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Abstract

When attempting to recover functions from observational data, one naturally seeks to do

so in an optimal manner with respect to some modeling assumption. With a focus put on the

worst-case setting, this is the standard goal of Optimal Recovery. The distinctive twists here

are the consideration of inaccurate data through some boundedness models and the emphasis on

computational realization. Several scenarios are unraveled through the efficient constructions

of optimal recovery maps: local optimality under linearly or semidefinitely describable models,

global optimality for the estimation of linear functionals under approximability models, and

global near-optimality under approximability models in the space of continuous functions.
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optimization.
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1 Introduction

The investigations conducted in this article fit in the classical setting of Optimal Recovery [11]:

given observational data and a priori information about a function, one attempts to approximate,

in a worst-case setting, the function or merely a dependant quantity. Our emphasis here is put not

only on inaccurate data, but also on computability of the approximation procedure.

Formally, functions f are viewed as elements of a normed space X. An educated belief about the

behavior of f translates into the statement that f belongs to a model set K ⊆ X — this is the

a priori information. The observational data typically take the form of evaluations of f at certain
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points x1, . . . , xm, i.e., one has access to y1 = f(x1), . . . , ym = f(xm). In a more general and

realistic situation, one has access to

(1) yi = `i(f) + ei, i ∈ [1 : m],

where `1, . . . , `m ∈ X∗ are (known) linear functionals and the observation process is corrupted by

(unknown) errors e1, . . . , em ∈ R. The monograph [12] contains substantial information about this

framework under different models for the vector e ∈ Rm of observation errors. Here, it is not

viewed as random noise, but rather assumed to belong to an uncertainty set E ⊆ Rm. We use the

terminology observation operator to denote the linear map L : f ∈ X 7→ [`1(f); . . . ; `m(f)] ∈ Rm.

This operator is considered a fixed entity, i.e., the user does not have the leisure to select favorable

observation functionals `1, . . . , `m ∈ X∗.

We assume throughout the article that Q : X → Z is a linear map (think of Q being a linear

functional, in which case Z = R, or Q being the identity, in which case Z = X). Our goal is to

approximate the quantity of interest Q(f) using only the data y ∈ Rm, i.e., to produce a recovery

map R : Rm → Z yielding a small error ‖Q(f)−R(y)‖Z . With the worst-case setting in mind, one

defines two types of error, namely

• the local error of R at y over K and E is

(2) eloc
K,E,Q(L,R(y)) := sup

f∈K, e∈E
L(f)+e=y

‖Q(f)−R(y)‖Z ;

• the (global) error of R over K and E is

(3) eK,E,Q(L,R) := sup
f∈K, e∈E

‖Q(f)−R(L(f) + e)‖Z .

One of the primary concerns in Optimal Recovery is to grasp how small these worst-case errors can

possibly be. This is quantified e.g. via the so-called intrinsic error

(4) e∗K,E,Q(L) := inf
R:Rm→Z

eK,E,Q(L,R).

In this article, we put an extra emphasis on the practical computation of optimal recovery maps

Ropt : Rm → Z, be they

• locally optimal at y ∈ L(K) + E , in the sense that

(5) eloc
K,E,Q(L,Ropt(y)) = inf

R:Rm→Z
eloc
K,E,Q(L,R(y));

• (globally) optimal, in the sense that

(6) eK,E,Q(L,Ropt) = inf
R:Rm→Z

eK,E,Q(L,R).
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Obviously, if a recovery map is locally optimal at any y ∈ L(K)+E , then it is also globally optimal.

Given y ∈ L(K) + E , we introduce the set of f ∈ K consistent with the data y and denote it as

(7) KE(y) := {f ∈ K : y = L(f) + e for some e ∈ E}.

As is well-known (and not difficult to observe), any locally optimal recovery map outputs a so-called

Chebyshev center1 of Q(KE(y)), i.e., a center of a ball of smallest radius containing Q(KE(y)). This

almost tautological observation, however, is not enough to yield computable optimal recovery maps.

Their efficient construction constitutes one of the main points of this paper, which are listed below.

1. Examples of computable Chebyshev centers beyond the Hilbert case (which was solved by [3]

in the accurate setting under approximability models): the results are presented in Section 2

and seem to be new even in the absence of observation errors.

2. Description of globally optimal recovery maps when the quantity of interest Q is a linear

functional: this extension to the inaccurate setting of a result from [6] appears in Section 4

and the computational procedure proposed there is new even in the absence of observation

errors when the observation functionals are not point evaluations.

3. Construction of globally near-optimal maps for full recovery in X = C(D): this again extends

a result from [6] to the inaccurate setting, with a notable difference concerning genuinely

optimal maps, see Section 5.

The remaining Section 3 serves as a reminder of known facts about globally optimal recovery

maps. All our theoretical results are computationally exemplified in the reproducible matlab file

accompanying this article, which is downloadable from the authors’ webpages.

2 Computation of Chebyshev centers

In this section, we present a technique from Robust Optimization [2] that makes it possible to

exactly compute the Chebyshev center of the set Q(KE(y)) defined by the observational data

y ∈ Rm. The situations uncovered in Subsections 2.1 and 2.2 would surely be amended in practice,

but the technique would remain the same. It is assumed here that the quantity of interest Q takes

values in Z = `K∞ and we write

(8) Q : f ∈ X 7→ [Q1(f); . . . ;QK(f)] ∈ `K∞.

The case of linear functionals is included as the special instance K = 1. The starting point is the

observation that Chebyshev center(s) z∗ ∈ RK and radius r∗ ∈ R of the set Q(KE(y)) are solutions

to the formal optimization problem

(9) minimize
z∈RK ,r∈R

r subject to ‖Q(f)− z‖∞ ≤ r for all f ∈ KE(y).

1Note that the common definition of Chebyshev center of a set S used here (center of the smallest ball containing S)

differs from the one used in [4, p.148] (center of the largest ball contained in S).
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We consider in this section an uncertainty set given by

(10) E = E∞,η := {e ∈ Rm : ‖e‖∞ ≤ η},

so that the condition f ∈ KE(y) translates into f ∈ K and y − η ≤ L(f) ≤ y + η, where the

inequalities are understood componentwise. As for the model set K itself, the method presented

below essentially relies on a linear or semidefinite description for it. This point is clarified in the

following two subsections, which are illustrated in the reproducible file.

2.1 The model set is a polytope

We suppose here that the set K is a polytope in X = Rn described in inequality form as

(11) K = {f ∈ Rn : Af ≤ b} for some A ∈ RN×n and b ∈ RN .

In order to state the result of this subsection, we define an auxiliary matrix Ã ∈ R(N+2m)×n and

an auxiliary vector b̃ ∈ RN+2m by

(12) Ã :=

 A

L

−L

 and b̃ :=

 b

+y + η

−y + η

 .
We also introduce the vectors qk ∈ Rn, k ∈ [1 : K], that satisfy

(13) 〈qk, f〉 = Qk(f) for all f ∈ Rn.

Theorem 1. For the model set K and the uncertainty E set given in (11) and (10), a locally optimal

recovery map over K and E for the quantity of interest (8) outputs, for any input y ∈ L(K) + E , a

vector z ∈ RK which is solution to the linear program

(14) minimize
z∈RK ,r∈R

x±,1,...,x±,K∈RN+2m

r subject to Ã>x±,k = ±qk, x±,k ≥ 0, 〈̃b, x±,k〉 ≤ r ± zk.

Proof. Fixing y ∈ L(K)+E , we first remark that the set KE(y) is a polytope described in inequality

form as

(15) KE(y) = {f ∈ Rn : Ãf ≤ b̃}.

It follows that the constraint in (9) reads maxf∈Rn{‖Q(f) − z‖∞ : Ãf ≤ b̃} ≤ r, which in fact

consists of the 2K linear constraints

max
f∈Rn
{+(〈qk, f〉 − zk) : Ãf ≤ b̃} ≤ r, k ∈ [1 : K],(16)

max
f∈Rn
{−(〈qk, f〉 − zk) : Ãf ≤ b̃} ≤ r, k ∈ [1 : K].(17)
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Invoking duality in linear programming (see e.g. [4, p.224] read from the bottom up) to transform all

these max-constraints into min-constraints, the constraint in (9) reduces to the 2K linear constraints

min
x∈RN+2m

{〈̃b, x〉 : Ã>x = +qk, x ≥ 0} ≤ r + zk, k ∈ [1 : K],(18)

min
x∈RN+2m

{〈̃b, x〉 : Ã>x = −qk, x ≥ 0} ≤ r − zk, k ∈ [1 : K].(19)

Thus, the constraint in (9) is equivalent to the existence of x+,1, . . . , x+,K , x−,1, . . . , x−,K ∈ RN+2m

such that Ã>x±,k = ±qk, x±,k ≥ 0, and 〈̃b, x±,k〉 ≤ r ± zk for all k ∈ [1 : K]. Incorporating

these variables into the minimization (9) leads to the announced optimization program. We note in

passing that this linear program features K(2N + 4m+ 1) + 1 variables, 2Kn equality constraints,

and 2K(N + 2m+ 1) inequality constraints. It is therefore efficiently solvable in practice.

2.2 The model set is the unit ball of a polynomial space

We suppose here that the set K is the unit ball in the space X = Pn of algebraic polynomials of

degree < n equipped with the supremum norm on [−1, 1]. In other words,

(20) K = {f ∈ Pn : ‖f‖C[−1,1] ≤ 1}.

In order to state the result of this subsection, we introduce the notation Toepd(x) for the symmetric

Toeplitz matrix built from a vector x ∈ Rd, i.e.,

(21) Toepd(x) :=



x1 x2 · · · · · · xd

x2 x1 x2
. . .

...
...

. . .
. . .

. . .
...

...
. . . x2 x1 x2

xd · · · · · · x2 x1


.

With Tj denoting the jth degree Chebyshev polynomial of the first kind, we now introduce the

auxiliary matrices C1, . . . , CK ∈ Rn×n and A1, . . . , Am ∈ Rn×n defined by

(22) Ck = Toepn[Qk(T0);Qk(T1); . . . ;Qk(Tn−1)] and Ai = Toepn[`i(T0); `i(T1); . . . ; `i(Tn−1)].

The proof of the theorem below makes use of the following semidefinite duality statement, which

is a somewhat tedious application of [2, p.452-454].

Lemma 2. Given symmetric matrices A1, . . . , Am, B1, . . . , Bn, and C, the dual to the semidefinite

program

maximize
M,P

tr[C(P −M)] subject to tr[Bj(P +M)] = βj , M, P � 0,(23)

and tr[Ai(P −M)] ≤ αi
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is the semidefinite program

minimize
x∈Rn,u∈Rm

〈β, x〉+ 〈α, u〉 subject to
n∑
j=1

xjBj � +
(
C −

m∑
i=1

uiAi

)
,(24)

and

n∑
j=1

xjBj � −
(
C −

m∑
i=1

uiAi

)
,

and u ≥ 0.

With this lemma at hand, we can now state and prove the awaited main result of this subsection.

Theorem 3. For the model set K and the uncertainty set E given in (20) and (10), a locally optimal

recovery map over K and E for the quantity of interest (8) outputs, for any input y ∈ L(K) + E , a

vector z ∈ RK which is solution to the semidefinite program

minimize
z∈RK ,r∈R

x±,k∈Rn,u±,k,v±,k∈Rm

r s.to x±,k1 + 〈u±,k, y + η〉 − 〈v±,k, y − η〉 ≤ r ± zk, u±,k ≥ 0, v±,k ≥ 0,(25)

and Toepn(x±,k) � +
(
± Ck +

m∑
i=1

(v±,ki − u±,ki )Ai

)
,

and Toepn(x±,k) � −
(
± Ck +

m∑
i=1

(v±,ki − u±,ki )Ai

)
.

Proof. It was observed in [7, Subsection 5.3], following ideas formulated in [10], that the unit ball

in Pn admits the semidefinite description

K =

{ n−1∑
j=0

tr[Dj(P −M)]Tj for some positive semidefinite matrices M,P ∈ Rn×n(26)

that satisfy tr[Dj(P +M)] = δ0,j

}
,

where, for j ∈ [0 : n− 1], the symmetric matrix

(27) Dj :=



0 · · · 0 1 0 · · · 0
... 0

. . . 0 1
. . .

...

0
. . .

. . .
. . .

. . .
. . . 0

1 0
. . .

. . .
. . . 0 1

0 1
. . .

. . .
. . .

. . . 0
...

. . .
. . . 0

. . . 0
...

0 · · · 0 1 0 · · · 0


∈ Rn×n
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has 1’s on the jth subdiagonal and superdiagonal and 0’s elsewhere — in particular D0 is the n×n
identity matrix. Thus, fixing y ∈ L(K) + E , the set Q(KE(y)) admits the semidefinite description

Q(KE(y)) =

{ n−1∑
j=0

tr[Dj(P −M)]Q(Tj) : tr[Dj(P +M)] = δ0,j , M, P � 0,(28)

y − η ≤
n−1∑
j=0

tr[Dj(P −M)]L(Tj) ≤ y + η

}
.

Since the matrices C1, . . . , CK and A1, . . . , Am are equivalently written as

(29) Ck =
n−1∑
j=0

Qk(Tj)Dj and Ai =
n−1∑
j=0

`i(Tj)Dj ,

we see that the constraint in (9) can be reformulated as the 2K semidefinite constraints (indexed

by + and − for each k ∈ [1 : K])

max
M,P∈Rn×n

{
± tr[Ck(P −M)] : tr[Dj(P +M)] = δ0,j , M, P � 0,(30)

yi − η ≤ tr[Ai(P −M)] ≤ yi + η

}
≤ r ± zk.

Relying on Lemma 2 to transform these max-constraints into min-constraints, the constraint in (9)

reduces to the 2K semidefinite constraints (indexed by + and − for each k ∈ [1 : K])

min
x∈Rn

u,v∈Rm

{
x1 + 〈u, y + η〉 − 〈v, y − η〉 :

n−1∑
j=0

xjDj � +
(
± Ck +

m∑
i=1

(vi − ui)Ai
)
,(31)

n−1∑
j=0

xjDj � −
(
± Ck +

m∑
i=1

(vi − ui)Ai
)
,

u ≥ 0, v ≥ 0

}
≤ r ± zk.

For each of these constraints, we create extra variables x±,k ∈ Rn, u±,k ∈ Rm, and v±,k ∈ Rm to

be incorporated in the optimization program (9), which is then reformulated as

minimize
z∈RK ,r∈R

x±,k∈Rn,u±,k,v±,k∈Rm

r s.to x±,k1 + 〈u±,k, y + η〉 − 〈v±,k, y − η〉 ≤ r ± zk, u±,k ≥ 0, v±,k ≥ 0,(32)

and

n−1∑
j=0

x±,kj Dj � +
(
± Ck +

m∑
i=1

(v±,ki − u±,ki )Ai

)
,

and

n−1∑
j=0

x±,kj Dj � −
(
± Ck +

m∑
i=1

(v±,ki − u±,ki )Ai

)
.

This is indeed the announced semidefinite program, which is solvable in practice.

7



Instances of Computational Optimal Recovery: Dealing with Observation Errors

3 Global optimality over approximability models

This section recollects some known ingredients that are needed later. As such, it does not contain

any new result.

3.1 Formal reduction to the accurate setting

Traditional Optimal Recovery often disregards observation errors and works in the setting e = 0.

This is because observation errors can be absorbed into the accurate setting, at least formally. Let us

recall the implicit argument (found e.g. in [11]), which is valid for arbitrary model and uncertainty

sets K and E . It consists of the remark that the global error of a recovery map R : Rm → Z over

K and E can be written as

(33) sup
f∈K
e∈E

‖Q(f)−R(L(f) + e)‖Z = sup
(f,e)∈K×E

‖Q̃((f, e))−R(L̃((f, e)))‖Z ,

where the quantity of interest Q̃ and observation operator L̃ are defined on the augmented space

X̃ = X × Rm by

Q̃ :(f, e) ∈ X̃ 7→ Q(f) ∈ Z,(34)

L̃ :(f, e) ∈ X̃ 7→ L(f) + e ∈ Rm.(35)

Thus, inaccurate optimal recovery over the model and uncertainty sets K and E becomes optimal

recovery over the model set K̃ = K × E ⊆ X̃. This implies, for instance, that if Q is a linear

functional and if K and E are both symmetric and convex sets, then there is an optimal recovery

map which is linear.

Remark. The uncertainty considered in this article only comes from observation errors. As pointed

out in [5], there is another source of uncertainty, particularly prevalent for parametric PDEs, namely

class error. This expresses the fact that the model set K is not known exactly. In some situations,

a formal reduction to the accurate setting is also possible.

3.2 Approximability models

We concentrate for the rest of this article on a certain model set K introduced in [3]. It is given in

terms of approximability by a linear space V ⊆ X with threshold ε > 0 as

(36) K = KV,ε := {f ∈ X : distX(f, V ) ≤ ε}.
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The unit ball of X, which is often considered as a model set in traditional Optimal Recovery,

corresponds to the specific choice V = {0} and ε = 1. In turn, any symmetric convex body can

be described through (36) with V = {0} and ε = 1, since such a body can be viewed as the unit

ball relative to some norm (namely, to its Minkowski functional). In the case of a general space V ,

the Optimal Recovery problem under the approximability set (36) does not make sense when its

dimension exceeds the amount of data, so one assumes that

(37) n := dim(V ) ≤ m.

We now recall some results valid in the absence of observation errors, see [6, Theorems 2.1 and 3.1].

(i) if Q : X → Z is a linear map, then the intrinsic error over the approximability set (36) satisfies

(38) µV,Q(L)× ε ≤ inf
R:Rm→Z

sup
f∈K
‖Q(f)−R(L(f))‖Z ≤ 2× µV,Q(L)× ε,

where the indicator of compatibility between the model and the data is defined as

(39) µV,Q(L) := sup
f∈ker(L)

‖Q(f)‖Z
distX(f, V )

;

(ii) if Q : X → R is a linear functional, then the intrinsic error over the approximability set (36)

decouples exactly as the product of the indicator of compatibility and the approximability

threshold, i.e.,

(40) inf
R:Rm→Z

sup
f∈K
‖Q(f)−R(L(f))‖Z = µV,Q(L)× ε;

(iii) if Q : X → R is a linear functional, then a globally optimal recovery map over the approxima-

bility set (36) is provided by the linear functional Ropt : y ∈ Rm 7→
∑m

i=1 a
opt
i yi ∈ R, where

the optimal weights aopt ∈ Rm are precomputed (independently of ε > 0) as a solution to

(41) minimize
a∈Rm

∥∥∥∥Q− m∑
i=1

ai`i

∥∥∥∥
X∗

subject to
m∑
i=1

ai`i(v) = Q(v) for all v ∈ V.

4 Estimation of linear functionals under approximability models

In this section, we assume that the quantity of interest Q is a linear functional. We place ourselves

under the approximability model (36) and continue to do so throughout the rest of the article.

From now on, we also assume boundedness of the observation error e ∈ Rm, and hence concentrate

on the uncertainty set

(42) E = Ep,η := {e ∈ Rm : ‖e‖p ≤ η}

defined by an index p ∈ [1,∞] and parameter η > 0. It will be convenient to write p′ ∈ [1, p] for

the conjugate exponent to p, i.e., for p′ = p/(p− 1) which satisfies 1/p+ 1/p′ = 1.
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4.1 Description of an optimal recovery map

The result presented in this subsection is an extension of (iii) to the inaccurate setting. Although

a dependence on ε > 0 now appears, a pleasing feature persists: the costly computation (44) of

optimal weights is performed offline once and for all. Thus, when new data y ∈ Rm comes in,

producing the associated estimate via (43) is almost immediate. This contrasts with procedures

(14) and (25), where producing a locally optimal estimate involved a costly minimization for every

new y ∈ Rm coming in.

Theorem 4. If Q : X → R is a linear functional, then an optimal recovery map over the model

set (36) and the uncertainty set (42) is the linear map

(43) Ropt : y ∈ Rm 7→
m∑
i=1

aopt
i yi ∈ R,

where the optimal weights aopt ∈ Rm are precomputed as a solution to

(44) minimize
a∈Rm

∥∥∥∥Q− m∑
i=1

ai`i

∥∥∥∥
X∗

+
η

ε
‖a‖p′ subject to

m∑
i=1

ai`i(v) = Q(v) for all v ∈ V.

Proof. The core explanation is that, given the approximability set (36) relative to a subspace V

of X and the uncertainty set (42) relative to an index p ∈ [1,∞], the model set K̃ = K × E itself

can be interpreted as an approximability set. For this purpose, we endow the augmented space

X̃ = X × Rm with the norm

(45) ‖(f, e)‖
X̃

= max
{
‖f‖X ,

ε

η
‖e‖p

}
, (f, e) ∈ X̃.

From there, we notice that

(f, e) ∈ K̃ ⇐⇒ ∃v ∈ V : ‖f − v‖X ≤ ε and ‖e‖p ≤ η(46)

⇐⇒ ∃(v, w) ∈ V × {0} : ‖f − v‖X ≤ ε and
ε

η
‖e− w‖p ≤ ε

⇐⇒ ∃(v, w) ∈ V × {0} : ‖(f, e)− (v, w)‖
X̃
≤ ε.

This means that K̃ reduces to the approximability set

(47) K̃ =
{

(f, e) ∈ X̃ : dist
X̃

((f, e), Ṽ ) ≤ ε
}
, Ṽ = V × {0}.

From the known result (iii) about the accurate setting, we deduce that a globally optimal recovery

map is given by Ropt : y ∈ Rm 7→
∑m

i=1 a
opt
i yi ∈ R, where aopt ∈ Rm is a solution to

(48) minimize
a∈Rm

∥∥∥∥Q̃− m∑
i=1

ai ˜̀i∥∥∥∥
X̃∗

subject to
m∑
i=1

ai ˜̀i(ṽ) = Q̃(ṽ) for all ṽ ∈ Ṽ .
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The constraint in (48) simply reads
∑m

i=1 ai`i(v) = Q(v) for all v ∈ V because any ṽ ∈ Ṽ takes the

form ṽ = (v, 0) for some v ∈ V . As for the objective function, it transforms into

sup
‖(f,e)‖

X̃
≤1

∣∣∣∣Q̃((f, e))−
m∑
i=1

ai ˜̀i((f, e))∣∣∣∣ = sup
‖f‖X≤1
‖e‖p≤η/ε

∣∣∣∣Q(f)−
m∑
i=1

ai(`i(f) + ei)

∣∣∣∣(49)

= sup
‖f‖X≤1

∣∣∣∣Q(f)−
m∑
i=1

ai`i(f)

∣∣∣∣+ sup
‖e‖p≤η/ε

∣∣∣∣ m∑
i=1

aiei

∣∣∣∣
=

∥∥∥∥Q− m∑
i=1

ai`i

∥∥∥∥
X∗

+
η

ε
‖a‖p′ .

The result is now fully justified by substituting (49) as the objective function in (48) while taking

the simplified form of the constraint into account.

Remark. When Q : X → Z is an arbitrary linear map, the interpretation of K̃ = K × E as an

approximability set also implies, by (i), that the intrinsic error over K and E satisfies

(50) µ
Ṽ ,Q̃

(L̃)× ε ≤ inf
R:Rm→Z

sup
f∈K
e∈E

‖Q(f)−R(L(f) + e)‖Z ≤ 2× µ
Ṽ ,Q̃

(L̃)× ε,

where the indicator of compatibility now depends on ε > 0 (unless η is proportional to ε) via

µ
Ṽ ,Q̃

(L̃) = sup
(f,e)∈ker(L̃)

‖Q̃((f, e))‖Z
dist

X̃
((f, e), Ṽ )

= sup
Lf+e=0

‖Q(f)‖Z
max{distX(f, V ), εη‖e‖p}

(51)

= sup
f∈X

‖Q(f)‖Z
max{distX(f, V ), εη‖L(f)‖p}

.

This supremum over f ∈ X is larger than or equal to the supremum over f ∈ ker(L), which leads

to the intuitive fact that the ‘inaccurate’ indicator µ
Ṽ ,Q̃

(L̃) is larger than or equal to the ‘accurate’

indicator µV,Q(L). It is also worth pointing out the fact that

(52) µ
Ṽ ,Q̃

(L̃) ≤ ‖Q‖X→Z × µṼ ,Ĩ(L̃).

Remark. By suitably modifying the approximability set, the result of Theorem 4 can be pushed

beyond the restriction (37) imposing some underparametrization. For details, we refer to the

companion article [8], which introduces and analyzes the model sets

K =
{
f ∈ X : distX(f, V ) ≤ ε and ‖f‖X ≤ κ

}
,(53)

K =
{
f ∈ X : ∃v ∈ V with ‖f − v‖X ≤ ε and ‖v‖X ≤ κ

}
.(54)

4.2 Computational realization for X = C[−1, 1]

Unless the dual norm of X can be practically handled, the value of Theorem 4 would remain at the

theoretical level only. The task of solving the optimization program (44) is probably easiest when

11
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X is a reproducing kernel Hilbert space. We do not pursue this direction, which is really close to

[6, Subsection 5.2]. Instead, we consider in this subsection the important situation X = C[−1, 1].

We shall reveal that solving (44) is computationally feasible in this situation, too. Notice first

that, in the typical case emphasized in [6] where the observation functionals `1, . . . , `m are point

evaluations at distinct x1, . . . , xm ∈ [−1, 1], the task at hand is relatively easy, since the objective

function of (44) reduces for a generic Q to ‖a‖1+(η/ε)‖a‖p′ , up to the additive constant ‖Q‖C[−1,1]∗ .

Our focus here is on observation functionals that take the general form

(55) `i(f) =

∫ 1

−1
f(x)dλi(x), f ∈ C[−1, 1],

for some signed Borel measures λ1, . . . , λm on [−1, 1]. As a guiding example developed in our

matlab reproducible, and similarly to a scenario considered in [1], we can think of V as the space

Podd
2n of odd algebraic polynomials of degree < 2n and of the observation functionals `1, . . . , `m as

Fourier measurements with, say, dλi(x) = sin(iπx)dx. Let us also write the linear functional Q as

(56) Q(f) =

∫ 1

−1
f(x)dρ(x), f ∈ C[−1, 1],

for some signed Borel measure ρ on [−1, 1]. The main optimization problem (44) then turns into

(57) minimize
a∈Rm

∫ 1

−1
d

∣∣∣∣ρ− m∑
i=1

aiλi

∣∣∣∣+
η

ε
‖a‖p′ subject to

m∑
i=1

ai`i(vj) = Q(vj), j ∈ [1 : n],

where (v1, . . . , vn) denotes a basis for V . The latter constraint reads Ma = b, where the matrix

M ∈ Rn×m and the vector b ∈ Rn have entries

(58) Mj,i = `i(vj) and bj = Q(vj), i ∈ [1 : m], j ∈ [1 : n].

We note that the optimization program (57) can be solved exactly when the measures ρ, λ1, . . . , λm
have discrete or disjoint supports (including the case of observation functionals that are point

evaluations). To deal with the general case, we introduce as slack variables the nonnegative Borel

measures ν+ and ν− involved in the Jordan decomposition ν = ν+ − ν− of ν := ρ−
∑m

i=1 aiλi, so

that the problem (57) is equivalent to

(59) minimize
a∈Rm

ν+,ν−

∫ 1

−1
d(ν+ + ν−) +

η

ε
‖a‖p′ subject to Ma = b, ν+ − ν− = ρ−

m∑
i=1

aiλi.

Next, replacing the measures ν+ and ν− by their infinite sequences z+ = M∞(ν+) ∈ RN and

z− =M∞(ν−) ∈ RN of moments defined by

(60) z±k =

∫ 1

−1
Tk−1(x)dν±(x), k ≥ 1,

12
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the problem (59) becomes equivalent2 to the infinite semidefinite program

minimize
a∈Rm

z+,z−∈RN

z+
1 + z−1 +

η

ε
‖a‖p′ subject to Ma = b, z+ − z− =M∞

(
ρ−

m∑
i=1

aiλi

)
,(61)

and Toep∞(z±) � 0.

Instead of solving this infinite optimization program, we truncate it to a level N and solve instead

the resulting finite semidefinite program

minimize
a∈Rm

z+,z−∈RN

z+
1 + z−1 +

η

ε
‖a‖p′ subject to Ma = b, z+ − z− =MN

(
ρ−

m∑
i=1

aiλi

)
,(62)

and ToepN (z±) � 0.

The rest of this subsection is devoted to justifying in a quantitative way that the minimal value

of this truncated problem converges to the minimal value of the original problem. We also justify,

although not quantitatively, that the vectors a(N) ∈ Rm obtained by solving (62) converge as

N →∞ to a vector aopt ∈ Rm minimizing (44).

Theorem 5. If the optimization program (44) has a unique minimizer, then the latter is the limit of

any sequence (a(N))N≥1 obtained by solving (62) for each N ≥ 1. Without uniqueness, it holds that

any subsequence of (a(N))N≥1 admits a subsequence converging to one of the minimizers of (44).

Proof. The first part of the theorem follows from the second part: it is indeed well-known that the

convergence of a sequence to a given point is guaranteed as soon as any of its subsequences admits

a subsequence converging to that point.

To establish the second part, let α(N) ∈ R and (a(N), z+,(N), z−,(N)) ∈ Rm × RN × RN denote, for

each N ≥ 1, the minimum value and some minimizer of (62), respectively. We write z±,((N)) ∈ RN

for the infinite vectors obtained by padding the finite vectors z±,(N) ∈ RN with zeros. Let us

now consider a subsequence
(
(a(Nk), z+,((Nk)), z−,((Nk)))

)
k≥1

of the whole (`m∞ × `N∞ × `N∞)-valued

sequence
(
(a(N), z+,((N)), z−,((N)))

)
N≥1

. Our objective is to show that there exist a subsequence(
(a(Nk`

), z+,((Nk`
)), z−,((Nk`

)))
)
`≥1

and a minimizer (ã, z̃+, z̃−) of (61) such that a(Nk`
) converges to ã

as ` → ∞. To this end, we start by observing that the sequence (α(Nk))k≥1 is nondecreasing and

bounded by the minimal value αopt of (61): firstly, the inequality α(Nk) ≤ α(Nk+1) follows from the

feasibility of (a(Nk+1), z
+,(Nk+1)
[1:Nk] , z

−,(Nk+1)
[1:Nk] ) for (62) specified to N = Nk, so that

(63) α(Nk) ≤ z+,(Nk+1)
1 + z

−,(Nk+1)
1 +

η

ε
‖a(Nk+1)‖p′ = α(Nk+1);

secondly, the inequality α(Nk) ≤ αopt similarly follows from the feasibility of (aopt, z+,opt
[1:Nk], z

−,opt
[1:Nk])

for (62) specified to N = Nk, where evidently (aopt, z+,opt, z−,opt) represents some minimizer of (61).

2the equivalence is based on the discrete trigonometric moment problem, see [9] for details.
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We continue by remarking that the `m∞-valued sequence (a(Nk))k≥1 is bounded: this is a consequence

of

(64) ‖a(Nk)‖∞ ≤ ‖a(Nk)‖p′ ≤
ε

η

(
z

+,(Nk)
1 + z

−,(Nk)
1 +

η

ε
‖a(Nk)‖p′

)
=
ε

η
α(Nk) ≤ ε

η
αopt.

We also note that the positive semidefiniteness of ToepNk
(z±,(Nk)) implies that, for any j ∈ [1 : Nk],

(65)
∣∣z±,(Nk)
j

∣∣ ≤ z±,(Nk)
1 ≤ z+,(Nk)

1 + z
−,(Nk)
1 +

η

ε
‖a(Nk)‖p′ = α(Nk) ≤ αopt.

Thus, the `N∞-valued sequences (z±,((Nk)))k≥1 are also bounded. These last two facts guarantee

(in particular by the sequential compactness Banach–Alaoglu theorem) that (a(Nk))k≥1 admits a

convergent subsequence in the standard topology of `m∞ and that (z±,((Nk)))k≥1 admit convergent

subsequences in the weak-star topology of `N∞. We denote the resulting convergent subsequence

and its limit by
(
(a(Nk`

), z+,((Nk`
)), z−,((Nk`

)))
)
`≥1

and (ã, z̃+, z̃−), respectively. It remains to prove

that the triple (ã, z̃+, z̃−) is a minimizer of (61). Since the weak-star convergence implies that

z
±,(Nk`

)

j → z̃±j for all j ≥ 1, writing the constraints of (62) specified to N = Nk` and passing to the

limit as `→∞ shows that the triple is feasible for (61). It is also a minimizer for this program, by

virtue of

(66) z̃+
1 + z̃−1 +

η

ε
‖ã‖p′ = lim

`→∞

(
z

+,(Nk`
)

1 + z
−,(Nk`

)

1 +
η

ε
‖a(Nk`

)‖p′
)

= lim
`→∞

α(Nk`
) ≤ αopt.

Our objective is now established, so the second part of theorem is proved.

Theorem 5 does not tell us how to choose N in order to reach a prescribed accuracy on ‖aopt−a(N)‖,
not even on αopt −α(N). The observation below provides such a quantitative estimate, although it

is an a prosteriori estimate, in the sense that a bound on αopt − α(N) can be evaluated only after

solving (62) for a particular N — if the accuracy is not satisfactory, one would solve (62) again for

a larger N .

Theorem 6. For any N ≥ 1, one has

(67) α(N) ≤ αopt ≤ α(N) + δ(N),

where δ(N) ≥ 0 is a computable quantity clustering to zero defined by

(68) δ(N) :=

[∥∥∥Q− m∑
i=1

a
(N)
i `i

∥∥∥
C[−1,1]∗

+
η

ε
‖a(N)‖p′

]
− α(N).

Proof. The leftmost inequality was already justified implicitly in the proof of Theorem 5. For the

rightmost inequality, we simply notice that a(N) is feasible for (44), so that

(69) αopt ≤
∥∥∥Q− m∑

i=1

a
(N)
i `i

∥∥∥
C[−1,1]∗

+
η

ε
‖a(N)‖p′ = α(N) + δ(N).

14
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The fact that δ(N) clusters to zero follows from Theorem 5 and its proof: the term in square

brackets clusters to αopt (because a(N) clusters to a minimizer aopt of (44)) and the term α(N) also

converges to αopt (because the sequence (α(N))N≥1 is nondecreasing and bounded above by αopt,

hence convergent, and its limit cannot be smaller than αopt, as a consequence of (66)).

Remark. Even without an estimate of ‖aopt − a(N)‖, using a solution a(N) ∈ Rm of (62) instead

of a solution aopt ∈ Rm of (61) yields a recovery map R(N) : y ∈ Rm 7→
∑m

i=1 a
(N)
i yi ∈ R which is

almost optimal. Indeed, the worst-case error of R(N) over K and E satisfies

sup
f∈K
e∈E

∣∣Q(f)−R(N)(L(f) + e)
∣∣ ≤ (ε ∥∥∥Q− m∑

i=1

a
(N)
i `i

∥∥∥
C[−1,1]∗

+ η ‖a(N)‖p′
)

= (α(N) + δ(N))× ε(70)

≤ (αopt + δ(N))× ε,

which is only δ(N) × ε above the minimal worst-case error.

5 Recovery of continuous functions under approximability models

In this section, we fixX = C(D) for some compact domainD and we consider the quantity of interest

Q = IC(D), i.e., we target the full recovery of functions f ∈ C(D). We will uncover a practical

construction of linear recovery maps that are near-optimal rather than genuinely optimal. The

construction will follow closely an idea from [6, Subsection 4.3]. However, we begin by highlighting

that the (unpractical) construction of a linear genuinely optimal recovery map which was presented

in [6, Subsection 4.2] does not carry over from the accurate setting to the inaccurate setting.

5.1 Discontinuity of optimal weights

An optimal recovery map Ropt : R → C(D) was constructed in [6] as follows: for each x ∈ D,

solve the minimization problem (44) for the quantity of interest Qx defined by Qx(f) = f(x),

thus producing a (carefully selected) minimizer aopt(x); then, with aopt denoting the function

x ∈ D 7→ aopt(x) ∈ Rm, consider the map Ropt defined for y ∈ Rm by Ropt(y) =
∑m

i=1 yia
opt
i ;

finally, establish the optimality of Ropt by relying on the critical fact that it takes values into C(D).

It is this fact that does not carry over to the inaccurate setting. Precisely, the function aopt is not

continuous in general, as formalized below.

Proposition 7. Let p ∈ (1,∞), let η ≤ ε, and let `1, . . . , `m be observation functionals that are

point evaluations at distinct points x1, . . . , xm ∈ D. For k ∈ [1 : m], as x ∈ D \ {xk} converges to

the evaluation point xk, it is not guaranteed that aopt(x) converges to aopt(xk).
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Proof. Firstly, when p ∈ (1,∞), we note that aopt(x) is uniquely defined for any x ∈ D due to the

strict convexity of the objective function in (44). Secondly, we point out that aopt(xk) coincides

with ek = [0; . . . ; 0; 1; 0, . . . ; 0], i.e., that ek satisfies the appropriate constraint and minimizes the

quantity

(71)
∥∥∥Qxk − m∑

i=1

ai`i

∥∥∥
C(D)∗

+
η

ε
‖a‖p′ = |1− ak|+

m∑
i=1,i 6=k

|ai|+
η

ε
‖a‖p′ ,

the latter being true because, when η ≤ ε, equality occurs for a = ek in

(72) |1− ak|+
m∑

i=1,i 6=k
|ai|+

η

ε
‖a‖p′ ≥

η

ε
|1− ak|+ 0 +

η

ε
|ak| ≥

η

ε
.

Thirdly, we are going to prove by contradiction that in general aopt(x) 6→ ek as x→ xk with x 6= xk,

keeping in mind that aopt(x) minimizes the quantity

(73)
∥∥∥Qx − m∑

i=1

ai`i

∥∥∥
C(D)∗

+
η

ε
‖a‖p′ = 1 + ‖a‖1 +

η

ε
‖a‖p′

among all a ∈ Rm satisfying Ma = b(x) — here, b(x) ∈ Rn denotes the vector defined in (58)

for the quantity of interest Q = Qx. Now let a ∈ Rm satisfying Ma = b(xk) and let us consider

â := a + M †(b(x) − b(xk)), where M † ∈ Rm×n is a pseudoinverse of M ∈ Rn×m. In view of

Mâ = b(x), we derive that

(74) ‖â‖1 +
η

ε
‖â‖p′ ≥ ‖aopt(x)‖1 +

η

ε
‖aopt(x)‖p′ .

Since b(x)→ b(xk) as x→ xk, if we had aopt(x)→ ek, then passing to the limit would give

(75) ‖a‖1 +
η

ε
‖a‖p′ ≥ 1 +

η

ε
.

Thus, it would hold that the minimum of ‖a‖1 + (η/ε)‖a‖p′ subject to Ma = b(xk) is always

1 + (η/ε). But this fact is easily invalidated numerically, see the reproducible file for the case

V = Pn.

Remark. For p ∈ {1,∞}, the optimal weights may not be uniquely defined. Consequently, a

relevant question pertains to the possibility of selecting a minimizer aopt(x) of (44) for Q = Qx
in such a way that the resulting function aopt is continuous. If we insist on the intuitive selection

aopt(xk) = ek, then the existence of a continuous selection implies, as in the previous argument, the

fact that 1 + (η/ε) is the minimum of ‖a‖1 + (η/ε)‖a‖p′ subject to Ma = b(xk). This fact can be

invalidated numerically for p = 1, i.e., for p′ =∞. However, for p =∞, i.e., for p′ = 1, a continuous

selection does exist provided the space V contains the constant functions. This was proved in [6,

Theorem 4.2] in the case η = 0. Denoting by aopt this continuous selection, we claim that it is also

a continuous selection of minimizers of (44) in the case η > 0 and p′ = 1. Notice indeed that aopt(x)

minimizes ‖a‖1 subject to Ma = b(x) for x 6∈ {x1, . . . , xm}, see (73) with η = 0, and that aopt(xk)
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minimizes |1−ak|+
∑

i 6=k |ai| subject to Ma = b(xk), see (71) with η = 0, as well as ‖a‖1 subject to

Ma = b(xk) by continuity. It then follows that aopt(x) minimizes
∥∥Qx−∑i ai`i

∥∥
C(D)∗

+ (η/ε)‖a‖p′
subject to Ma = b(x) for x 6∈ {x1, . . . , xm}, by virtue of (73) with p′ = 1, and that aopt(xk)

minimizes
∥∥Qxk −∑i ai`i

∥∥
C(D)∗

+ (η/ε)‖a‖p′ subject to Ma = b(xk), by virtue of (71) with p′ = 1.

In summary, the vector aopt(x) is a minimizer of (44) for any x ∈ D, as claimed.

5.2 Practical construction of linear near-optimal maps

Even though the straightforward construction of a genuinely optimal recovery map cannot be

reproduced in the inaccurate setting, we reveal in this subsection that, if one settles for near-

optimal recovery maps, then efficient constructions are available. All is needed are linear functionals

Q1, . . . , Qn̄ with ‖Qj‖C(D)∗ ≤ 1 and functions u1, . . . , un̄ ∈ C(D) such that the linear operator

P : C(D)→ C(D) defined by

(76) P (f) =
n̄∑
j=1

Qj(f)uj , f ∈ C(D),

obeys the reproducing condition

(77) P (v) = v for all v ∈ V,

as well as, for some γ ≥ 1, the boundedness condition

(78) ‖P‖C(D)→C(D) ≤
∥∥∥∥ n̄∑
j=1

|uj |
∥∥∥∥
C(D)

≤ γ.

For D = [−1, 1] and V = Pn, such quasi-interpolant operators P exist with n̄ = Cγn, with

Q1, . . . , Qn̄ being point evaluations, and with u1, . . . , un̄ being polynomials, see [6, Subsection 4.3.1].

The following result is a generalization of [6, Theorem 4.7].

Theorem 8. For the model set K and the uncertainty set E given in (36) and (42), a near-optimal

recovery map for the full approximation problem over K and E is provided by the linear map

(79) Rnear : y ∈ Rm 7→
m∑
i=1

yia
near
i ∈ C(D), anear

i :=

n̄∑
j=1

a
(j)
i uj ∈ C(D),

where the vectors a(j) ∈ Rm are solutions to (44) with Q = Qj .

Proof. In view of (i), we aim at proving that there is a constant Cγ ≥ 1 such that

(80) sup
f∈K
e∈E

‖f −Rnear(L(f) + e)‖C(D) ≤ Cγ × µṼ ,Ĩ(L̃)× ε.
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Let us first remark that, for any j ∈ [1 : n̄], the defining property of the a(j) ∈ Rm yields

(81)

∥∥∥∥Qj − m∑
i=1

a
(j)
i `i

∥∥∥∥
C(D)∗

+
η

ε
‖a(j)‖p′ = µ

Ṽ ,Q̃j
(L̃),

as well as the identity

(82)
m∑
i=1

a
(j)
i `i(v) = Qj(v) for all v ∈ V.

The latter implies that, for any v ∈ V ,

(83) Rnear(L(v)) =
m∑
i=1

`i(v)
( n̄∑
j=1

a
(j)
i uj

)
=

n̄∑
j=1

( m∑
i=1

a
(j)
i `i(v)

)
uj =

n̄∑
j=1

Qj(v)uj = P (v) = v.

Let now f ∈ K and e ∈ E be fixed. Given v ∈ V such that h := f − v satisfies ‖h‖C(D) ≤ ε, we have

(84) f −Rnear(L(f) + e) = f − v −Rnear(L(f − v) + e) = [h−Rnear(L(h))]− [Rnear(e)].

The second term in square brackets applied to x ∈ D is bounded as∣∣Rnear(e)(x)
∣∣ =

∣∣∣ m∑
i=1

eia
near
i (x)

∣∣∣ ≤ m∑
i=1

|ei|
n̄∑
j=1

|a(j)
i ||uj(x)| =

n̄∑
j=1

( m∑
i=1

|ei||a(j)
i |
)
|uj(x)|(85)

≤
n̄∑
j=1

‖e‖p‖a(j)‖p′ |uj(x)| ≤ η
n̄∑
j=1

‖a(j)‖p′ |uj(x)|.

As for the first term in square brackets applied to x ∈ D, it is bounded as∣∣[h−Rnear(L(h))](x)
∣∣ =

∣∣∣h(x)− P (h)(x) + P (h)(x)−
m∑
i=1

`i(h)
n̄∑
j=1

a
(j)
i uj(x)

∣∣∣(86)

=
∣∣∣(I − P )(h)(x) +

n̄∑
j=1

(
Qj(h)−

m∑
i=1

a
(j)
i `i(h)

)
uj(x)

∣∣∣
≤
∣∣∣(I − P )(h)(x)

∣∣∣+
n̄∑
j=1

∣∣∣(Qj − m∑
i=1

a
(j)
i `i

)
(h)
∣∣∣|uj(x)|

≤ ‖I − P‖C(D)→C(D)‖h‖C(D) +
n̄∑
j=1

∥∥∥Qj − m∑
i=1

a
(j)
i `i

∥∥∥
C(D)∗

‖h‖C(D)|uj(x)|

≤
(

1 + γ +
n̄∑
j=1

∥∥∥Qj − m∑
i=1

a
(j)
i `i

∥∥∥
C(D)∗

|uj(x)|
)
× ε.

Substituting (86) and (85) into (84) leads, for any x ∈ D, to∣∣[f −Rnear(L(f) + e)](x)
∣∣ ≤ (1 + γ +

n̄∑
j=1

(∥∥∥Qj − m∑
i=1

a
(j)
i `i

∥∥∥
C(D)∗

+
η

ε
‖a(j)‖p′

)
|uj(x)|

)
× ε(87)

=

(
1 + γ +

n̄∑
j=1

µ
Ṽ ,Q̃j

(L̃)|uj(x)|
)
× ε ≤

(
1 + γ + γµ

Ṽ ,Ĩ
(L̃)

)
× ε,
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where we have used (52) for Q = Qj in the last step. In view of µ
Ṽ ,Ĩ

(L̃) ≥ 1, taking the supremum

over x ∈ D and then over f ∈ K and e ∈ E , we conclude that

(88) sup
f∈K
e∈E

‖f −Rnear(L(f) + e)‖C(D) ≤ (1 + 2γ)× µ
Ṽ ,Ĩ

(L̃)× ε,

which is the required objective (80) with Cγ = 1 + 2γ.

Remark. Solving the optimization problem (44) exactly to produce a(j) ∈ Rm may not be possible.

However, one can solve (62) instead and produce a(N,j) ∈ Rm satisfying (82) and a substitute of (81)

taking the form

(89)

∥∥∥∥Qj − m∑
i=1

a
(N,j)
i `i

∥∥∥∥
C(D)∗

+
η

ε
‖a(N,j)‖p′ ≤ µṼ ,Q̃j

(L̃) + δ(N,j)

for some quantifiably small quantities δ(N,j) ≥ 0, see Theorem 6. The linear map (79) with a(N,j)

in lieu of a(j) is still be a near-optimal recovery map for the full approximation problem over K
and E . The previous argument indeed still shows that (88) holds with Cγ = 1 + 2γ loosely replaced

by Cγ = 1 + 2γ + maxj δ
(N,j).

Remark. The complete knowledge of the operator (76) is not needed to produce a near-optimal

recovery map when the observation functionals are point evaluations at x1, . . . , xm ∈ D. It is

indeed sufficient to know the space U := span{u1, . . . , un̄} ⊇ V . We sketch the argument, which

is very similar to Remark 4.8 and Subsection 5.3 of [6]. First, we notice that solving the formal

optimization problem

(90) minimize
φ1,...,φm∈U

∥∥∥∥ m∑
i=1

|φi|
∥∥∥∥
C(D)

+
ε

η

∥∥∥∥ m∑
i=1

|φi|p
′
∥∥∥∥1/p′

C(D)

s.to
m∑
i=1

v(xi)φi = v for all v ∈ V

yields the near-optimal recovery map

(91) R : y ∈ Rm 7→
m∑
i=1

yiφi ∈ C(D).

Second, considering points ζ1, . . . , ζK ∈ D such that the continuous norm ‖u‖C(D) and the discrete

norm max{|u(ζk)|, k ∈ [1 : K]} are comparable on U and on U ′ := span{up′ , u ∈ U}, we remark

that the program (90) can be replaced by

(92) minimize
φ1,...,φm∈U

max
k∈[1:K]

m∑
i=1

|φi(ζk)|+
ε

η

[
max
k∈[1:K]

m∑
i=1

|φi(ζk)|p
′
]1/p′

s.to

m∑
i=1

v(xi)φi = v for all v ∈ V

and still leads to a near-optimal recovery map taking the form (91). For instance, when U = Pn̄
is the space of algebraic polynomials of degree < n̄ and when p′ ≥ 1 is an integer, one can take K

proportional to p′n̄ and ζ1, . . . , ζK as roots of the Chebyshev polynomial TK . Third, we observe

that the introduction of a matrix A ∈ Rm×n̄ containing the coefficients of the φi’s on a basis
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(u1, . . . , un̄) for U selected so that (u1, . . . , un) is a basis for V , as well as the introduction of a

matrix D ∈ Rm×K containing slack variables such that |φi(ζk)| ≤ Di,k, allows us to recast (92) as

a convex optimization program solvable with standard software, namely as

minimize
A∈Rm×n̄,D∈Rm×K

d,d′∈R

d+
η

ε
d′ s.to BA =

[
In×n | 0n×(n̄−n)

]
, −D ≤ AZ ≤ D,(93)

and

m∑
i=1

Di,k ≤ d and

[ m∑
i=1

Dp′

i,k

]1/p′

≤ d′ for all k ∈ [1 : K],

where the entries of B ∈ Rn×m and of Z ∈ Rn̄×K are given by Bj,i = uj(xi) and Zj,k = uj(ζk).
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