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Abstract

In this supplementary note, we describe algorithms that compute (lower bounds for) the

maximal and quasimaximal relative projection constants. The algorithms are operative in both

the real and complex settings. Although there is no guarantee that the lower bounds coincide

with the true values, we could verify the exactness on cases where true values are known, i.e.,

in the real situation with 1 ≤ m < N ≤ 10.

Let us recall from Section 2 of the main text — see specifically (6)-(7) and (3)-(4) — that the

quasimaximal and maximal relative projection constants with respect to K = R or K = C can be

expressed as

µK(m,N) :=
1

N
max


N∑

i,j=1

|UU∗|i,j , U ∈ KN×m, U∗U = Im

(1)

=
1

N
max

{
m∑
k=1

λ↓k(A), A ∈ KN×N , A∗ = A,Ai,i = 1, |Ai,j | = 1

}

and

λK(m,N) := max


N∑

i,j=1

ti|UU∗|i,jtj , t ∈ KN , ‖t‖2 = 1, U ∈ KN×m, U∗U = Im


(2)

= max

{
m∑
k=1

λ↓k(TAT ), T = diag(t), ‖t‖2 = 1, A ∈ KN×N , A∗ = A,Ai,i = 1, |Ai,j | = 1

}
.

The maxima in (1) and (2) are not easily computable because of the absolute values. But if we can

replace |UU∗|i,j by Ai,j(UU
∗)i,j for some sign Ai,j , then the computation becomes easier. The idea is

to refine our guess for the optimal U and A iteratively (in the optimal situation, A = sgn(UU∗) and

U is obtained from the eigendecomposition of A). Thus, we propose the following two algorithms:
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For the computation of the quasimaximal relative projection constant µK(m,N):

Initially, choose U0 ∈ KN×m with U∗0U0 = Im and choose A0 = sgn(U0U
∗
0 ) ∈ KN×N .

Then iterate the following scheme, based on the eigendecomposition of An−1:

αn :=
1

N

m∑
k=1

λ↓k(An−1)

Un := matrix of m leading orthonormal eigenvectors of An−1 (so U∗nUn = Im)

βn :=
1

N

N∑
i,j=1

|UnU
∗
n|i,j

An := sgn(UnU
∗
n).

For the computation of the maximal relative projection constant λK(m,N):

Initially, choose U0 ∈ KN×m with U∗0U0 = Im, choose t0 ∈ KN as the leading eigenvector of |UnU
∗
n|,

T0 = diag(t0), and choose A0 = sgn(U0U
∗
0 ) ∈ KN×N .

Then iterate the following scheme, based on the eigendecomposition of An−1:

γn :=
m∑
k=1

λ↓k(Tn−1An−1Tn−1)

Un := matrix of m leading orthonormal eigenvectors of Tn−1An−1Tn−1 (so U∗nUn = Im)

δn := λ↓1(|UnU
∗
n|)

tn := leading eigenvector of |UnU
∗
n|, Tn = diag(tn)

An := sgn(UnU
∗
n).

It can be shown that the sequences (αn), (βn), (γn), and (δn) are convergent, by virtue of

αn ≤ βn ≤ αn+1 ≤ · · · ≤ µK(m,N)

and of

γn ≤ δn ≤ γn+1 ≤ · · · ≤ λK(m,N).

When calling QMaxRelProjCst_Real(m,N,nTest) or QMaxRelProjCst_Complex(m,N,nTest) and

MaxRelProjCst_Real(m,N,nTest) or MaxRelProjCst_Complex(m,N,nTest), our implementations

return the maximal values of βn and δn, respectively, over nTest random initializations, with n

arbitrarily chosen so that βn − αn ≤ 10−7.
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