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Abstract

This article studies a variation of the standard compressive sensing problem, in which sparse

vectors x ∈ RN are acquired through inaccurate saturated measurements y = S(Ax+e) ∈ Rm,

m � N . The saturation function S acts componentwise by sending entries that are large in

absolute value to plus-or-minus a threshold while keeping the other entries unchanged. The

present study focuses on the effect of the presaturation error e ∈ Rm. The existing theory for

accurate saturated measurements, i.e., the case e = 0, which exhibits two regimes depending on

the magnitude of x ∈ RN , is extended here. A recovery procedure based on convex optimization

is proposed and shown to be robust to presaturation error in both regimes. Another procedure

ignoring the presaturation error is also analyzed and shown to be robust in the small magnitude

regime.
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1 Introduction

Suppose that vectors x ∈ RN are acquired through m linear measurements yi = 〈ai,x〉 = a>i x,

i = 1, . . . ,m, for some a1, . . . ,am ∈ RN . In condensed form, this reads y = Ax, where the matrix

A ∈ Rm×N has rows a>1 , . . . ,a
>
m. When m is smaller than N , it is in general inconceivable to

recover x ∈ RN from the mere knowledge of y ∈ Rm, but the theory of compressive sensing [4, 5, 8]

made it clear that such a recovery task is in fact possible when some prior information about the

structure of x is available. Typically, it is assumed that the vectors of interest are s-sparse, i.e.,

that the x ∈ RN possess at most s nonzero entries. In this case, it is now well known that only

m � s ln(eN/s) random measurements enable the exact recovery of all s-sparse vectors x ∈ RN

via various efficient algorithms taking the compressed version y = Ax ∈ Rm as an input (together

with the matrix A itself, of course).

∗This work is the result of Jiangyuan Li’s capstone project, carried out at Texas A&M University as part of an

exchange with Beihang University.
†S. F. is partially supported by the NSF under the grant DMS-1622134.
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Now suppose that sparse vectors x ∈ RN are not acquired through y = Ax but rather through

S(y) = S(Ax), where S = Sµ is the saturation function depicted below.

S(t) =


−µ, t ∈ (−∞,−µ],

t, t ∈ (−µ,+µ),

+µ, t ∈ [+µ,+∞).
-µ +µ

-µ

+µ

Intuitively, at one extreme, when the threshold µ is very large (compared to the magnitude of x),

the saturation function S has no effect and the setting of standard compressive sensing prevails,

so one expects exact recovery of x to be possible. At the other extreme, when the threshold µ

is very small (compared to the magnitude of x), knowing S(y) reduces to knowing the binary

information sgn(Ax), so one expects approximate recovery of the direction of x to be possible (and

not more), similarly to the setting of one-bit compressive sensing (see [3] where the scenario was

put forward, [11] where the first theoretical results were established, and [6, Section 8.4] where

they were simplified). Between these two extremes, one expects more than direction recovery to be

possible, since more than just the sign information is available. This intuition was formalized in [7]

for the recovery map given by

(1) Λ1(y) := argmin
z∈RN

‖z‖1 subject to S(Az) = S(y).

In short, the article [7] showed that, with high probability on the draw of a random matrix A

populated by independent N (0, σ2) entries,

(i) there is a constant α > 0 such that, for every s-sparse x ∈ RN satisfying σ‖x‖2 ≤ αµ, one has

(2) Λ1(S(Ax)) = x

provided m ≥ κs ln(eN/s) for some absolute constant κ > 0;

(ii) given a fixed constant β > α, and given any δ ∈ (0, 1), for every s-sparse x ∈ RN satisfying

αµ < σ‖x‖2 ≤ βµ, one has

(3) ‖x− Λ1(S(Ax))‖2 ≤ δ‖x‖2

provided m ≥ κβ,δs ln(eN/s) for some constant κβ,δ > 0 depending on β and δ.

The article [7] did not touch upon potential complications that might occur when the measurements

are corrupted. This is the focus of this paper, which will establish robustness of optimization-based
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recovery methods in this situation. So from now on, the inaccurate compressed version of a vector

x ∈ RN takes the form y = Ax + e for some measurement error e ∈ Rm. In standard compressive

sensing, when a bound ‖e‖2 ≤ η is known a priori, it is classical to approximate x by

(4) ∆1,η(y) := argmin
z∈RN

‖z‖1 subject to ‖Az− y‖2 ≤ η.

Under some condition on the measurement matrix A ∈ Rm×N , there exist absolute constants

κ,D > 0 such that the recovery bound

(5) ‖x−∆1,η(Ax + e)‖2 ≤ Dη

is valid for all s-sparse x ∈ RN and all e ∈ Rm with ‖e‖2 ≤ η, provided m ≥ κs ln(eN/s). The

required condition on the matrix A ∈ Rm×N is fulfilled with high probability when its entries are

independent Gaussian random variables with mean zero and standard deviation σ = 1/
√
m, which

is what we assume in the rest of the paper.

We now place ourselves in the situation where the measurement vector y = Ax+e is only available

through its saturated version S(y), with the knowledge of a bound ‖e‖2 ≤ η on the presaturation

error. Our goal is to establish recovery bounds bridging (2)-(3) and (5). Namely, we aim at

uncovering a recovery procedure Λ1,η : [−µ,+µ]m → RN such that

• in a regime of small magnitude, i.e., when the s-sparse vectors x ∈ RN satisfy the inequality

‖x‖2 ≤ αµ
√
m, one has

(6) ‖x− Λ1,η(S(Ax + e))‖2 ≤ Dη;

• in a regime of intermediate magnitude, i.e., when the s-sparse vectors x ∈ RN satisfy the

inequalities αµ
√
m < ‖x‖2 ≤ βµ

√
m, one has

(7) ‖x− Λ1,η(S(Ax + e))‖2 ≤ δ‖x‖2 +Dη.

The recovery procedure we propose, which we call noise-cognizant `1-minimization (to distinguish

it from the noise-ignoring `1-minimization discussed in Section 5) consists in producing from S(y)

the vector Λ1,η(S(y)) = x], where

(8) (x], e]) := argmin
(z,w)∈RN×Rm

‖z‖1 subject to


S(Az + w) = S(y),

‖w‖2 ≤ γ η,
‖z‖2 ≤ γ′µ

√
m.

We will explain later how the parameters γ, γ′ > 0 are chosen. It is not clear if the last constraint,

namely ‖z‖2 ≤ γ′µ
√
m, is absolutely necessary, but it certainly eases the argument. We emphasize

that our recovery procedure is (recast as) a second-order cone program. Indeed, the first constraint,
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namely S(Az + w) = S(y), can be written as a set of linear constraints. To see this, we introduce

the index sets of nonsaturated and of saturated measurements as defined by

(9) Inonsat := {i ∈ J1 : mK : |yi| < µ} and Isat := {i ∈ J1 : mK : |yi| ≥ µ},

where the latter is further decomposed into index sets of negatively and of positively saturated

measurements, i.e.,

(10) Inegsat := {i ∈ J1 : mK : yi ≤ −µ} and Ipossat := {i ∈ J1 : mK : yi ≥ +µ},

and we can observe that

(11) [S(Az + w) = S(y)] ⇐⇒


〈ai, z〉+ wi = yi, i ∈ Inonsat,
〈ai, z〉+ wi ≤ −µ, i ∈ Inegsat,
〈ai, z〉+ wi ≥ +µ, i ∈ Ipossat.

Moreover, it is usual to deal with the minimization of the `1-norm ‖z‖1 by introducing a slack

vector c ∈ RN and minimizing
∑N

j=1 cj subject to |zj | ≤ cj , i.e., −cj ≤ zj ≤ cj , for all j ∈ J1 : NK.

In order to establish the results outlined above, we need several properties of Gaussian matrices.

These properties are formulated in Section 2 below. Then, in Section 3, we show that estimate (6) is

valid in the small magnitude regime for ‖x‖2. In Section 4, we consider the intermediate magnitude

regime for ‖x‖2 and show that estimate (7) is valid, too. In Section 5, we discuss a procedure

different from (8), for which we establish a recovery result in the small magnitude regime only.

Section 6 reports on some modest numerical experiments. Finally, an appendix collects justifications

of some unproven statements made in Section 2.

2 Technical Tools

The arguments presented in Sections 3, 4, and 5 below rely on several properties of a random matrix

A ∈ Rm×N populated by independent N (0, 1/m) entries. These properties are explicitly stated in

this section. They involve some constants whose values are fixed for the remainder of the paper.

2.1 Standard restricted isometry property and consequences

A matrix A ∈ Rm×N is said to satisfy the restricted isometry property of order s with constant

δ ∈ (0, 1) if

(12) (1− δ)‖z‖22 ≤ ‖Az‖22 ≤ (1 + δ)‖z‖22 for all s-sparse z ∈ RN .
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It is known (see e.g. [8, Theorems 9.2 and 9.27]) that there exist absolute constants κ1, υ1, c1 > 0

such that, if m ≥ κ1δ
−2s ln(eN/s), then a Gaussian matrix A ∈ Rm×N (meaning here that its

entries are independent Gaussian random variables with mean zero and variance 1/m) satisfies the

restricted isometry property of order s with constant δ ∈ (0, 1) with failure probability at most

υ1 exp(−c1δ2m). We will also invoke the two consequences of this property formulated below.

1. Restricted isometry property for effectively s-sparse vectors (i.e., vectors z ∈ RN such that

‖z‖1 ≤
√
s‖z‖2): there exist absolute constants κ2, υ2, c2 > 0 such that, ifm ≥ κ2δ−2s ln(eN/s),

then a Gaussian matrix A ∈ Rm×N satisfies

(13) (1− δ)‖z‖22 ≤ ‖Az‖22 ≤ (1 + δ)‖z‖22 for all effectively s-sparse z ∈ RN

with failure probability at most υ2 exp(−c2δ2m). Property (13) does follow from Property (12)

using the sort-and-split technique. A proof of this somewhat folklore implication is included

in the appendix.

2. Democratic robust null space property: there exist absolute constants κ3, υ3, c3, C3, D3, ρ3 > 0

such that, if m ≥ κ3s ln(eN/s), then a Gaussian matrix A ∈ Rm×N allows for the property

(14) ‖x− z‖2 ≤
C3√
s

(‖z‖1 − ‖x‖1 + 2σs(x)1) +D3‖AI(x− z)‖2, x, z ∈ RN ,

to hold simultaneously for all sets I ⊆ J1 : mK of size m′ ≥ (1 − ρ3)m with failure proba-

bility at most υ3 exp(−c3m). Here, the notation σs(x)1 stands for the error of best s-term

approximation to x in `1-norm, i.e.,

(15) σs(x)1 := min{‖x− z‖1, z ∈ RN is s-sparse},

and the matrix AI represents the row-submatrix of A indexed by I. The above property

appeared implicitly in [7] and the name ‘democratic’ is inspired by [10]. Its proof involves a

simple union bound, as outlined in the appendix.

2.2 Saturated restricted isometry property

An essential tool put forward in [7] was a version of the restricted isometry property for saturated

measurements. Precisely, [7, Lemma 8] established that, given δ ∈ (0, 1) and β0 > α0 > 0, there

are positive constants κ′ = κ′(α0, β0), c
′ = c′(β0), and υ′ such that, if m ≥ κ′δ−4s ln(eN/s) and if

A ∈ Rm×N is a random matrix populated by independent N (0, 1/m) entries, then with probability

at most 1− υ′ exp(−c′δ2m), one has

(16) (1− δ)m S̃
(
‖u‖2√
m

)
≤ ‖S(Au)‖1 ≤ (1 + δ)m S̃

(
‖u‖2√
m

)
for all effectively s-sparse vectors u ∈ RN satisfying α0µ < σ‖u‖2 ≤ β0µ. The explicit expression of

the function S̃ is not really important — it is given in [7], along with a couple of useful properties.
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The one property we shall exploit here is the fact that, for any β′ > 0, there is a constant νβ′ > 0

such that

(17)
dS̃(t)

dt
≥ νβ′ whenever t ∈ [0, β′µ].

2.3 Tessellation of the ‘effectively sparse sphere’ under perturbation

Early theoretical works such as [9, 11] made it apparent that the one-bit compressive sensing

problem is intimately connected to a tessellation property for the sets of `2-normalized genuinely

and effectively sparse vectors. A stronger tessellation property for arbitrary sets was studied in [12],

but it does not seem to incorporate the result needed here, except in case there is no prequantization

error (e = e′ = 0). Precisely, we need the fact that there are absolute constants κ′′, υ′′, c′′, d′′, ω′′ > 0

such that, if m ≥ κ′′δ−9s ln(eN/s) and if A ∈ Rm×N is a random matrix populated by independent

N (0, 1/m) entries, then with probability at least 1 − υ′′ exp(−c′′δ2m), for all effectively s-sparse

x,x′ ∈ RN and all e, e′ ∈ Rm satisfying ‖e‖2 ≤ ω′′‖x‖2 and ‖e′‖2 ≤ ω′′‖x′‖2, one has

(18)

[
sgn(Ax + e) = sgn(Ax′ + e′)

]
=⇒

[ ∥∥∥∥ x

‖x‖2
− x′

‖x′‖2

∥∥∥∥
2

≤ δ + d′′max

{
‖e‖2
‖x‖2

,
‖e′‖2
‖x′‖2

}]
.

The proof of this statement is included in the appendix.

2.4 Simultaneous (`2, `1)-quotient property

In standard compressive sensing, the so-called quotient property introduced in [13] is crucial to

establish that `1-minimization is robust in the absence of an a priori bound on the measurement

error. A slightly stronger statement is valid, namely there are absolute constants c′′′, d′′′ > 0 such

that, if N ≥ 2m, then a Gaussian matrix A ∈ Rm×N satisfies, with failure probability at most

exp(−c′′′m), the property that

(19) for all e ∈ Rm, there exists u ∈ RN with Au = e and

{
‖u‖2 ≤ d′′′‖e‖2,
‖u‖1 ≤ d′′′

√
s∗‖e‖2,

where the notation s∗ := m/ ln(eN/m) has been used. This statement is obtained by combining

Theorem 6.13, Lemma 11.16, and Theorem 11.19 of [8].

3 Small Magnitude Regime

In this section, we place ourselves in the situation where

(20) ‖x‖2 ≤ αµ
√
m,
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with constant α > 0 selected as (recall the introduction of the constant ρ3 in Subsection 2.1)

(21) α :=

√
ρ3

2
,

and with parameters γ, γ′ > 0 chosen to satisfy

(22) γ ≥ max{1, θ}, θ :=
8

3
√
ρ3
, and γ′ ≥ α.

The performance of the recovery procedure introduced in (8) is attested by the following result,

which generalizes the one announced in (6) from genuine sparsity to effective sparsity.

Proposition 1. Suppose that A ∈ Rm×N is a random matrix populated by independent Gaussian

entries with mean zero and standard deviation 1/
√
m. There are absolute constants κ, υ, c, C,D > 0

such that, if m ≥ κs ln(eN/s), then with probability at least 1− υ exp(−cm), one has

(23) ‖x− Λ1,η(S(Ax + e))‖2 ≤
C√
s
σs(x)1 +Dη

for all effectively s-sparse vectors x ∈ RN satisfying ‖x‖2 ≤ αµ
√
m and all e ∈ Rm with ‖e‖2 ≤ η.

Proof. We separate two cases based on the size of the presaturation error.

Case 1: η ≥ µ
√
m

θ
.

Let v ∈ Rm be defined by vi = yi for i ∈ Inonsat, vi = −µ for i ∈ Inegsat, and vi = +µ for i ∈ Ipossat.
We claim that the couple (0,v) ∈ RN ×Rm is feasible for the optimization program of (8). Indeed,

if (z,w) = (0,v), then the constraints are satisfied by virtue of

(24) 〈ai, z〉+ wi = vi


= yi, i ∈ Inonsat,
≤ −µ, i ∈ Inegsat,
≥ +µ, i ∈ Ipossat,

as well as ‖w‖2 ≤ µ
√
m ≤ θη ≤ γη and of course ‖z‖2 = 0 ≤ γ′µ

√
m. This implies that x] = 0,

and hence that

(25) ‖x− x]‖2 = ‖x‖2 ≤ αµ
√
m ≤ αθη,

which implies the required estimate (23) with D = αθ = 4/3.

Case 2: η <
µ
√
m

θ
.

With κ chosen as κ := max{κ2, κ3}, the assumption m ≥ κs ln(eN/s) guarantees that both the

restricted isometry property (13) of order s with constant δ = 9/16 (so that
√

1 + δ = 5/4)
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and the democratic robust null space property (14) of order s hold, which occurs with failure

probability at most υ2 exp(−c2(9/16)2m) + υ3 exp(−c3m) ≤ υ exp(−cm), where υ := υ2 + υ3 and

c := min{c1(9/16)2, c3}. In view of (13), we have on the one hand

(26) ‖Ax‖2 ≤
√

1 + δ‖x‖2 ≤
5

4
αµ
√
m.

On the other hand, with msat denoting the cardinality of Isat, we also have

(27) ‖Ax‖2 = ‖y − e‖2 ≥ ‖y‖2 − ‖e‖2 ≥ ‖yIsat‖2 − η ≥ µ
√
msat −

µ
√
m

θ
.

By combining (26) and (27), we derive

(28)
√
msat ≤

(
5

4
α+

1

θ

)√
m =

√
ρ3
√
m, i.e., mnonsat = m−msat ≥ (1− ρ3)m.

Thus, we can apply (14) to obtain

(29) ‖x− x]‖2 ≤
C3√
s

(‖x]‖1 − ‖x‖1 + 2σs(x)1) +D3‖AInonsat(x− x])‖2.

We notice that ‖x]‖1 ≤ ‖x‖1 because the couple (x, e) ∈ RN × Rm is feasible for the optimization

program (8). We also notice that

‖AInonsat(x− x])‖2 ≤ ‖yInonsat −AInonsatx‖2 + ‖yInonsat −AInonsatx
]‖2(30)

= ‖eInonsat‖2 + ‖e]Inonsat‖2 ≤ ‖e‖2 + ‖e]‖2 ≤ η + γη = (1 + γ)η.

All in all, we arrive at

(31) ‖x− x]‖2 ≤
2C3√
s
σs(x)1 +D3(1 + γ)η,

which is the required estimate (23) with C = 2C3 and D = D3(1 + γ).

4 Intermediate Magnitude Regime

In this section, we place ourselves in the situation where

(32) αµ
√
m < ‖x‖2 ≤ βµ

√
m.

The constant α > 0 is the same as in Section 3, and the constant β > α is arbitrary, although we

think of it as a fixed multiple of α. The parameters γ, γ′ > 0 are chosen to satisfy

(33) γ ≥ 1 and γ′ ≥ β.

The following result quantifies the performance of our recovery procedure, again generalizing the

result announced in (7) from genuine sparsity to effective sparsity.
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Proposition 2. Let δ ∈ (0, δ∗), δ∗ := min{1/2, 3ανγ′/64}. Suppose that A ∈ Rm×N is a random

matrix populated by independent Gaussian entries with mean zero and standard deviation 1/
√
m.

There are constants υ > 0, κ, c, C > 0 depending on γ′, and D > 0 depending on γ and γ′ such

that, if m ≥ κδ−9s ln(eN/s), then with probability at least 1− υ exp(−cδ2m), one has

(34) ‖x− Λ1,η(S(Ax + e))‖2 ≤ Cδ‖x‖2 +Dη

for all effectively s-sparse vectors x ∈ RN satisfying αµ
√
m ≤ ‖x‖2 ≤ βµ

√
m and all e ∈ Rm with

‖e‖2 ≤ η.

Proof. We again separate two cases based on the size of the presaturation error. In what follows,

the constant θ > 0 is chosen large enough to ensure that

(35)
γ + 1

νγ′αθ
≤ 1

8
and

4γ

αθ
≤ ω′′.

Case 1: η ≥ µ
√
m

θ
.

We simply take into account the constraint ‖x]‖2 ≤ γ′µ
√
m, while also keeping in mind that

‖x‖2 ≤ βµ
√
m, to arrive at

(36) ‖x− x]‖2 ≤ ‖x‖2 + ‖x]‖2 ≤ (β + γ′)µ
√
m ≤ 2γ′θη,

which implies the required estimate (34) with D = 2γ′θ.

Case 2: η <
µ
√
m

θ
.

With κ := 16 max{κ′(α/4, γ′), κ′′}, the assumption m ≥ κδ−9s ln(eN/s) guarantees that the

saturated restricted isometry property (16) holds for effectively 16s-sparse vectors in the magnitude

range [α/4µ
√
m, γ′µ

√
m] and that the tessellation property (18) holds for effectively 16s-sparse

vectors. The failure probability is at most υ′ exp(−c′δ2m)+υ′′ exp(−c′′δ2m) ≤ υ exp(−cδ2m), with

υ = υ′ + υ′′ and c = min{c′, c′′}. We now shall proceed in three steps, namely:

(i) proving that x] is effectively 16s-sparse and satisfies

(37) α0µ
√
m < ‖x]‖2 ≤ β0µ

√
m,

where α0 := α/4 and β0 := γ′;

(ii) proving that the magnitudes of x and of x] are close, in the sense that

(38)
∣∣∣‖x‖2 − ‖x]‖2∣∣∣ ≤ C1δ‖x‖2 +D1η

for some constants C1, D1 > 0;
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(iii) proving that the directions of x and of x] are close, in the sense that

(39)

∥∥∥∥ x

‖x‖2
− x]

‖x]‖2

∥∥∥∥
2

≤ C2δ +D2
η

‖x‖2

for some constants C2, D2 > 0.

The required estimate (34) will follow from

(40) ‖x− x]‖2 ≤
∣∣∣‖x‖2 − ‖x]‖2∣∣∣+ ‖x‖2

∥∥∥∥ x

‖x‖2
− x]

‖x]‖2

∥∥∥∥
2

≤ Cδ‖x‖2 +Dη

with C = C1 + C2 and D = D1 + D2. Thus, it remains to establish (i), (ii), and (iii). The proofs

of (i) and (ii) are intertwined in order to assemble a shorter argument centered around the vector

(41) x[ :=


x] if ‖x]‖2 ≥

‖x‖2
2

,

x + x]

2
if ‖x]‖2 <

‖x‖2
2

.

We note, on the one hand, that ‖x]‖1 ≤ ‖x‖1 because (x, e) is feasible for the optimization program

in (8), and consequently ‖x[‖1 ≤ ‖x‖1, too. On the other hand, we observe that

(42) ‖x[‖2 ≥


‖x]‖2 ≥

‖x‖2
2

if ‖x]‖2 ≥
‖x‖2

2
,

‖x‖2 − ‖x]‖2
2

>
‖x‖2

4
if ‖x]‖2 <

‖x‖2
2

.

Therefore, it is always the case that x[ is effectively 16s-sparse, since

(43)
‖x[‖1
‖x[‖2

≤ ‖x‖1
‖x‖2/4

≤ 4
√
s.

Moreover, we have ‖x[‖2 ≥ ‖x‖2/4 > (α/4)µ
√
m, as well as ‖x[‖2 ≤ max{‖x‖2, ‖x]‖2} ≤ γ′µ

√
m.

At this point, we have almost established (i), except that it concerns x[ instead of x]. Still, the

saturated restricted isometry property (16) allows us to write

(44) (1− δ)m S̃

(
‖x[‖2√
m

)
≤ ‖S(Ax[)‖1 ≤ (1 + δ)m S̃

(
‖x[‖2√
m

)
.

Similarly, because x itself is effectively 16s-sparse and in the magnitude range [α0µ
√
m,β0µ

√
m],

the saturated restricted isometry property (16) also allows us to write

(45) (1− δ)m S̃
(
‖x‖2√
m

)
≤ ‖S(Ax)‖1 ≤ (1 + δ)m S̃

(
‖x‖2√
m

)
.
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With e[ ∈ RN defined as e[ = e] if ‖x]‖2 ≥ ‖x‖2/2 and e[ = (e+ e])/2 if ‖x]‖2 < ‖x‖2/2, we have∣∣∣‖S(y)‖1 − ‖S(Ax[)‖1
∣∣∣ ≤ ∥∥∥S(y)− S(Ax[)

∥∥∥
1

=
∥∥∥S(Ax[ + e[)− S(Ax[)

∥∥∥
1

(46)

=

m∑
i=1

∣∣∣S(〈ai,x[〉+ e[i)− S(〈ai,x[〉)
∣∣∣≤ m∑

i=1

Lip(S)|e[i| =
m∑
i=1

|e[i| ≤
√
m‖e[‖2

≤
√
mmax{‖e‖2, ‖e]‖2} ≤

√
mγη.

In a similar fashion, we would derive

(47)
∣∣∣‖S(y)‖1 − ‖S(Ax)‖1

∣∣∣ ≤ √mη.
Therefore, we obtain

(48)
∣∣∣S(Ax[)‖1 − ‖S(Ax)‖1

∣∣∣ ≤ (γ + 1)
√
mη.

In view of (44) and (45), it follows that

S̃
(
‖x[‖2√
m

)
− S̃

(
‖x‖2√
m

)
≤ 1

1− δ
1

m
‖S(Ax[)‖1 −

1

1 + δ

1

m
‖S(Ax)‖1(49)

=
2δ

1− δ2
1

m
‖S(Ax[)‖1 +

1

1 + δ

1

m

(
‖S(Ax[)‖1 − ‖S(Ax)‖1

)
≤ 2δ

1− δ2
µ+

1

1 + δ

(γ + 1)η√
m

.

This bound is in fact valid not only for the left-hand side itself but also for its absolute value,

because we can exchange the roles of x[ and x in the argument. Note that (17) also implies

(50)

∣∣∣∣∣S̃
(
‖x[‖2√
m

)
− S̃

(
‖x‖2√
m

)∣∣∣∣∣ ≥ νγ′
∣∣∣∣∣‖x[‖2√

m
− ‖x‖2√

m

∣∣∣∣∣ ,
hence we can deduce that

(51)
∣∣∣‖x[‖2 − ‖x‖2∣∣∣ ≤ 2δµ

√
m

νγ′(1− δ2)
+

(γ + 1)η

νγ′(1 + δ)
≤ C1δ‖x‖2 +D1η,

where C1 := 8/(3ανγ′) and D1 := (γ + 1)/νγ′ . We have almost established (ii), except that again

it concerns x[ instead of x]. But in reality x[ = x], since ‖x]‖2 < ‖x‖2/2 cannot occur, otherwise

(52) ‖x[‖2 =

∥∥∥∥x + x]

2

∥∥∥∥
2

≤ ‖x‖2 + ‖x]‖2
2

<
3

4
‖x‖2,

which would contradict

(53) ‖x[‖2 ≥ ‖x‖2 −
∣∣∣‖x[‖2 − ‖x‖2∣∣∣ ≥ ‖x‖2 − (C1δ‖x‖2 +D1η) ≥ ‖x‖2 −

(
C1δ‖x‖2 +

D1

αθ
‖x‖2

)
when δ ≤ δ∗ and (35) are enforced. Thus, (i) and (ii) have now been truly established. To conclude,

we have to verify that (iii) is valid. To do so, we remark that x,x] ∈ RN are effectively 16s-sparse

11
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vectors that satisfy sgn(Ax + e) = sgn(Ax] + e]), as a consequence of S(Ax + e) = S(Ax] + e]),

and that ‖e‖2 ≤ ω′′‖x‖2 and ‖e]‖2 ≤ ω′′‖x]‖2, as a consequence of

(54)
‖e‖2
‖x‖2

≤ η

αµ
√
m
≤ 1

αθ
≤ ω′′ and

‖e]‖2
‖x]‖2

≤ γη

α0µ
√
m
≤ 4γ

αθ
≤ ω′′.

Therefore, the tessellation property (18) yields

(55)

∥∥∥∥ x

‖x‖2
− x]

‖x]‖2

∥∥∥∥
2

≤ δ + d′′
γη

α0µ
√
m
≤ δ +

d′′γ

α0/β

η

‖x‖2
,

which implies (39) with C2 = 1 and D2 = 4d′′γγ′/α. The proof is now complete.

5 Noise-ignoring `1-minimization

The noise-cognizant procedure intoduced in (8) requires the knowledge of an upper bound η on the

magnitude ‖e‖2 of the presaturation error. Can we derive recovery estimates similar to (6) and (7)

even without this knowledge? We only give a partial affirmative answer to this question by showing

that (6) can still be guaranteed in the small magnitude regime. The recovery procedure consists in

simply ignoring the presaturation error, i.e., pretending that η = 0, and in outputting

(56) x? = Λ1,0(S(y)) = argmin
z∈RN

‖z‖1 subject to

{
S(Az) = S(y),

‖z‖2 ≤ γ′′µ
√
m,

even if the sparse vector x ∈ RN to be recovered from S(y), y = Ax + e, is not feasible for this

optimization program. With θ still denoting the constant appearing in (22), the parameter γ′′ is

chosen to satisfy

(57) γ′′ ≥ max

{
d′′′, α+

d′′′

θ

}
.

Proposition 3. Suppose that A ∈ Rm×N is a random matrix populated by independent Gaussian

entries with mean zero and standard deviation 1/
√
m. There are absolute constants κ′, υ, c, C,D > 0

such that, if N ≥ 2m and m ≥ κ′s ln(eN/s), then with probability at least 1 − υ exp(−cm), one

has

(58) ‖x− Λ1,0(S(Ax + e))‖2 ≤
C√
s
σs(x)1 +D‖e‖2

for all effectively s-sparse vectors x ∈ RN satisfying ‖x‖2 ≤ αµ
√
m and all e ∈ Rm.

Proof. First of all, we remark that x? is properly defined, i.e., that the optimization program in (56)

is feasible. To see this, we observe that the hypotheses of Proposition 3 guarantee the validity of

12



S. Foucart, J. Li

the simultaneous (`2, `1)-quotient property (19), which we invoke to justify the existence of z ∈ RN

such that Az = S(y), hence S(Az) = S(y), and

(59) ‖z‖2 ≤ d′′′‖S(y)‖2 ≤ d′′′µ
√
m ≤ γ′′µ

√
m.

At this point, we still separate two cases based on the size of the presaturation error.

Case 1: ‖e‖2 ≥
µ
√
m

θ
.

We simply that into account the constraint ‖x?‖2 ≤ γ′′µ
√
m, while also keeping in mind that

‖x‖2 ≤ αµ
√
m, to obtain

(60) ‖x− x?‖2 ≤ ‖x‖2 + ‖x?‖2 ≤ (α+ γ′′)µ
√
m ≤ (α+ γ′′)θ‖e‖2,

which implies the required estimate (58) with D := (α+ γ′′)θ.

Case 2: ‖e‖2 <
µ
√
m

θ
.

We observe that m ≥ κ′s ln(eN/s) implies m ≥ κ′s ln(eN/m), i.e., that s ≤ bs∗/κ′c =: s′. Thus, by

monotonicity of the right-hand side of (58), it is enough to prove the result for s = s′. By choosing

the constant κ′ > 0 large enough to have κ′/(1+ln(κ′)) ≥ κ, where κ > 0 is the constant appearing

in Proposition 1, we claim that m ≥ κs′ ln(eN/s′). Indeed, from s′ ≤ s∗/κ′ = m/(κ′ ln(eN/m)), we

derive that s′/m ≤ 1/κ′, and in turn

m ≥ κ′s′ ln
(
eN

m

)
= κ′s′ ln

(
eN

s′

)
+ κ′m

(
s′

m
ln

(
s′

m

))
(61)

≥ κ′s′ ln
(
eN

s′

)
+ κ′m

(
1

κ′
ln

(
1

κ′

))
= κ′s′ ln

(
eN

s′

)
−m ln(κ′),

so a rearrangement gives

(62) m ≥ κ′

1 + ln(κ′)
s′ ln

(
eN

s′

)
≥ κs′ ln

(
eN

s′

)
,

as claimed. We can now replicate the argument in the proof of Proposition 1, Case 2 (based on

the restricted isometry property (13) and the democratic robust null space property (14), both of

order s′) until (29) to arrive at

(63) ‖x− x?‖2 ≤
C3√
s′

(‖x?‖1 − ‖x‖1 + 2σs′(x)1) +D3‖AInonsat(x− x?)‖2.

We again invoke the simultaneous (`2, `1)-quotient property (19) to guarantee the existence of

u ∈ RN such that

(64) Au = e with

{
‖u‖2 ≤ d′′′‖e‖2,
‖u‖1 ≤ d′′′

√
s∗‖e‖2.

13
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We remark that the vector x + u is feasible, because the first constraint is satisfied by virtue of

A(x + u) = Ax + e = y and the second constraint is satisfied by virtue of

(65) ‖x + u‖2 ≤ ‖x‖2 + ‖u‖2 ≤ αµ
√
m+ d′′′‖e‖2 ≤ αµ

√
m+ d′′′

µ
√
m

θ
≤ γ′′µ

√
m.

Then, the minimizing property of x? yields

(66) ‖x?‖1 ≤ ‖x + u‖1 ≤ ‖x‖1 + ‖u‖1 ≤ ‖x‖1 + d′′′
√
s∗‖e‖2.

Furthermore, since the constraint S(Ax?) = S(y) imposes AInonsatx
? = yInonsat , we have

(67) ‖AInonsat(x− x?)‖2 = ‖AInonsatx− yInonsat‖2 = ‖eInonsat‖2 ≤ ‖e‖2.

Substituting (66) and (67) into (63) gives

(68) ‖x−x?‖2 ≤
C3√
s′

(d′′′
√
s∗‖e‖2 + 2σs′(x)1) +D3‖e‖2 ≤

2C3√
s′
σs′(x)1 +

(
C3d

′′′√
1/(2κ′)

+D3

)
‖e‖2,

which implies the required estimate (58) with C = 2C3 and D =
√

2κ′C3d
′′′ +D3.

6 Numerical Validation

We have implemented the noise-cognizant recovery procedure described in (8) using cvx [1], a

package for specifying and solving convex programs. The noise-ignoring procedure (56) does not

require a separate implementation, as it is just the procedure (8) with parameter γ set to zero.

Our implementation can be downloaded from the first author’s webpage, along with the matlab

file containing the code to reproduce the experiments presented below. By no means do these

experiments constitute an exhaustive investigation. They are included here for illustrative purposes

only and one should refrain from drawing any strong conclusions out of them.

6.1 Influence of the magnitude η of the presaturation error

In a first experiment, see Figure 1, we run the noise-cognizant `1-minimization (8) on several random

s-sparse vectors x ∈ RN with varying magnitude ξ = ‖x‖2 acquired through inaccurate saturated

measurements S(Ax + e) ∈ [−µ,+µ]m. We can discern two regimes depending on the magnitude

of x: when ξ is small, the recovery error is roughly constant and when ξ passes a certain breakpoint,

the recovery error depends somewhat linearly on ξ. Our theory suggests a breakpoint independent

of the bound η on the `2-norm of the presaturation error e, which is empirically compelling when

η is small. Note that the recovery error grows with η in the small magnitude regime, but that this

intuitive phenomenon is dampened in the intermediate magnitude regime.

14
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Figure 1: Recovery error ε = ‖x−x]‖2 vs magnitude ξ = ‖x‖2 of the sparse vector to be recovered

6.2 Influence of the parameters γ and γ′ of the `1-minimization

In a second experiment, we inquire into the best empirical choices of parameters γ and γ′ in

the noise-cognizant `1-minimization (8). With the same problem dimensions as in the previous

experiment, we consider one sparse vector in the small magnitude regime and another sparse vector

in the intermediate magnitude regime. For each of these two vectors, we run the noise-cognizant

procedures for several different values of γ and γ′ and we record the corresponding recovery errors.

The results are displayed in Figure 2. In both cases, the experiments confirm the intuition that

better recovery occurs when the parameter γ ≥ 1 in the constraint ‖w‖2 ≤ γη is close to one. As

for the parameter γ′ in the constraint ‖z‖2 ≤ γ′µ
√
m, it seems to have no influence on the accuracy

of the recovery. This suggests that one could just remove this constraint from the optimization

program. Unfortunately, we were unable to establish theoretical guarantees in this situation.

0.05

15

3

0.1ǫ

N=200, m=80, s=5, µ=1, η=0.2, ξ=5

γ'

10

0.15

γ

2

5 1

(a) Small magnitude regime

0.24

15

0.25

3

0.26ǫ

N=200, m=80, s=5, µ=1, η=0.2, ξ=13

0.27

γ'

10

γ

0.28

2

5 1

(b) Intermediate magnitude regime

Figure 2: Relative recovery error ε = ‖x− x]‖2/‖x‖2 as a function of the parameters γ and γ′
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6.3 Comparison of the noise-cognizant and noise-ignoring minimizations

In a third and final experiment, we test the noise-ignoring `1-minimization (56) and compare

its performance with the noise-cognizant `1-minimization (8), see Figure 3. Besides the obvious

advantages that (56) does not require any (over)estimation η of ‖e‖2 to be run and that it is faster

than (8) (since the optimization program features less variables and less constraints), it also appears

to be slightly more accurate, at least for certain parameter values. Unfortunately, we were unable

to establish full theoretical guarantees for the noise-ignoring procedure.

0 5 10 15
ξ

0

1

2

3

4

5

ǫ
N=200, m=80, s=5, µ=1, γ=2, γ '=10 ,η=0.03

        (average over 50 random tests)

noise-cognizant (time=8.94 min)
noise-ignoring   (time=5.24 min

Figure 3: Recovery error ε = ‖x− x̂‖2, x̂ ∈ {x],x?}, vs magnitude ξ = ‖x‖2 of the sparse vector
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Appendix

Proof of the restricted isometry property for effectively sparse vectors

We justify here that the restricted isometry property (13), valid for effectively s-sparse vectors,

is a consequence of the restricted isometry property (12), valid for genuinely 2s-sparse vectors, in

which δ is replaced by δ/4. To do so, given an effectively s-sparse vector z ∈ RN , we use the

sort-and-split technique to decompose J1 : NK into index sets S0, S1, S2, . . . of size s in such a way

that S0 corresponds to s largest absolute entries of x, S1 corresponds to s next largest absolute

entries of x, etc. We then write

∣∣‖Az‖22 − ‖z‖22
∣∣ =

∣∣〈(A∗A− I)z, z〉
∣∣ =

∣∣∣∣〈∑
k≥0

(A∗A− I)zSk
,
∑
k≥0

zSk

〉∣∣∣∣(69)

≤ |〈(A∗A− I)zS0 , zS0〉|+ 2

∣∣∣∣∑
k≥1
〈(A∗A− I)zS0 , zSk

〉
∣∣∣∣+

∣∣∣∣ ∑
k,`≥1
〈(A∗A− I)zSk

, zS`
〉
∣∣∣∣.
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Thanks to the restricted isometry for genuinely sparse vectors, the first term in the right-hand side

of (69) is bounded as

(70) |〈(A∗A− I)zS0 , zS0〉| ≤
δ

4
‖zS0‖22 ≤

δ

4
‖z‖22.

As for the second term in the right-hand side of (69), again thanks to the restricted isometry for

genuinely sparse vectors, it is bounded (see [8, Proposition 6.3]) via∣∣∣∣∑
k≥1
〈(A∗A− I)zSk

, zS0〉
∣∣∣∣ ≤∑

k≥1
|〈(A∗A− I)zS0 , zSk

〉| ≤
∑
k≥1

δ

4
‖zS0‖2‖zSk

‖2(71)

≤ δ

4
‖zS0‖2

∑
k≥1

‖zSk−1
‖1√

s
≤ δ

4
‖zS0‖2

‖z‖1√
s
≤ δ

4
‖zS0‖2‖z‖2 ≤

δ

4
‖z‖22.

Finally, the last term in the right-hand side of (69) satisfies∣∣∣∣ ∑
k,`≥1
〈(A∗A− I)zSk

, zS`
〉
∣∣∣∣ ≤ ∑

k,`≥1
|〈(A∗A− I)zSk

, zS`
〉| ≤

∑
k,`≥1

δ

4
‖zSk
‖2‖zS`

‖2(72)

=
δ

4

(∑
k≥1
‖zSk
‖2
)2

≤ δ

4

(
‖z‖1√
s

)2

≤ δ

4
‖z‖22.

All in all, we arrive at

(73)
∣∣‖Az‖22 − ‖z‖22

∣∣ ≤ δ

4
‖z‖22 + 2

δ

4
‖z‖22 +

δ

4
‖z‖22 = δ‖z‖22,

which directly implies the required result.

Proof of the democratic robust null space property

We justify here a second statement made in Subsection 2.1, namely that the democratic robust

null space property is a consequence of the restricted isometry property. So let us assume that

A ∈ Rm×N is a Gaussian matrix with m ≥ κ3s ln(eN/s), where κ3 = (81/128)κ1/(1 − ρ3) and

ρ3 ∈ (0, 1) is to be chosen later. Setting δ = 9/16, say, and fixing a set I ⊆ J1 : mK of size m′

at least (1 − ρ3)m, we have m′ ≥ κ1δ
−2(2s) ln(eN/2s), so that the matrix

√
m/m′AI satisfies

the standard restricted isometry property (12) of order 2s with constant δ with failure probability

at most υ1 exp(−c1δ2m′). Then, as I is allowed to vary, all the matrices
√
m/m′AI satisfy the

standard restricted isometry property (12) of order 2s with constant δ with failure probability at

most ∑
m′≥(1−ρ3)m

(
m

m′

)
× υ1 exp

(
−c1δ2m′

)
≤
(
e

ρ3

)ρ3m
× υ1 exp

(
−c1δ2(1− ρ3)m

)
(74)

= υ1 exp

(
ρ3m ln

(
e

ρ3

)
− c1δ2(1− ρ3)m

)
≤ υ1 exp

(
−c1

4
δ2m

)
,
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provided ρ3 is chosen small enough to guarantee that ρ3 ln (e/ρ3) ≤ c1δ2/4 ≤ c1δ2(1−ρ3)/2. Then,

Theorems 4.25 and 6.13 of [8] ensures that, for all I ⊆ J1 : mK of size m′ ≥ (1 − ρδ)m and for all

x, z ∈ RN ,

‖x− z‖2 ≤
C√
s

(‖z‖1 − ‖x‖1 + 2σs(x)1) +D‖
√
m/m′AI(x− z)‖2(75)

≤ C√
s

(‖z‖1 − ‖x‖1 + 2σs(x)1) +
D√

1− ρ3
‖AI(x− z)‖2,

which is Property (14) with C3 = C and D3 = D/
√

1− ρ3.

Proof of the tessellation property under perturbation

We finally justify the tessellation property (18) for the ‘effectively sparse sphere’ in the presence of

prequantization error. To do so, we recall from [2, Theorem 3] that there are absolute constants

κ′′, υ′′, c′′, d′′, ω′′ > 0 such that, if m ≥ κ′′δ−7s ln(eN/s) and if A ∈ Rm×N is a random matrix

populated by independent N (0, 1/m) entries, then with probability at least 1 − υ′′ exp(−c′′δ2m),

for any s-sparse x ∈ RN and any e ∈ Rm satisfying ‖e‖2 ≤ ω′′‖x‖2, one has

(76)

∥∥∥∥ x

‖x‖2
−H ′s(A>sgn(Ax + e))

∥∥∥∥
2

≤ δ + d′′
‖e‖2
‖x‖2

,

where H ′s(u) is the `2-normalized output of a hard thresholding procedure with input u ∈ RN . We

are now going to prove that this remains true (up to some changes in the constants and in the

power of δ−1) when x ∈ RN is effectively, rather than genuinely, s-sparse. Therefore, if x′ ∈ RN is

another effectively s-sparse vector and if e′ ∈ Rm satisfies ‖e′‖2 ≤ ω′′‖x‖2, since (76) also holds for

x′ in place of x, a triangle inequality gives (18) in the form

(77)

[
sgn(Ax + e) = sgn(Ax′ + e′)

]
=⇒

[ ∥∥∥∥ x

‖x‖2
− x′

‖x′‖2

∥∥∥∥
2

≤ 2δ + 2d′′max

{
‖e‖2
‖x‖2

,
‖e′‖2
‖x′‖2

}]
.

So, given an effectively s-sparse x ∈ RN and e ∈ Rm with ‖e‖2 ≤ ω′′′‖x‖2, ω′′′ to be chosen later,

we use the sort-and-split technique to decompose J1 : NK into index sets T = T0, T1, T2, . . . of size

t = dδ−2se in such a way that T0 corresponds to t largest absolute entries of x, T1 corresponds to t

next largest absolute entries of x, etc. Interpreting sgn(Ax+e) as sgn(AxT + ẽ) with ẽ := AxT +e,

(76) gives

(78)

∥∥∥∥ xT
‖xT ‖2

−H ′t(A>sgn(Ax + e))

∥∥∥∥
2

≤ δ + d′′
‖ẽ‖2
‖xT ‖2

,

so long as ‖ẽ‖2 ≤ ω′′‖xT ‖2. But this can be fulfilled if δ and ω′′′ are small enough to guarantee

that 5δ/4 + ω′′′ ≤ (1− δ/2)ω′′, in view of the estimates, to be established below,

‖ẽ‖2 ≤
(

5δ

4
+ ω′′′

)
‖x‖2,(79)

‖xT ‖2 ≥
(

1− δ

2

)
‖x‖2.(80)
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To establish (80), we invoke [8, Theorem 2.5] and the effective sparsity of x to write

(81) ‖xT ‖2 ≤
1

2
√
t
‖x‖1 ≤

1

2

√
s

t
‖x‖2 ≤

δ

2
‖x‖2,

so that ‖xT ‖2 ≥ ‖x‖2 − ‖xT ‖2 ≥ (1− δ/2) ‖x‖2, as announced. To establish (79), since we can

assume that A has the restricted isometry property of order t with constant 9/16, say, we have

‖AxT ‖2 =

∥∥∥∥∑
k≥1

AxTk

∥∥∥∥
2

≤
∑
k≥1
‖AxTk‖2 ≤

∑
k≥1

√
1 + 9/16‖xTk‖2(82)

≤ 5

4

∑
k≥1

‖xTk−1
‖1√

t
≤ 5

4

‖x‖1√
t
≤ 5

4

√
s

t
‖x‖2 ≤

5δ

4
‖x‖2.

The estimate (79) then follows from ‖e‖2 ≤ ω′′′‖x‖2 and

(83) ‖ẽ‖2 ≤ ‖AxT ‖2 + ‖e‖2 ≤
5δ

4
‖x‖2 + ‖e‖2.

We have now validated (78). Next, we take into account that∥∥∥∥ x

‖x‖2
− xT
‖xT ‖2

∥∥∥∥2
2

= 2− 2
〈x,xT 〉
‖x‖2‖xT ‖2

= 2
‖x‖2 − ‖xT ‖2
‖x‖2

= 2
‖x‖22 − ‖xT ‖22

‖x‖2(‖x‖2 + ‖xT ‖2)
(84)

≤
2‖xT ‖22
2‖x‖22

≤ s

4t
=
δ2

4
.

In view of (78) and of (84), a triangle inequality gives

(85)

∥∥∥∥ x

‖x‖2
−H ′t(A>sgn(Ax + e))

∥∥∥∥
2

≤ 3δ

2
+d′′

‖ẽ‖2
‖xT ‖2

≤ 3δ

2
+d′′

(5δ/4)‖x‖2 + ‖e‖2
(1− δ/2)‖x‖2

≤ cδ+d
‖e‖2
‖x‖2

,

with c = 3/2 + 5d′′/2 and d = 2d′′. This concludes the proof.
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