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Abstract

Models based on approximation capabilities have recently been studied in the context of

Optimal Recovery. These models, however, are not compatible with overparametrization, since

model- and data-consistent functions could then be unbounded. This drawback motivates the

introduction of refined approximability models featuring an added boundedness condition. Thus,

two new models are proposed in this article: one where the boundedness applies to the target

functions (first type) and one where the boundedness applies to the approximants (second type).

For both types of model, optimal maps for the recovery of linear functionals are first described

on an abstract level before their efficient constructions are addressed. By exploiting techniques

from semidefinite programming, these constructions are explicitly carried out on a common

example involving polynomial subspaces of C[−1, 1].
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overparametrization.
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1 Introduction

The objective of this article is to uncover practical methods for the optimal recovery of functions

available through observational data when the underlying models based on approximability allow

for overparametrization. To clarify this objective and its various challenges, we start with some

background on traditional Optimal Recovery. Typically, an unknown function f defined on a

domain D is observed through point evaluations y1 = f(x1), . . . , ym = f(xm) at distinct points

x1, . . . , xm ∈ D. More generally, an unknown object f , simply considered as an element of a

normed space X, is observed through

(1) yi = `i(f), i ∈ [1 : m],
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where `1, . . . , `m are linear functionals defined on X. We assume here that these data are perfectly

accurate — we refer to the companion article [5] for the incorporation of observation error. The

data is summarized as y = L(f), where the linear map L : X → Rm is called observation operator.

Based on the knowledge of y ∈ Rm, the task is then to recover a quantity of interest Q(f), where

throughout this article Q : X → R is assumed to be a linear functional. The recovery procedure

can be viewed as a map R from Rm to R, with no concern for its practicability at this point.

Besides the observational data (which is also called a posteriori information), there is some a priori

information coming from an educated belief about the properties of realistic f ’s. It translates

into the assumption that f belongs to a model set K ⊆ X. The choice of this model set is of

course critical. When the f ’s indeed represent functions, it is traditionally taken as the unit ball

with respect to some norm that characterizes smoothness. More recently, motivated by parametric

partial differential equations, a model based on approximation capabilities has been proposed in [2].

Namely, given a linear subspace V of X and a threshold ε > 0, it is defined as

(2) K = KV,ε := {f ∈ X : distX(f, V ) ≤ ε}.

This model set is also implicit in many numerical procedures and in machine learning.

Whatever the selected model set, the performance of the recovery procedure R : Rm → R is

measured in a worst-case setting via the (global) error of R over K, i.e.,

(3) eK,Q(L,R) := sup
f∈K
|Q(f)−R(L(f))|.

Obviously, one is interested in optimal recovery maps Ropt : Rm → R minimizing this worst-case

error, i.e., such that

(4) eK,Q(L,Ropt) = inf
R:Rm→R

eK,Q(L,R).

This infimum is called the intrinsic error of the observation map L (for Q over K). It is known, at

least since Smolyak’s doctoral dissertation [13], that there is a linear functional among the optimal

recovery maps as soon as the set K is symmetric and convex, see e.g. [10, Theorem 4.7] for a

proof. The practicality of such a linear optimal recovery map is not automatic, though. For the

approximability set (2), Theorem 3.1 of [4] revealed that such a linear optimal recovery map takes

the form Ropt : y ∈ Rm 7→
∑m

i=1 a
opt
i yi, where aopt ∈ Rm is a solution to

(5) minimize
a∈Rm

∥∥∥∥Q− m∑
i=1

ai`i

∥∥∥∥
X∗

subject to
m∑
i=1

ai`i(v) = Q(v) for all v ∈ V,

an optimization problem that can be solved for X = C(D) in exact form when the observation

functionals are point evaluations (see [4]) and in approximate form when they are arbitrary linear

functionals (see [5] or Subsection 3.2 below).
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The approximability set (2), however, presents some important restrictions. Suppose indeed that

there is some nonzero v ∈ ker(L)∩ V . Then, for a given f0 ∈ K observed through y = L(f0) ∈ Rm,

any ft := f0 + tv, t ∈ R, is both model-consistent (i.e., ft ∈ K) and data-consistent (i.e., L(ft) = y),

so that the local error at y of any recovery map R : Rm → R satisfies

(6) elocK,Q(L,R(y)) := sup
f∈K

L(f)=y

|Q(f)−R(y)| ≥ sup
t∈R
|Q(ft)−R(y)| = sup

t∈R
|(Q(f0)−R(y)) + tQ(v)|,

which is infinite whenever Q(v) 6= 0. Thus, for the optimal recovery problem to make sense under

the approximability model (2), independently of the quantity of interest Q, one must assume that

ker(L) ∩ V = {0}. By a dimension argument, this imposes

(7) n := dim(V ) ≤ m.

In other words, we must place ourselves in an underparametrized regime for which the number n

of parameters describing the model does not exceed the number m of data. This contrasts with

many current studies, especially in the field of Deep Learning, which emphasize the advantages of

overparametrization. In order to incorporate overparametrization in the optimal recovery problem

under consideration, we must then restrict the magnitude of model- and data-consistent elements.

A glaring strategy consists in altering the approximability set (2). We do so in two different ways,

namely by considering a bounded approximability set of the first type, i.e.,

(8) K = KI
V,ε,κ :=

{
f ∈ X : distX(f, V ) ≤ ε and ‖f‖X ≤ κ

}
,

and a bounded approximability set of the second type, i.e.,

(9) K = KII
V,ε,κ :=

{
f ∈ X : ∃v ∈ V with ‖f − v‖X ≤ ε and ‖v‖X ≤ κ

}
.

We will start by analyzing the second type of bounded approximability sets in Section 2 by formally

describing the optimal recovery maps before revealing on a familiar example how the associated

minimization problem is tackled in practice. The main ingredient in essence belongs to the sum-of-

squares techniques from semidefinite programming. Next, we will analyze the first type of bounded

approximability sets in Section 3. We will even formally describe optimal recovery maps over more

general model sets consisting of intersections of approximability sets. On the prior example, we will

again reveal how the associated minimization problem is tackled in practice. This time, the main

ingredient in essence belongs to the moment techniques from semidefinite programming. In view

of this article’s emphasis on computability issues, all of the theoretical constructions are illustrated

in a reproducible matlab file downloadable from the author’s webpage.

Before delving into technicalities, we stress that this article considers a scenario where L is fixed,

meaning that the user is not free to select favorable observation functionals `1, . . . , `m. As such,

we are not concerned with the minimal number m of observations needed to achieve a prescribed

accuracy. In other words, we do not investigate the complexity of the problem. But replacing KV,ε
by KI

V,ε,κ or KII
V,ε,κ is actually akin to a strategy which is popular in complexity studies: substituting
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a refined model set for a model set that was initially too rich. This strategy can transform an

intractable multivariate problem into a tractable one, see [12] for a typical example. For our

refined approximability sets, complexity inquiries would be interesting to pursue, especially in order

to uncover more qualitative statements on the benefits (or lack thereof) of overparametrization.

This would require, for a start, to precisely estimate the worst-case error (4) minimized over L, and

in particular its dependence on the number of variables of multivariate functions f ∈ X. However,

this is beyond the scope of this article, whose focus is placed on the computability of the optimal

recovery maps.

2 Bounded approximability set of the second type

We concentrate in this section on the bounded approximability set of the second type, i.e., on

(10) K =
{
f ∈ X : ∃v ∈ V with ‖f − v‖X ≤ ε and ‖v‖X ≤ κ

}
.

We shall first describe optimal recovery maps before showing how they can be computed in practice.

2.1 Description of an optimal recovery map

The result below reveals how [4, Theorem 3.1] extends from the model set (2) to the model set (10).

Theorem 1. If Q : X → R is a linear functional, then an optimal recovery map over the bounded

approximability set (10) is the linear functional

(11) Ropt : y ∈ Rm 7→
m∑
i=1

aopti yi ∈ R,

where the optimal weight aopt ∈ Rm are precomputed as a solution to

(12) minimize
a∈Rm

[
ε×

∥∥∥Q− m∑
i=1

ai`i

∥∥∥
X∗

+ κ× max
v∈BV

∣∣∣Q(v)−
m∑
i=1

ai`i(v)
∣∣∣].

Proof. Since the model set (10) is symmetric and convex, there exists an optimal recovery map

Ropt : Rm → R which is linear, i.e., of the form Ropt(y) =
∑m

i=1 a
opt
i yi. The vector aopt ∈ Rm

minimizes in particular the worst-case error e := max{|Q(f) −
∑m

i=1 ai`i(f)| : f ∈ K} among all

a ∈ Rm. Thus, it is sufficient to transform this worst-case error into the expression featured between
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square brackets in (12). This is done by writing

e = max
f∈X

{∣∣∣Q(f)−
m∑
i=1

ai`i(f)
∣∣∣ : ‖f − v‖X ≤ ε for some v ∈ V with ‖v‖X ≤ κ

}
(13)

= max
f∈X
v∈V

{∣∣∣Q(f)−
m∑
i=1

ai`i(f)
∣∣∣ : ‖f − v‖X ≤ ε, ‖v‖X ≤ κ

}

= max
h∈X
v∈V

{∣∣∣Q(h+ v)−
m∑
i=1

ai`i(h+ v)
∣∣∣ : ‖h‖X ≤ ε, ‖v‖X ≤ κ

}
= max

h∈X

{∣∣∣Q(h)−
m∑
i=1

ai`i(h)
∣∣∣ : ‖h‖X ≤ ε

}
+ max

v∈V

{∣∣∣Q(v)−
m∑
i=1

ai`i(v)
∣∣∣ : ‖v‖X ≤ κ

}
.

By homogeneity, the latter is readily seen to coincide with the required expression.

Remark. The approximability set (2) where the condition ‖v‖X ≤ κ is not imposed can be viewed

as an instantiation of (10) with κ = ∞. In this instantiation, if maxv∈BV

∣∣∣Q(v) −
∑m

i=1 ai`i(v)
∣∣∣

was nonzero, then the objective function would be infinite. Therefore, the infimum will be attained

with the constraint maxv∈BV

∣∣∣Q(v)−
∑m

i=1 ai`i(v)
∣∣∣ = 0 in effect. This argument constitutes another

way of deriving the form of the optimal recovery map over the original approximability set (2). Let

us note in passing that, while the optimization program (5) was independent of ε > 0, adding the

condition ‖v‖X ≤ κ does create a dependence on ε > 0 in the optimization program (12), unless κ

is proportional to ε.

Remark. In the presence of observation error e ∈ Rm in y = L(f) + e, modeled as in [5] by the

bounded uncertainty set

(14) E = {e ∈ Rm : ‖e‖p ≤ η},

an optimal recovery map for a linear functionalQ : X → R over K and E simultaneously still consists

of a linear functional Ropt : y ∈ Rm 7→
∑m

i=1 a
opt
i yi, but now the optimal weights aopt ∈ Rm are

solution to the optimization program

(15) minimize
a∈Rm

[
ε×

∥∥∥Q− m∑
i=1

ai`i

∥∥∥
X∗

+ κ× max
v∈BV

∣∣∣Q(v)−
m∑
i=1

ai`i(v)
∣∣∣+ η × ‖a‖p′

]
,

where p′ = p/(p − 1) is the conjugate exponent to p ∈ [1,∞]. The argument, which follows the

ideas presented in [5], is left to the reader. We do point out that the program (15) is solvable in

practice as soon as the program (12) itself is solvable in practice, for instance as in the forthcoming

example.

2.2 Computational realization for X = C[−1, 1]

For practical purposes, the result of Theorem 1 is close to useless if the minimization cannot be

performed efficiently. We show below that in the important case X = C[−1, 1], choosing V as
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the space Pn of algebraic polynomials of degree < n leads to an optimization problem which can

be solved exactly via semidefinite programming. For that, we also assume that the observation

functionals are distinct point evaluations and that the quantity of interest Q is another point

evaluation or the normalized integral. These restrictions can be lifted if we trade exact solutions

for quantifiably approximate solutions, see Subsection 3.2. In the statement below, the notation

Toep(x) represents the symmetric Toeplitz matrix built from a vector x ∈ Rd, i.e.,

(16) Toep(x) :=



x1 x2 · · · · · · xd

x2 x1 x2
. . .

...
...

. . .
. . .

. . .
...

...
. . . x2 x1 x2

xd · · · · · · x2 x1


,

and Toep(x) � 0 means that this matrix is positive semidefinite. The notation v ≥ 0 featuring a

vector v means that all its entries are nonnegative. Finally, the polynomials Tj , j ∈ [0 : n − 1],

denote the jth Chebyshev polynomials of the first kind.

Theorem 2. Assuming that V = Pn ⊆ C[−1, 1] and that `1, . . . , `m are point evaluations at distinct

points x1, . . . , xm ∈ [−1, 1], an optimal recovery map over the bounded approximability set (10) for

the quantity of interest Q(f) = f(x0), x0 6∈ {x1, . . . , xm}, or Q(f) = (1/2)
∫ 1
−1 f(x)dx is the linear

functional

(17) Ropt : y ∈ Rm 7→
m∑
i=1

aopti yi ∈ R,

where the optimal weights aopt ∈ Rm are precomputed as a solution to the semidefinite program

minimize
a,s∈Rm

u∈Rn

[
ε×

m∑
i=1

si + κ× u1
]

s. to Toep(u+ Ca− b) � 0, Toep(u− Ca+ b) � 0,(18)

and s+ a ≥ 0, s− a ≥ 0.

Here, b ∈ Rn and C ∈ Rn×m have entries bj = Q(Tj) and Cj,i = `i(Tj), i ∈ [1 : m], j ∈ [0 : n− 1].

Proof. The work consists in recasting the objective function of (12) into manageable form. Under

the assumptions on `1, . . . , `m and on Q, the first term is not a problem, by virtue of

(19)
∥∥∥Q− m∑

i=1

ai`i

∥∥∥
C[−1,1]∗

= 1 +

m∑
i=1

|ai|.

We now turn to the second term, i.e., the one involving the maximum over the unit ball BV of V .

The idea, common in Robust Optimization [1], relies on duality to change the maximum into a

minimum, which is then integrated into a larger minimization problem. This is possible essentially
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when BV admits a linear or semidefinite description, which is the case for V = Pn. Indeed, as

already observed in [6, Subsection 5.3], following ideas formulated in [8], the unit ball of Pn admits

the semidefinite description

BPn =

{ n−1∑
j=0

tr[Dj(P −M)]Tj for some positive semidefinite matrices M,P ∈ Rn×n(20)

that satisfy tr[Dj(P +M)] = δ0,j

}
,

where, for each j ∈ [0 : n− 1], the symmetric matrix

(21) Dj :=



0 · · · 0 1 0 · · · 0
... 0

. . . 0 1
. . .

...

0
. . .

. . .
. . .

. . .
. . . 0

1 0
. . .

. . .
. . . 0 1

0 1
. . .

. . .
. . .

. . . 0
...

. . .
. . . 0

. . . 0
...

0 · · · 0 1 0 · · · 0


∈ Rn×n

has 1’s on the jth subdiagonal and superdiagonal and 0’s elsewhere — in particular D0 is the n×n
identity matrix. Thus, for a fixed a ∈ Rm, with Qa := Q−

∑m
i=1 ai`i, the maximum over BV reads

(22) max
M,P∈Rn×n

{
tr
[( n−1∑

j=0

Qa(Tj)Dj

)
(P −M)

]
: M,P � 0, tr[Dj(P +M)] = δ0,j

}
.

Invoking duality in semidefinite programming (see e.g. [3, p.265-266]), the latter can be transformed

into

(23) min
u∈Rn

u1 subject to
n−1∑
j=0

ujDj ±
n−1∑
j=0

Qa(Tj)Dj � 0.

Since Qa(Tj) = bj − (Ca)j for any j ∈ [0 : n − 1], the constraint in (23) can be condensed to

Toep(u ± (Ca − b)) � 0. Then, combining the minimization over u ∈ Rn with the minimization

over a ∈ Rm, the optimization program (12) becomes equivalent to

(24) minimize
a∈Rm

u∈Rn

[
ε×

m∑
i=1

|ai|+ κ× u1
]

subject to Toep(u± (Ca− b)) � 0.

The final step is the introduction of slack variables s ∈ Rm such that |ai| ≤ si, i.e., −si ≤ ai ≤ si,

for all i ∈ [1 : m].
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3 Bounded approximability set of the first type

We concentrate in this section on the bounded approximability set of the first type, i.e., on

(25) K =
{
f ∈ X : distX(f, V ) ≤ ε and ‖f‖X ≤ κ

}
.

Once again, we shall first describe optimal recovery maps before showing how they can be computed

in practice.

3.1 Description of an optimal recovery map

The result below reveals how [4, Theorem 3.1] extends from the model set (2) to the model set (25).

Theorem 3. If Q : X → R is a linear functional, then an optimal recovery map over the bounded

approximability set (25) is the linear functional

(26) Ropt : y ∈ Rm 7→
m∑
i=1

aopti yi ∈ R,

where the optimal weights aopt ∈ Rm are precomputed as a solution to

(27) minimize
a∈Rm

µ,ν∈X∗

[
ε× ‖µ‖X∗ + κ× ‖ν‖X∗

]
subject to µ+ ν = Q−

m∑
i=1

ai`i and µ|V = 0.

As a matter of fact, Theorem 3 is a corollary of Theorem 4 below. The setting of this more general

result involves subspaces V1, . . . , VK of a linear space X equipped with possibly distinct norms

‖ · ‖(1), . . . , ‖ · ‖(K). The model set is then defined, for some parameters ε1, . . . , εK > 0, by

(28) K = {f ∈ X : dist‖·‖(1)(f, V1) ≤ ε1, . . . ,dist‖·‖(K)
(f, VK) ≤ εK}.

It corresponds to what was called the multispace problem in [2, Section 3]. One works under the

assumption that

(29) ker(L) ∩ V1 ∩ . . . ∩ VK = {0}.

This assumption holds for the bounded approximability set of the first type, obtained by taking

V1 = V , V2 = {0}, and ‖ · ‖(1) = ‖ · ‖(2) = ‖ · ‖X .

Theorem 4. If Q : X → R is a linear functional, then an optimal recovery map over the model

set (28) is the linear functional

(30) Ropt : y ∈ Rm 7→
m∑
i=1

aopti yi ∈ R,
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where the optimal weights aopt ∈ Rm are precomputed as a solution to

minimize
a∈Rm

λ1,...,λK∈X∗

[
ε1‖λ1‖∗(1) + · · ·+ εK‖λK‖∗(K)

]
s.to λ1 + · · ·+ λK = Q−

m∑
i=1

ai`i(31)

and λ1|V1 = 0, . . . , λK |VK = 0.

Proof. We first notice that, replacing the norms ‖ · ‖(k) by ‖ · ‖(k)/εk, we can assume that εk = 1.

Next, since the model set K is symmetric and convex, there exists an optimal recovery map which

is linear, i.e., of the form y ∈ Rm 7→
∑m

i=1 aiyi ∈ R. An optimal weight vector aopt ∈ Rm is then

obtained as a solution to the optimization problem

(32) minimize
a∈Rm

max
f∈X

{∣∣∣∣Q(f)−
m∑
i=1

ai`i(f)

∣∣∣∣ : dist‖·‖(k)(f, Vk) ≤ 1 for all k ∈ [1 : K]

}
.

We claim that an optimal weight vector aopt ∈ Rm can also be obtained as a solution to the

optimization problem

minimize
a∈Rm

min
λ1,...,λK∈X∗

{
‖λ1‖∗(1) + · · ·+ ‖λK‖∗(K) : λ1 + · · ·+ λK = Q−

m∑
i=1

ai`i,(33)

λk |Vk = 0 for all k ∈ [1 : K]

}
.

In other words, we shall prove in two steps that the minimal values of (32) and (33) coincide.

Firstly, we shall justify that the objective function in (32) is bounded by the objective function

in (33) — a property which holds independently of a ∈ Rm. To do so, let us consider f ∈ X such

that ‖f − v1‖(1) ≤ 1, . . . , ‖f − vK‖(K) ≤ 1 for some v1 ∈ V1, . . ., vK ∈ VK . Let us also consider

λ1, . . . , λK ∈ X∗ such that λ1 + · · ·+ λK = Q−
∑m

i=1 ai`i and λ1|V1 = 0, . . ., λK |VK = 0. We have∣∣∣∣Q(f)−
m∑
i=1

ai`i(f)

∣∣∣∣ = |λ1(f) + · · ·+ λK(f)| = |λ1(f − v1) + · · ·+ λK(f − vK)|(34)

≤ ‖λ1‖∗(1)‖f − v1‖(1) + · · ·+ ‖λK‖∗(1)‖f − vK‖(K)

≤ ‖λ1‖∗(1) + · · ·+ ‖λK‖∗(K).

Taking the infimum over λ1, . . . , λK and the supremum over f yields the desired result.

Secondly, we shall justify that the minimal value of (33) is bounded by the minimal value of (32).

To do so, let us consider the linear space Z := X × · · · ×X equipped with the norm

(35) ‖(f1, . . . , fK)‖Z := max
k∈[1:K]

‖fk‖(k).

Introducing the subspace U of Z given by

(36) U := {(h, . . . , h), h ∈ ker(L)},
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the assumption (29) is equivalent to U ∩ (V1 × · · · × VK) = {0}. Thus, we can define a linear

functional λ on U ⊕ (V1 × · · · × VK) by

λ((h, . . . , h)) = Q(h) for h ∈ ker(L),(37)

λ((v1, . . . , vK)) = 0 for (v1, . . . , vK) ∈ V1 × · · · × VK .(38)

Let then λ̃ ∈ Z∗ denote a Hahn–Banach extension of λ to the whole Z. With linear functionals

λ1, . . . , λK ∈ X∗ defined for each k ∈ [1 : K] and f ∈ X by λk(f) = λ̃((0, . . . , 0, f, 0, . . . , 0)), where

f appears at the kth position, we have λ1(f) + · · · + λK(f) = λ̃((f, . . . , f)) for all f ∈ X, hence

in particular Q− (λ1 + · · ·+ λK) vanishes on ker(L). This implies (see e.g. [11, Lemma 3.9]) that

Q − (λ1 + · · · + λK) =
∑m

i=1 a
]
i`i for some a] ∈ Rm. In other words, the first constraint in (33)

is satisfied by a] and λ1, . . . , λK . The second constraint is also satisfied: indeed, for vk ∈ Vk,

λk(vk) = λ̃((0, . . . , 0, vk, 0, . . . , 0)) = 0 since (0, . . . , 0, vk, 0, . . . , 0) ∈ V1 × · · · × VK . Therefore, the

minimal value of (33) is bounded by

‖λ1‖∗(1) + · · ·+ ‖λK‖∗(K) = max
‖f1‖(1)≤1

λ1(f1) + · · ·+ max
‖fK‖(K)≤1

λK(fK)(39)

= max
‖f1‖(1)≤1,...,‖fK‖(K)≤1

λ1(f1) + · · ·+ λK(fK)

= max
‖(f1,...,fK)‖Z≤1

λ̃((f1, . . . , fK))

= ‖λ̃‖∗Z .

The latter equals the norm of λ on U ⊕ (V1 × · · · × VK), by virtue of λ̃ being a Hahn–Banach

extension of λ, so that

‖λ1‖∗(1) + · · ·+ ‖λK‖∗(K) = max
u=(h,...,h)∈U

v=(v1,...,vK)∈V1×···×VK

{
λ(u− v) : ‖u− v‖Z ≤ 1

}
(40)

= max
h∈ker(L)
vk∈Vk

{
Q(h) : ‖h− vk‖(k) ≤ 1 for all k ∈ [1 : K]

}
.

It follows that, for any a ∈ Rm,

‖λ1‖∗(1) + · · ·+ ‖λK‖∗(K) = max
h∈ker(L)
vk∈Vk

{
Q(h)−

m∑
i=1

ai`i(h) : ‖h− vk‖(k) ≤ 1 for all k ∈ [1:K]

}
(41)

≤ max
f∈X

{∣∣∣∣Q(f)−
m∑
i=1

ai`i(f)

∣∣∣∣ : dist‖·‖(k)(f, Vk) ≤ 1 for all k ∈ [1:K]

}
.

Taking the minimum over all a ∈ Rm shows that‖λ1‖∗(1) + · · ·+ ‖λK‖∗(K) is less than or equal to the

minimal value of (32), and in turn that the same is true for the minimal value of (33).

Remark. The approximability set (2) where the condition ‖f‖X ≤ κ is not imposed can be

viewed as an instantiation of (25) with κ = ∞. In this instantiation, if ‖ν‖X∗ was nonzero, then

10
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the objective function in (27) would be infinite. Therefore, the minimum will be attained with

the constraint ‖ν‖X∗ = 0 in effect, leading to µ = Q −
∑m

i=1 ai`i and in turn to the constraint

(Q −
∑m

i=1 ai`i)|V = 0. We do retrieve the minimization of (5), as expected. We note in passing

that, while the optimization program (5) was independent of ε > 0, adding the condition ‖f‖X ≤ κ
does create a dependence on ε > 0 in the optimization problem (27), unless κ is proportional to ε.

Remark. In the presence of observation error e ∈ Rm in y = L(f) + e, again modeled as in [5] by

the bounded uncertainty set

(42) E = {e ∈ Rm : ‖e‖p ≤ η},

an optimal recovery map for a linear functionalQ : X → R over K and E simultaneously still consists

of a linear functional Ropt : y ∈ Rm 7→
∑m

i=1 a
opt
i yi, but now the optimal weights aopt ∈ Rm are

solution to the optimization program

(43) minimize
a∈Rm

µ,ν∈X∗

[
ε×‖µ‖X∗+κ×‖ν‖X∗+η×‖a‖p′

]
subject to µ+ν = Q−

m∑
i=1

ai`i and µ|V = 0.

The argument follows the ideas presented in [5] and, although more subtle, is once again left to the

reader. We do point out that the program (43) is solvable in practice as soon as the program (27)

itself is solvable in practice, for instance as in the forthcoming example.

3.2 Computational realization for X = C[−1, 1]

As before, the high-level results of Theorems 3 and 4 are of little practical use if the minimizations

(27) and (31) cannot be performed efficiently. In the important situation X = C[−1, 1], the dual

functionals appearing as optimization variables are identified with measures. Despite involving

infinite dimensional objects, minimizations over measures can be tackled via semidefinite program-

ming, see e.g. [9]. Although such minimizations are in general not solved exactly, their accuracy can

be quantifiably estimated in our specific case. For ease of presentation, we illustrate the approach

by concentrating on the optimization program (27) rather than (31). We also assume that V = Pn
and we write the observation functionals `1, . . . , `m, as well as the quantity of interest Q, as

(44) `i(f) =

∫ 1

−1
f(x)dλi(x), Q(f) =

∫ 1

−1
f(x)dρ(x), f ∈ C[−1, 1],

for some signed Borel measures λ1, . . . , λm, ρ defined on [−1, 1]. In this way, passing from linear

functionals to signed Borel measures as optimization variables, the program (27) reads

minimize
a∈Rm

µ,ν

∫ 1

−1
ε d|µ|+ κ d|ν| s.to µ+ ν = ρ−

m∑
i=1

aiλi(45)

and

∫ 1

−1
v(x)dµ(x) = 0 for all v ∈ Pn.

11
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Let us introduce as slack variables the nonnegative Borel measures µ+, µ−, ν+, and ν− involved in

the Jordan decompositions µ = µ+ − µ− and ν = ν+ − ν−, so that the problem (45) is recast as

minimize
a∈Rm

µ±,ν±

∫ 1

−1
ε d(µ+ + µ−) + κ d(ν+ + ν−) s.to µ+ − µ− + ν+ − ν− = ρ−

m∑
i=1

aiλi(46)

and

∫ 1

−1
v(x)d(µ+−µ−)(x) = 0 for all v ∈ Pn.

Next, replacing the measures µ± and ν± by the infinite sequences of moments w± =M∞(µ±) ∈ RN

and z± =M∞(ν±) ∈ RN defined for k ≥ 1 by

(47) w±k =

∫ 1

−1
Tk−1(x)dµ±(x), z±k =

∫ 1

−1
Tk−1(x)dν±(x),

the problem (46) is equivalent1 to the infinite semidefinite program

minimize
a∈Rm

w±,z±∈RN

ε (w+
1 + w−1 ) + κ (z+1 + z−1 ) s.to w+ − w− + z+ − z− =M∞

(
ρ−

m∑
i=1

aiλi

)
,(48)

and w+
j − w

−
j = 0 for all j ∈ [1 : n],

and Toep∞(w±) � 0, Toep∞(z±) � 0.

Instead of solving this infinite optimization program, we truncate it to a level N ≥ n by only

involving the first N entries of the infinite vectors appearing as optimization variables and by

adapting the semidefinite constraints accordingly. Thus, we solve the finite semidefinite program

minimize
a∈Rm

w±,z±∈RN

ε (w+
1 + w−1 ) + κ (z+1 + z−1 ) s.to w+ − w− + z+ − z− =MN

(
ρ−

m∑
i=1

aiλi

)
(49)

and w+
j − w

−
j = 0 for all j ∈ [1 : n],

and ToepN (w±) � 0, ToepN (z±) � 0.

The rest of this section is devoted to justifying in a quantitative way that the minimal value of this

truncated problem converges to the minimal value of the original problem. We also justify, although

not quantitatively, that the vectors a(N) ∈ Rm obtained by solving (49) converge as N → ∞ to

a vector aopt ∈ Rm solving (27) — we do not analyze the behavior of the optimal measures since

only the vector aopt is required in (26). From now on, we also work under the assumption of linear

independence for the restrictions `1|Pm
, . . . , `m|Pm

of the observation functionals to the space Pm
of polynomials of degree < m. This assumption is easily seen to be equivalent to the invertibility

of (the transpose of) the moment matrix M ∈ Rm×m defined by

(50) Mj,i = `i(Tj−1), i, j ∈ [1 : m].

This holds e.g. when the observation functionals are evaluations at m distinct points in [−1, 1].

1the equivalence is based on the discrete trigonometric moment problem, see [7] for details.
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Theorem 5. Suppose that the system (`1|Pm
, . . . , `m|Pm

) is linearly independent. If there is a

unique aopt ∈ Rm yielding a minimizer (aopt, µopt, νopt) of (27), then aopt is the limit of any

sequence (a(N))N≥n obtained by solving (49) for each N ≥ n. Without uniqueness, it still holds

that any subsequence of (a(N))N≥n admits a subsequence converging to the first component ã of a

minimizer (ã, µ̃, ν̃) of (27).

Proof. The first part of the theorem follows from the second part: it is indeed well-known that the

convergence of a sequence towards a given point is guaranteed as soon as any of its subsequences

admits a subsequence converging to that point.

To establish the second part, let α(N) ∈ R and (a(N), w±,(N), z±,(N)) ∈ Rm × (RN )4 denote, for

each N ≥ n, the minimum value and some minimizer of (49), respectively. We write w±,((N)) ∈ RN

and z±,((N)) ∈ RN for the infinite vectors obtained by padding the finite vectors w±,(N) ∈ RN

and z±,(N) ∈ RN with zeros. Let us now consider a subsequence
(
(a(Nk), w±,((Nk)), z±,((Nk)))

)
k≥1

of the (`m∞ × (`N∞)4)-valued sequence
(
(a(N), w±,(N), z±,(N))

)
N≥n. Our objective is to show that

there exist a subsequence
(
(a(Nk`

), w±,((Nk`
)), z±,((Nk`

)))
)
`≥1 and a minimizer (ã, w̃±, z̃±) of (48)

such that a(Nk`
) converges to ã as ` → ∞. To this end, we start by observing that the sequence

(α(Nk))k≥1 is nondecreasing and bounded by the minimal value αopt of (48): firstly, the inequality

α(Nk) ≤ α(Nk+1) follows from the feasibility of (a(Nk+1), w
±,(Nk+1)
[1:Nk]

, z
±,(Nk+1)
[1:Nk]

) for (49) specified to

N = Nk, so that

(51) α(Nk) ≤ ε (w
+,(Nk+1)
1 + w

−,(Nk+1)
1 ) + κ (z

+,(Nk+1)
1 + z

−,(Nk+1)
1 ) = α(Nk+1);

secondly, the inequality α(Nk) ≤ αopt similarly follows from the feasibility of (aopt, w±,opt[1:Nk]
, z±,opt[1:Nk]

)

for (49) specified to N = Nk, where evidently (aopt, w±,opt, z±,opt) represents some minimizer

of (48). We continue by remarking that the positive semidefiniteness of ToepNk
(w±,(Nk)) and

ToepNk
(z±,(Nk)) yields, for any j ∈ [1 : Nk],

∣∣w±,(Nk)
j

∣∣ ≤ w±,(Nk)
1 ≤ 1

ε

(
ε (w

+,(Nk)
1 + w

−,(Nk)
1 ) + κ (z

+,(Nk)
1 + z

−,(Nk)
1 )

)
≤ 1

ε
α(Nk) ≤ 1

ε
αopt,(52) ∣∣z±,(Nk)

j

∣∣ ≤ z±,(Nk)
1 ≤ 1

κ

(
ε (w

+,(Nk)
1 + w

−,(Nk)
1 ) + κ (z

+,(Nk)
1 + z

−,(Nk)
1 )

)
≤ 1

κ
α(Nk) ≤ 1

κ
αopt.(53)

Thus, the `N∞-valued sequences (w±,((Nk)))k≥1 and (z±,((Nk)))k≥1 are bounded. This guarantees, by

the sequential compactness Banach–Alaoglu theorem, that (w±,((Nk)))k≥1 and (z±,((Nk)))k≥1 admit

convergent subsequences in the weak-star topology of `N∞. We denote the resulting convergent

subsequence and its limit by
(
(w±,((Nk`

)), z±,((Nk`
)))
)
`≥1 and (w̃±, z̃±), respectively. They come

with associated (a(Nk`
))`≥1 and ã. Indeed, the constraint imposed on minimizers of (49) yields in

particular, for Nk` ≥ m,

(54) Ma(Nk`
) =Mm(ρ)− (w+,(Nk`

) − w−,(Nk`
) + z+,(Nk`

) − z−,(Nk`
))[1:m].
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In view of w
±,(Nk`

)

j → w̃±j and z
±,(Nk`

)

j → z̃±j for all j ≥ 1, which is a consequence of the weak-star

convergence, and of the invertibility assumption for the moment matrix, we see that

(55) a(Nk`
) −→
`→∞

ã := M−1
(
Mm(ρ)− (w̃+ − w̃− + z̃+ − z̃−)[1:m]

)
.

It remains to prove that the quintuple (ã, w̃±, z̃±) is a minimizer of (48). Writing the constraint

of (49) satisfied by (a(Nk`
), w±,(Nk`

), z±,(Nk`
)) and passing to the limit as ` → ∞ shows that the

quintuple is feasible for (48). It is also a minimizer for this program, by virtue of

ε (w̃+
1 + w̃−1 ) + κ (z̃+1 + z̃−1 ) = lim

`→∞

(
ε (w

+,(Nk`
)

1 + w
−,(Nk`

)

1 ) + κ (z
+,(Nk`

)

1 + z
−,(Nk`

)

1 )
)

(56)

= lim
`→∞

α(Nk`
) ≤ αopt.

Our objective is now established, so the second part of the theorem is proved.

Theorem 5 does not tell us how to choose N in order to reach a prescribed accuracy on ‖aopt−a(N)‖,
not even on αopt − α(N). We intend to provide an accuracy estimate for the latter, which we do

under the further restriction that the observation functionals and the quantity of interest are

point evaluations at distinct x1, . . . , xm ∈ [−1, 1] and at x0 ∈ [−1, 1] \ {x1, . . . , xm}, respectively.

Moreover, the estimate is an a posteriori one, in the sense that we need to solve problem (49) for a

particular N first. As a matter of fact, we also need to solve an extra linear program subordinated

to a particular grid t = (t1, . . . , tK) avoiding the xi’s. This program is

minimize
a∈Rm

u,v∈R1+m+K

r,s∈R1+m+K

ε
∑
h

rh + κ
∑
h

sh s.to u+ v =

 1

−a
0

 , [ b |C |D ]u = 0,(57)

and r + u ≥ 0, r − u ≥ 0, s+ v ≥ 0, s− v ≥ 0.

Here, the vector b ∈ Rn, the matrix C ∈ Rn×m (both encountered before), and the matrixD ∈ Rn×K

have entries bj = Tj−1(x0), Cj,i = Tj−1(xi), and Dj,k = Tj−1(tk), i ∈ [1 : m], j ∈ [1 : n], k ∈ [1 : K].

Theorem 6. Suppose that the observation functionals `1, . . . , `m and the quantity of interestQ take

the form `i(f) = f(xi), i ∈ [1 : m], and Q(f) = f(x0) for distinct points x0, x1, . . . , xm ∈ [−1, 1].

For any N ≥ n and any grid t of [−1, 1] not intersecting {x0, x1, . . . , xm}, the minimal value αopt

of (27) satisfies

(58) α(N) ≤ αopt ≤ β(t),

where α(N) is the minimal value of (49) and β(t) is the minimal value of (57).

Proof. The leftmost inequality of (58) was already justified (implicitly) in the proof of Theorem 5

and actually does not rely on any assumption on the observation functionals or the quantity of

14



S. Foucart

interest. For the rightmost inequality of (58), we keep in mind that αopt is the minimal value of

the optimization program (45). Since this is a minimal value over all signed Borel measures, an

upper bound is provided by the minimal value β(t) over the subset of all signed Borel measures

consisting of linear combinations of Dirac measures at the distinct points x0, x1, . . . , xm, t1, . . . , tK
— the points x0, x1, . . . , xm are included in order to make the constraint of (45) feasible. Writing

such measures as

µ = u δx0 +
m∑
i=1

u′iδxi +
K∑
k=1

u′′kδtk ,(59)

ν = v δx0 +

m∑
i=1

v′iδxi +

K∑
k=1

v′′kδtk ,(60)

we see that the upper bound β(t) takes the form

β(t) = min
a∈Rm,u,v∈R

u′,v′∈Rm,u′′,v′′∈RK

{
ε(|u|+‖u′‖1 + ‖u′′‖1) + κ(|v|+ ‖v′‖1 + ‖v′′‖1) :(61)

u+ v = 1, u′ + v′ = −a, u′′ + v′′ = 0, ub+ Cu′ +Du′′ = 0
}
.

By gathering u ∈ R, u′ ∈ Rm, and u′′ ∈ RK into a single vector û = [u;u′;u′′] ∈ R1+m+K , which

we later rename u, and similarly for v ∈ R, v′ ∈ Rm, and v′′ ∈ RK , the objective function simply

reads ε‖û‖1 + κ‖v̂‖1, while the constraints read û + v̂ = [1;−a; 0] and [b, C,D]û = 0. The final

transformation applied to arrive at the linear program of (57) consists in introducing slack variables

r, s ∈ R1+m+K such that |û| ≤ r and |v̂| ≤ s.

Remark. When the observation functionals and the quantity of interest are point evaluations, a

solution a(t) to the linear program (57) yields a linear functional R(t) : y ∈ Rm 7→
∑m

i=1 a
(t)
i yi ∈ R

which turns out to be a near-optimal recovery map. Indeed, remembering that the first step of

the proof of Theorem 4 is valid for a(t), which comes with atomic measures µ(t) and ν(t) such that

µ(t) + ν(t) = ρ −
∑m

i=1 a
(t)
i λi and

∫ 1
−1 v(x)dµ(t)(x) = 0 for all v ∈ Pn, we derive that the error of

R(t) over K satisfies

(62) sup
f∈K
|Q(f)−R(t)(L(f))| ≤

∫ 1

−1
ε d|µ(t)|+ κ d|ν(t)| = β(t).

This estimate matches the intrinsic error αopt with error at most β(t)−α(N). This quantity, which

is available after solving (49) and (57), is small when the truncation parameter N and the size of

the grid t are large.
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[10] E. Novak and H. Woźniakowski. Tractability of Multivariate Problems: Linear Information.

Vol. 6. European Mathematical Society, 2008.

[11] W. Rudin. Functional Analysis (2nd edition). International Series in Pure and Applied Math-

ematics, McGraw-Hill. 1991.
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