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Abstract

We present some characterizations of the ordered weighted `1 norm (aka sorted `1 norm) and

of the vector Ky-Fan norm as solutions to linear programs involving reasonably many variables

and constraints. Such linear characterizations can be exploited to recast and effortlessly solve a

variety of convex optimization problems involving these norms. Similar linear characterizations

are given for the dual norms of the ordered weighted `1 norm and the Ky-Fan norm.
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This note is concerned with the sorted `1 norm occurring in [4], and which is also called OWL norm

in [6], as a shorthand for ordered weighted `1 norm. Given weights w1 ≥ w2 ≥ · · · ≥ wn ≥ 0 with

at least w1 > 0, this norm is defined, for any x ∈ Rn, by

(1) ‖x‖OWL :=

n∑
j=1

wjx
∗
j ,

where x∗1 ≥ x∗2 ≥ · · · ≥ x∗n ≥ 0 is the nondecreasing rearrangement of |x1|, |x2|, . . . , |xn|. The

fact that it is a norm is probably most easily seen from the following restatement of a classical

rearrangement inequality:

(2) ‖x‖OWL = max
σ∈Sn

n∑
j=1

wj |xσ(j)|,

where Sn denotes the set of all permutations of {1, . . . , n} (i.e., the symmetric group of degree n).

Thus, it is apparent that SLOPE, introduced in [4] and further studied e.g. in [2, 7], which consists

in solving

(3) minimize
z∈Rn

1

2
‖y −Az‖22 + ‖z‖OWL,

is a convex optimization problem. Its solution is usually computed by proximal gradient descent.

This note aims to showcase an alternative way of solving (3)—in fact, a way of solving many
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convex optimization problems involving the OWL norm, and of doing so without any algorithmic

adjustment so that all-purpose solvers can be relied on. For instance, as illustrated in the matlab

file accompanying this note, the problem

(4) minimize
z∈Rn

‖z‖OWL subject to Az = y

can be simply solved after recasting it as a linear program, namely as

(5) minimize
z,a,b∈Rn

n∑
j=1

(aj + bj) subject to Az = y, −(ak + b`) ≤ wkz` ≤ ak + b` for all k, `.

This observation is based on a linear characterization of the OWL norm that strangely seems to

have gone unnoticed so far.

Theorem 1. For any x ∈ Rn,

‖x‖OWL = max
S∈Rn×n

{ n∑
j=1

wj(S|x|)j : S ≥ 0,
∑
k

Sk,` = 1 for all `,
∑
`

Sk,` = 1 for all k

}
(6)

= min
a,b∈Rn

{ n∑
j=1

aj +

n∑
j=1

bj : −(ak + b`) ≤ wkx` ≤ ak + b` for all k, `

}
.(7)

Proof. The expression (6) results from (2) and from Birkhoff’s theorem [1, page 37] stating that

the extreme points of the set of doubly stochastic matrices are the permutation matrices. The

expression (7) follows from (6) by invoking duality in linear programming (see e.g. [3, page 225]

read from the bottom up).

Note that the expression (2) would also have provided a linear characterization of the OWL norm by

introducing slack variables c(σ) ∈ Rn, σ ∈ Sn, such that |xσ(j)| ≤ c
(σ)
j for all j ∈ {1, . . . , n}, but the

resulting number of variables would have been too large for practical purposes. Here, the order n2

for the number of variables/constraints in the linear characterizations (6)-(7) is manageable. This

number can even be reduced in some situations of interest. These include the (vector versions) of the

Ky-Fan norms, corresponding to the choice of weights w1 = · · · = wk = 1 and wk+1 = · · · = wn = 0

for some k ∈ {1, . . . , n}. Precisely, the norm defined, for any x ∈ Rn, by

(8) ‖x‖(k) =

k∑
j=1

x∗j = max
j1<···<jk

k∑
i=1

|xji |

admits the following linear characterizations involving a number of variables/constraints of order n.
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Theorem 2. For any x ∈ Rn,

‖x‖(k) = max
u,v∈Rn

{ n∑
j=1

vjxj :
n∑
j=1

uj ≤ k, −uj ≤ vj ≤ uj , uj ≤ 1 for all j

}
(9)

= min
a,b,α∈Rn,β∈R

{ n∑
j=1

αj + kβ : a+ b = x, −αj ≤ aj ≤ αj , −β ≤ bj ≤ β for all j

}
.(10)

Proof. Observe first that the expression (8) can be written as

(11) ‖x‖(k) = max
v∈Rn

{ n∑
j=1

vjxj : ‖v‖∞ ≤ 1, ‖v‖0 :=
n∑
j=1

1{vj 6=0} ≤ k
}
.

As a consequence of [8, Lemma 5.2 p 465], see also [5, Lemma 1.1], we have

(12) conv{v ∈ Rn : ‖v‖∞ ≤ 1, ‖v‖0 ≤ k} = {v ∈ Rn : ‖v‖∞ ≤ 1, ‖v‖1 ≤ k},

from where we derive that

(13) ‖x‖(k) = max
v∈Rn

{ n∑
j=1

vjxj : ‖v‖∞ ≤ 1, ‖v‖1 ≤ k
}
.

The expression (9) follows by introducing a vector u ∈ Rn of slack variables such that |vj | ≤ uj
for all j ∈ {1, . . . , n}. As for the expression (10), by adapting a well-known characterization of the

Ky-Fan norm (see [1, Proposition IV.2.3]) from matrices to vectors, we observe that

(14) ‖x‖(k) = min
a,b∈Rn

{‖a‖1 + k‖b‖∞ : a+ b = x} .

We then conclude by introducing slack variables α ∈ Rn and β ∈ R such that |aj | ≤ αj and |bj | ≤ β
for all j ∈ {1, . . . , n}.

As consequences of the linear characterizations for the OWL and Ky-Fan norms, we can now deduce

linear characterizations for their dual norms, starting with the dual OWL norm.

Theorem 3. For any x ∈ Rn,

‖x‖∗OWL = max
z,a,b∈Rn

{ n∑
j=1

xjzj :

n∑
j=1

(aj + bj) ≤ 1, −(ak + b`) ≤ wkz` ≤ ak + b` for all k, `

}
(15)

= min
c∈R,U,V ∈Rn×n

{
c : U, V ≥ 0, (U − V )w = x,

∑
`

(Ui,` + Vi,`) = c for all i(16)

∑
k

(Uk,j + Vk,j) = c for all j

}
.
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Proof. In view of the definition of the dual OWL norm, i.e., of

(17) ‖x‖∗OWL := max
z∈Rn

{〈x, z〉 : ‖z‖OWL ≤ 1} ,

the characterization (15) immediately follows from (7). As for the characterization (16), it is

deduced from (15) by invoking duality in linear programming (see e.g. [3, page 224] read from the

bottom up).

It has to be noted that a linear characterization—but one involving too many variables— could

be derived from the expression of the dual OWL norm obtained in [9, Theorem 1]. In the case

of the dual Ky-Fan norm (i.e., taking w1 = · · · = wk = 1 and wk+1 = · · · = wn = 0 for some

k ∈ {1, . . . , n}), the expression of [9] reduces to

(18) ‖x‖∗(k) = max

{
‖x‖∞,

‖x‖1
k

}
.

This identity can easily be explained from (14) and from the well-known fact that, for two arbitrary

norms � · �(1) and � · �(2), the norm defined by �x� = max{�x�(1),�x�(2)} admits the dual

norm given by �z�∗ = inf{�a �∗(1) + � b�∗(2) : a + b = z}. From here, we conclude this note

by presenting some linear characterizations of the dual Ky-Fan norm that involve a number of

variables/constraints only of order n, rather than the order nk resulting from an application of

Theorem 3 with w = [1; . . . ; 1; 0; . . . ; 0].

Theorem 4. For x ∈ Rn,

‖x‖∗(k) = max
z,a,b,α∈Rn,β∈R

{ n∑
j=1

xjzj :
n∑
j=1

αj + kβ ≤ 1, a+ b = z,(19)

− αj ≤ aj ≤ αj , −β ≤ bj ≤ β for all j

}

= min
c,α∈R,β∈Rn

{
c : α ≤ c,

n∑
j=1

βj ≤ kc, −α ≤ xj ≤ α, −βj ≤ xj ≤ βj for all j

}
.(20)

Proof. The characterization (19) follows from the definition ‖x‖∗(k) := maxz∈Rn{〈x, z〉 : ‖z‖(k) ≤ 1}
of the dual Ky-Fan norm and from (10). As for the characterization (20), it is deduced from

the abridged expression (18) by writing ‖x‖∗(k) = min{c : ‖x‖∞ ≤ c and ‖x‖1/k ≤ c} and by

introducing slack variables α ∈ R and β ∈ Rn such that α ≤ c, |xj | ≤ α for all j ∈ {1, . . . , n},(∑
j βj
)
/k ≤ c, and |xj | ≤ βj for all j ∈ {1, . . . , n}.
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Figure 1: The unit OWL ball and the dual unit OWL ball for the weight w = [3; 2; 1].
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