider Q to be the

identity map from F equipped with ‖ · ‖F into Z = F equipped with � · �F .

Perhaps counterintuitively, dealing with the global setting is somewhat easier than dealing with

the local setting, in the sense that globally optimal maps have been obtained in situations where

locally optimal maps have not, e.g. when F = C(Ω). Accordingly, it is the local setting which is

the focus of this work.

2.4 Computation of local worst-case errors

When F = H is a Hilbert space and the approximability model (6) is selected, determining the

local worst-case error of a given map R : Rm → H at some y involves solving

(12) maximize
f∈H

‖f −R(y)‖H s.to

{
‖f − PV f‖H ≤ ε,
L(f) = y.

This is a nonconvex optimization program, and as such does appear hard to solve at first sight.

However, it is a quadratically constrained quadratic program, hence it is possible to solve it exactly.
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Although Gurobi [14] now features direct capabilities to solve quadratically constrained quadratic

programs, we take the route of recasting (12) as a semidefinite program using the S-lemma [24]. The

solution of the recast program can then be obtained using an off-the-shelf semidefinite solver, at

least when the dimension N = dim(H) of the Hilbert H space is finite. Precisely, with (h1, . . . , hN )

denoting an orthonormal basis for H chosen in such a way that (h1, . . . , hN−m) is an orthonormal

basis for ker(L) and with H denoting the unitary map x ∈ RN−m 7→
∑N−m

k=1 xkhk ∈ ker(L), local

worst-case errors can be computed based on the following observation.

Theorem 1. The local worst-case error of a learning/recovery map R : Rm → H at y ∈ Rm under

the model set (6) can be expressed, with g := R(y), as

(13) elocK (L, g) =
[
‖h− Pker(L)⊥(g)‖2H + ‖Pker(L)(g)‖2H + c?

]1/2
,

where h is the unique element in ker(L)⊥ satisfying L(h) = y and c? is the minimal value of the

following program, in which w := PV ⊥(h):

minimize
c,d∈R

c s.to d ≥ 0 and(14) [
H∗(dPV ⊥ − IH)H | H∗(dw + Pker(L)(g))

(dw + Pker(L)(g))∗H | c+ d(‖w‖2H − ε2)

]
� 0.

Proof. We first justify that there is a unique h ∈ ker(L)⊥ such that L(h) = y ∈ Rm. To see this,

define the linear map L̃ : h ∈ ker(L)⊥ 7→ L(h) ∈ range(L). Since ker(L̃) = ker(L) ∩ ker(L)⊥ = {0},
the map L̃ must be injective. Therefore, we have dim(range(L̃)) = dim(ker(L)⊥), which equals

N − dim(ker(L)) = dim(range(L)) by the rank-nullity theorem, so the map L̃ is also surjective.

Thus, the claim is justified by the fact that L̃ is bijective.

Next, the squared local worst-case error (9) at g = R(y) is

(15)
[
errlocK (L, g)

]2
= sup

f∈H

{
‖f − g‖2H : ‖PV ⊥f‖2H ≤ ε2, L(f) = y

}
.

Decomposing f and g as f = f ′ + f ′′ and g = g′ + g′′ with f ′, g′ ∈ ker(L) and f ′′, g′′ ∈ ker(L)⊥,

the condition L(f) = y reduces to L(f ′′) = y, i.e., f ′′ = h is uniquely determined. The condition

‖PV ⊥f‖2H ≤ ε2 then becomes ‖PV ⊥f ′ + w‖2H ≤ ε2. As for the expression to maximize, it separates

into

(16) ‖f − g‖2H = ‖f ′′ − g′′‖2H + ‖f ′ − g′‖2H = ‖h− g′′‖2H + ‖g′‖2H + ‖f ′‖2H − 2〈f ′, g′〉.

Up to the additive constant ‖h− g′′‖2H + ‖g′‖2H, the maximum in (15) is now

sup
f ′∈ker(L)

‖f ′‖2H − 2〈f ′, g′〉 s.to ‖PV ⊥f ′ + w‖2H ≤ ε2(17)

= inf
c∈R

c s.to ‖f ′‖2H−2〈f ′, g′〉≤c when ‖PV ⊥f ′+w‖2H≤ε2.
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Writing f ′ = Hx with x ∈ RN−m, this latter constraint reads

c−
(
〈Hx,Hx〉 − 2〈Hx, g′〉

)
≥ 0

whenever ε2 −
(
〈PV ⊥Hx,PV ⊥Hx〉+ 2〈PV ⊥Hx,w〉+ ‖w‖2H

)
≥ 0.(18)

By the S-lemma, see e.g. [24], (18) is equivalent to the existence of d ≥ 0 such that

(19) c−
(
〈Hx,Hx〉 − 2〈Hx, g′〉

)
≥ d

[
ε2 −

(
〈PV ⊥Hx,PV ⊥Hx〉+ 2〈PV ⊥Hx,w〉+ ‖w‖2H

)]
for all x ∈ RN−m, or in other words, to the existence of d ≥ 0 such that

(20)
(
d〈x, (H∗PV ⊥H)x〉 − 〈x,H∗Hx〉

)
+ 2
(
d〈x,H∗w〉+ 〈x,H∗g′〉

)
+ c+ d(‖w‖2H − ε2) ≥ 0

for all x ∈ RN−m. This constraint can be reformulated as a semidefinite constraint

(21)

[
dH∗PV ⊥H −H∗H | dH∗w +H∗g′

(dH∗w +H∗g′)∗ | c+ d(‖w‖2H − ε2)

]
� 0.

Keeping in mind that g′ = Pker(L)g, this is the semidefinite constraint appearing in (14). Putting

everything together, we arrive at the expression for the local worst-case error announced in (13).

2.5 Optimal learning/recovery map

Even though it is possible to compute the minimal worst-case error via (13)-(14), optimizing over

g ∈ H to produce the locally optimal recovery map would still require some work and would in

fact be a major overkill. Indeed, for our situation of interest, some crucial work in this direction

has been carried out in [3], and we rely on it to derive the announced user-friendly formula for the

locally (hence globally, too) optimal recovery map Ropt. Precisely, when F = H is a (finite- or

infinite-dimensional) Hilbert space and the model set K is given by (6), it was shown in [3] that, for

any input y ∈ Rm, the output Ropt(y) ∈ H is the solution f̂ to the convex minimization program

(22) minimize
f∈H

‖f − PV f‖H subject to L(f) = y.

We generalize this result through Theorem 4 in the appendix. It suffices to say for now that the

argument of [3], based on the original expression (9) of the worst-case error, exploits the fact that

f̂ −PV f̂ is orthogonal not only to V but also to ker(L). Let us point out that Ropt(y) = f̂ is both

data-consistent and model-consistent when y = L(f0) for some f0 ∈ K. It is also interesting to

note that the optimal recovery map Ropt does not depend on the approximation parameter ε. This

peculiarity disappears as soon as observation errors are taken into consideration, see [11].

A computable expression for the minimal local error (9), and in turn for the minimal global error

(10), has also been given in [3]. Without going into details, we only want to mention that the latter
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decouples as the product µ × ε of an indicator µ of compatibility between model and datapoints,

which increases as the space V is enlarged, and of the parameter ε of approximability, which

decreases as the space V is enlarged. Thus, the choice of a space V yielding small minimal worst-case

errors involves a trade-off on n = dim(V ). This trade-off is illustrated numerically in Subsection 5.2.

Alternatively, viewing the space V as fixed, if we could choose the observation functionals `i’s

(which is not the focus here), then the compatibility indicator µ would reflect the quality of these

functionals.

Although the description given by of the optimal learning/recovery map is quite informative, it fails

to make apparent the fact the map Ropt is actually a linear map. This fact can be seen from the

theorem below, which states that solving a minimization program for each y ∈ Rm is not needed

to produce Ropt(y). Indeed, one can obtain Ropt(y) by some linear algebra computations involving

two matrices which are more or less directly available to the learner. To define these matrices, we

need the Riesz representers ui ∈ H of the linear functionals `i ∈ H∗, which are characterized by

`i(f) = 〈ui, f〉 for all f ∈ H.

We also need a (not necessarily orthonormal) basis (v1, . . . , vn) for V . The two matrices are

the Gramian G ∈ Rm×m of (u1, . . . , um) and the cross-Gramian C ∈ Rm×n of (u1, . . . , um) and

(v1, . . . , vn). Their entries are given, for i, i′ ∈ [1 : m] and j ∈ [1 : n], by

(G)i,i′ = 〈ui, ui′〉 = `i(ui′),(23)

Ci,j = 〈ui, vj〉 = `i(vj).(24)

The matrix G is positive definite and in particular invertible (linear independence of the `i’s is

assumed). The matrix C has full rank thanks to the assumption V ∩ ker(L) = {0}. The result

below shows that the output of the optimal learning/recovery map does not have to lie in the

space V (the hypothesis class), as opposed to the output of algorithms such as empirical risk

minimizations.

Theorem 2. The locally optimal learning/recovery map Ropt : Rm → H is given in closed form

for each y ∈ Rm by

(25) Ropt(y) =

m∑
i=1

aiui +

n∑
j=1

bjvj ,

where the coefficient vectors a ∈ Rm and b ∈ Rn are computed as

b = (C>G−1C)−1C>G−1y,(26)

a = G−1(y −Cb).(27)

Proof. Let f̂ = Ropt(y) be the solution to (22). We point out (as already mentioned or as a special

case of (50)) that f̂−PV f̂ is orthogonal to the space ker(L). This property completely characterizes
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f̂ as the element given by (25). Indeed, in view of ker(L)⊥ = span{u1, . . . , um}, we have

(28) f̂ − PV f̂ =
m∑
i=1

aiui for some a ∈ Rm.

Taking inner product with v1, . . . , vn leads to 0 = C>a. Then, expanding PV f̂ on (v1, . . . , vn), we

obtain

(29) f̂ =
m∑
i=1

aiui +
n∑
j=1

bjvj for some b ∈ Rn.

Taking inner product with u1, . . . , um leads to y = Ga+Cb and in turn to C>G−1y = C>G−1Cb

after multiplying by C>G−1. The latter yields the expression for b given in (26), while the former

yields the expression for a given in (27).

3 Relation to Supervised Learning

Supervised learning algorithms take data y ∈ Rm as input (while also being aware of the xi’s) and

return functions f̂ ∈ H as outputs, so they can be viewed as learning/recovery maps R : Rm → H.

We examine below how some of them compare to the map Ropt from Theorem 2.

3.1 Empirical risk minimizations

By design, the outputs f̂ returned by these algorithms belong to a hypothesis space chosen in

advance from the belief that it provides good approximants for real-life functions. Since this implicit

belief parallels the explicit assumption expressed by the model set (5), our Optimal Recovery

algorithm and empirical risk minimization algorithms are directly comparable, in that they both

depend on a common approximation space/hypothesis class V . With a loss function chosen as a

pth power of an `p-norm for p ∈ [1,∞], empirical risk minimization algorithms consist in solving

the convex optimization program

(30) minimize
f∈H

‖y − L(f)‖pp =
m∑
i=1

|yi − `i(f)|p s.to f ∈ V.

In the case p = 2 of the square loss, the solution actually reads

(31) Rerm2(y) =

n∑
j=1

(
(C>C)−1C>y

)
j
vj ,

where the matrix C ∈ Rm×n still represents the cross-Gramian introduced in (24).
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3.2 Kernel regressions

Kernel regression algorithms usually operate in the setting of Reproducing Kernel Hilbert Spaces

(see next section), but they can be phrased for arbitrary Hilbert spaces, too. For instance, the

traditional kernel ridge regression consists in solving the following convex optimization problem

(32) minimize
f∈H

m∑
i=1

(yi − `i(f))2 + γ‖f‖2H

for some parameter γ > 0. In the limit γ → 0, one obtains kernel ridgeless regression, which

consists in solving the convex optimization problem

(33) minimize
f∈H

‖f‖H s.to `i(f) = yi, i ∈ [1 : m].

This algorithm fits the training data perfectly and is also known to generalize well in the presence

of noise [17].

The crucial observation we wish to bring forward here is that kernel ridgeless regression, although

not designed with this intention, is also an Optimal Recovery method. Indeed, (33) appears as the

special case of the convex optimization program (22) with the choice V = {0}. Using Theorem 2,

we can retrieve in particular that kernel ridgeless regression is explicitly given by

(34) Rridgeless(y) =
m∑
i=1

(
G−1y

)
i
ui.

Incidentally, the latter can also be interpreted as the special case where V = span{u1, . . . , um},
since f̂ = Rridgeless(y) is a linear combination of the Riesz representers u1, . . . , um that satisfy the

observation constraint L(f̂) = y. In fact, there are more choices for V that leads to kernel ridgeless

regression, as revealed below.

Theorem 3. If the space is V = span{ui, i ∈ I} for some subset I of [1 : m], then the locally

optimal recovery map (22) reduces to kernel ridgeless regression independently of I.

Proof. Let V = span{ui, i ∈ I} for some I ⊆ [1 : m] and let f̂ be the output of kernel ridgeless

regression. According to the proof of Theorem 2, to prove that f̂ is the solution to (22), we have to

verify that f̂ − PV f̂ ∈ ker(L)⊥. Since we already know that f̂ = f̂ − P{0}f̂ ∈ ker(L)⊥ (recall that

kernel ridgeless regression is (22) with {0} in place of V ), it remains to check that PV f̂ ∈ ker(L)⊥.

This simply follows from PV f̂ ∈ span{ui, i ∈ I}⊆ span{u1, . . . , um}= ker(L)⊥.

Remark As revealed in [21], the minimization over R of the worst-case relative error

(35) sup
f∈H

‖f −R(L(f))‖H
‖f‖H
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coincides with kernel ridge regression. This minimax problem can be generalized to Banach spaces

and interpreted as an adversarial zero-sum game. Thus, with the addition of our observation, kernel

regressions appear to be optimal in a game-theoretic sense, in a Statistical Learning (average-case)

sense, and in an Optimal Recovery (worst-case) sense.

3.3 Spline models

From an Optimal Recovery point-of-view, the success of (33) can be surprising because it seems

to use only data and no model assumption. In fact, the model assumption occurs in the objective

function being minimized. Procedure (33) favors data-consistent functions which are themselves

small. If one preferred to favor data-consistent functions which have small derivatives, one would

instead consider, say, the program

(36) minimize
f∈Wk

2 [0,1]
‖f (k)‖L2 s.to f(xi) = yi, i ∈ [1 : m],

with optimization variable f in the Sobolev space W k
2 [0, 1]. As it turns out, this procedure coincides

with the Optimal Recovery method that minimizes the worst-case error over the model set given

by K = {f ∈ W k
2 [0, 1] : ‖f (k)‖L2 ≤ 1} and its solution is known explicitly [5]. With k = 2 (where

one tries to minimize the strain energy of a curve constrained to pass through a prescribed set of

points), the solution is a cubic spline, see [28] for details. For multivariate functions, the solutions

to problems akin to (36) are also known explicitly: they are thin plate splines [10]. More generally,

minimum-(semi)norm interpolation problems are what define the concept of abstract splines [7].

Remark. When observation error is present, exact interpolation conditions should not be enforced,

so it is natural to substitute (22) by a regularized problem similar to (32) but with ‖f−PV f‖2H acting

as a reguralizer instead of ‖f‖2H. This has already been proposed in [16] under the name Generalized

Regularized Least-Squares, of course with a different motivation than Optimal Recovery. In fact, a

more general regularized problem where ‖f−PV f‖2H gives way to a squared seminorm also appeared

in [9]. Such inverse-problem inspired techniques have been applied to statistical learning e.g. in

[8], which studied the consistency properties of the associated estimators.

4 Optimal Recovery in Reproducing Kernel Hilbert Spaces

We consider in this section the case where F = H is a Hilbert space of functions defined on a domain

Ω ⊆ Rd for which point evaluations are continuous linear functionals. In other words, we consider

a reproducing kernel Hilbert space HK , where K : Ω×Ω→ R denotes the kernel characterized, for

any x ∈ Ω, by

(37) f(x) = 〈K(x, ·), f〉 for all f ∈ HK .

11
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In this way, the Riesz representers of points evaluations at xi’s take the form ui = K(xi, ·). Thus,

the Gramian of (23) has entries

(38) Gi,i′=〈K(xi, ·),K(xi′ , ·)〉=K(xi′ ,xi), i, i
′ ∈ [1 : m].

As for the cross-Gramian of (24), it has entries

(39) Ci,j = vj(xi), i ∈ [1 : m], j ∈ [1 : n],

where (v1, . . . , vn) represents a basis for the space V . Some possible choices of K and V are

discussed below.

4.1 Choosing the kernel

A kernel that is widely used in many learning problems is the Gaussian kernel given, for some

parameter σ > 0, by

(40) K(x,x′) = exp

(
−‖x− x′‖2

2σ2

)
, x,x′ ∈ Rd.

The associated infinite-dimensional Hilbert space, explicitly characterized in [20], has orthonormal

basis {φα, α ∈ Nd0}, where

(41) φα(x)=

√
(1/σ2)α1+···+αd

α1! · · ·αd!
exp

(
−‖x‖

2

2σ2

)
xα1
1 · · ·x

αd
d .

4.2 Choosing the approximation space

Since a learning/recovery procedure uses both data and model (maybe implicitly), its performance

depends on the interaction between the two. In Optimal Recovery, and subsequently in Information-

Based Complexity [26], it is often assumed that the model is fixed and that the user has the ability

to choose evaluation points in a favorable way. From another angle, one can view the evaluation

points as being fixed but the model could be chosen accordingly. For the applicability of Theorem

2, it is perfectly fine to select an approximation space V depending on x1, . . . ,xm, so long as it

does not depend on y1, . . . , ym. Thus, one possible choice for the approximation space consists of

V = span{K(xi, ·), i ∈ I} for some subset I ⊆ [1 : m]. However, we have seen in Theorem 3 that

such a choice invariably leads to kernel ridgeless regression. Another choice for the approximation

space is inspired by linear regression, which uses the space span{1, x1, . . . , xd}. We do not consider

this space verbatim, because its elements (or any polynomial function, for that matter, see [20])

do not belong to the reproducing kernel Hilbert space with Gaussian kernel. Instead, we modify

12
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it slightly by multiplying with a decreasing exponential and by allowing for degrees k higher than

one, so as to consider the space

(42) V = span{φα, α1 + · · ·+ αd ≤ k},

which has dimension n =
(
d+k
d

)
. We ignore the coefficients of φα in numerical experiments, which

has no effects on the test error. These φα’s are the so-called ‘Taylor features’ used in approximation

of the Gaussian kernel [4].

5 Experimental Validation

5.1 Comparison of worst-case errors

We first compare worst-case errors for the optimal recovery map (OR) described in Theorem 2 and

for empirical risk minimizations defined in (30). They are only considered with p = 1 (ERM1)

and p = 2 (ERM2). The algorithms OR, ERM1, and ERM2 all operate with a specific space V

(as a hypothesis class), so direct comparisons can be made by selecting the same V for all these

algorithms. According to Theorem 1, whenH is a finite-dimensional Hilbert space, the computation

of their worst-case errors is performed by semidefinite programming. Here, we restrict ourselves to

the case where V is a randomly generated n-dimensional subspace of H = `N2 , with n = 20 and

N = 200. The observation operator L is also randomly generated by taking the m = 50 Riesz

representers ui ∈ H as vectors whose entries are independent and uniformly distributed on [0, 1].

The observation vector y ∈ Rm is obtained by applying L to a randomly generated f0 ∈ H satisfying

‖f0−PV f0‖H ≤ ε0 := 0.2. Figure 1(a), which corresponds to a particular realization of V , L, and f0
and to an approximation parameter ε varying from ε0 to ε1 := 0.205, confirms that OR yields the

smallest worst-case errors. It also hints at a quasi-linear dependence of the worst-case errors on ε

and suggests that ERM2 yields smaller worst-case errors than ERM1.

In contrast, keeping the same realization of V , L, and f0 as above, Figure 1(b) suggests that ERM1

yields smaller worst-case errors than ERM2 when the standard empirical risk minimization (30)

is enhanced by replacing the overdemanding constraint f ∈ V by the constraint f ∈ K, i.e.,

‖f − PV f‖H ≤ ε. Although the performances are now very close for all algorithms, it has to be

noted that in this case running ERM1 and ERM2 requires an a priori knowledge of ε while running

OR does not.

13
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(a) ERM1 and ERM2 with constraint f ∈ V .
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(b) ERM1 and ERM2 with constraint f ∈ K.

Figure 1: Optimal Recovery and Empirical Risk Minimization maps with p = 1 and p = 2.

5.2 Test errors for non-IID data

In this subsection, we implement the optimal recovery map on two real-world regression datasets,

namely Years Prediction and Energy Use. Both of these open-access datasets are widely used for

algorithm evaluation and are available on UCI Machine Learning Repository. We focus on the

reproducing kernel Hilbert space HK associated with Gaussian kernel throughout this experiment.

The space V is spanned by a subset of Taylor features of order k = 1, see (42), so that dim(V ) goes

up to d+ 1, where d is the number of features in the datasets. The basis are generated as described

in (23) and (24). To be specific, instances in C are the Taylor features described in (41) evaluated

on the observations and instances in G are the kernel function evaluated on the observation pairs.

To choose the optimal kernel width, we conduct a grid search. Furthermore, to make the data

non-IID, we sort both datasets according to their 5-th feature in a descending order and then select

the top 70% as the training set and the bottom 30% as the test set. Note that one can sort by

any feature to create the same non-IID condition. Recall by Theorem 2 that the optimal recovery

map depends on the Hilbert space HK and the subspace V . Therefore, it is natural to compare

it to kernel ridgeless regression (34) (in HK) and Taylor features regression (31) (in V ). The test

error comparison is presented in Figure 2. Due to the size of Years Prediction dataset, we do not

perform kernel ridgeless regression on the full dataset, so we randomly subsample a 5000 subset of

the data and repeat the experiment for 40 Monte Carlo simulations to average out the randomness.

Therefore, error bars are presented in Figure 2(a) to show the statistical significance. We observe

that the optimal recovery map shows promising performance on both datasets. On Years Prediction

dataset, Optimal Recovery outperforms kernel ridgeless regression for all dim(V ). On Energy Use

dataset, it outperforms kernel ridgeless regression after dim(V ) = 2. Also, Taylor features regression

in the space V is consistently inferior to the optimal recovery map. The U-shape Optimal Recovery

14
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curve in Figure 2(a) demonstrates the trade-off between the compatibility indicator µ and the

approximability parameter ε.
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(b) Test error comparison on Energy Use

Figure 2: Optimal Recovery and two benchmark regression algorithms on two benchmark datasets.

6 Conclusion

Generalization guarantees in Statistical Learning are based on the postulate of IID data, the per-

tinence of which is not guaranteed in all learning environments. In this work, we considered the

regression problem (with non-random data) in Hilbert spaces from an Optimal Recovery point-of-

view, where the learner aims at minimizing the worst-case error. We first formulated a semidefinite

program for calculating the worst-case error of any recovery map in finite-dimensional Hilbert

spaces. Then, we provided a closed-form expression for optimal recovery map in the case where

the hypothesis class V is a linear subspace of any Hilbert space. The formula coincides with kernel

ridgeless regression when V = {0} in a reproducing kernel Hilbert space. Our numerical experi-

ments showed that, when dim(V ) > 0, Optimal Recovery has the potential to outperform kernel

ridgeless regression in the test mean squared error. Our main focus was to provide an algorithmic

perspective to Optimal Recovery, whose theory was initiated in the 70’s-80’s. Our findings revealed

interesting connections with current Machine Learning methods. There are many directions to

consider in the future, including:

(i) learning the hypothesis space V from the data (instead of incorporating domain knowledge);

(ii) developing Optimal Recovery with noise/error in the observations;2

2Some results can now be found in [13], in particular, the article [13] uncovers a principled way to choose the

parameter of a Tikhonov-like regression.
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(iii) studying the overparametrized regime dim(V ) > m;

(iv) investigating the case where the hypothesis class V is not a linear space.
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Appendix

Below, we generalize the result of [3] in two directions. For the first direction, instead of assuming

that the target function f0 itself is well approximated by elements of a set V , we assume that

it is some linear transform T applied to f0 that is well approximated. This translates in the

modification (44) of the approximability set. The novelty occurs not for invertible transforms, but

for noninvertible ones (e.g. when T represents a derivative, as in (36)). For the second direction,

instead of attempting to recover f0 in full, we assume that we only need to estimate a quantity

Q(f0) depending on f0, such as its integral. Although we focus on the extreme situations where Q

is the identity or where Q is a linear functional, the case of an arbitrary linear map Q is covered.

Leaving the introduction of the transform T aside, one useful consequence of the result below is

that knowledge of (a basis for) the space V is not needed, since only the values of the `i(vj)’s and

Q(vj)’s are required to form (Q ◦Ropt)(y).

Theorem 4. Let F ,H,Z be three normed spaces, H being a Hilbert space, and let V be a subspace

of H. Consider a linear quantity of interest Q : F → Z and a linear map T : F → H. For y ∈ Rm,

define Ropt(y) ∈ F as a solution to

(43) minimize
f∈F

‖Tf − PV (Tf)‖H s.to L(f) = y.

Then the learning/recovery map Q ◦Ropt : Rm → Z is locally optimal over the model set

(44) K = {f ∈ F : dist(Tf, V ) ≤ ε}

in the sense that, for any z ∈ Z,

(45) sup
f∈K,L(f)=y

‖Q(f)−Q ◦Ropt(f)‖Z ≤ sup
f∈K,L(f)=y

‖Q(f)− z‖Z .
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Proof. Let us introduce the compatibility indicator

(46) µ := sup
u∈ker(L)\{0}

‖Q(u)‖Z
dist(Tu, V )

.

Given y ∈ Rm, let f̂ = Ropt(y) denote the solution to (43). We shall establish (45) by showing on

the one hand that

(47) sup
f∈K

L(f)=y

‖Q(f)−Q(f̂)‖Z ≤ µ
[
ε2−‖T f̂−PV (T f̂)‖2H

]1/2
and on the other hand that, for any z ∈ Z.

(48) sup
f∈K

L(f)=y

‖Q(f)−z‖Z ≥ µ
[
ε2−‖T f̂−PV (T f̂)‖2H

]1/2
.

Let us start with (47). Considering an arbitrary u ∈ ker(L), notice that the quadratic expression

t ∈ R given by

(49) ‖T (f̂ + tu)−PV (T (f̂ + tu))‖2H = ‖T f̂−PV (T f̂)‖2H + 2t〈T f̂−PV (T f̂), Tu−PV (Tu)〉+O(t2)

is miminized at the point t = 0. This forces the linear term 〈T f̂−PV (T f̂), Tu−PV (Tu)〉 to vanish,

in other words

(50) 〈T f̂ − PV (T f̂), Tu〉 = 0 for any u ∈ ker(L).

Now, considering f ∈ K such that L(f) = y written as f = f̂ + u for some u ∈ ker(L), the fact

that f ∈ K reads

(51) ε2 ≥ ‖T (f̂ + u)−PV (T (f̂ + u))‖2H = ‖T f̂−PV (T f̂)‖2H + ‖Tu−PV (Tu)‖2H.

Rearranging the latter gives

(52) dist(Tu, V ) ≤
[
ε2−‖T f̂−PV (T f̂)‖2H

]1/2
.

It remains to take the definition (46) into account in order to bound ‖Q(f)−Q(f̂)‖Z = ‖Q(u)‖Z
and arrive at (47).

Turning to (48), we consider u ∈ ker(L) such that

‖Q(u)‖Z = µdist(Tu, V ),(53)

‖Tu−PV (Tu)‖H =
[
ε2−‖T f̂−PV (T f̂)‖2H

]1/2
.(54)

It is clear that f± := f̂ ± u both satisfy L(f±) = y, while f± ∈ K follows from

‖Tf±−PV (Tf±)‖2H = ‖(T f̂−PV (T f̂))± (Tu−PV (Tu))‖2H
= ‖T f̂−PV (T f̂)‖2 + ‖Tu−PV (Tu)‖2H = ε2.(55)
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Therefore, for any z ∈ Z,

sup
f∈K

L(f)=y

‖Q(f)−z‖Z ≥ max{‖Q(f+)−z‖Z , ‖Q(f−)−z‖Z}

≥ 1

2

(
‖Q(f+)−z‖Z + ‖Q(f−)−z‖Z}

)
≥ 1

2
‖Q(f+ − f−)‖Z = ‖Q(u)‖Z .(56)

Taking (53) and (54) into account finishes to prove (48).
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