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Abstract

An open problem about the max-norm of the spline orthoprojector is formulated. It gives
rise to several conjectures about the orthoprojectors onto some spaces of polynomials.

We discuss in this note several open questions concerning the orthogonal projector onto spline
spaces. The main advance on the subject has of course been Shadrin’s proof [9] of de Boor’s
conjecture [1] that the max-norm of the orthoprojector is bounded independently of the break-
point sequence underlying the spline space. To give a more precise statement, we shall con-
sider a breakpoint sequence ∆ = (−1 = t0 < t1 < · · · < tN < tN+1 = 1), and introduce the
space

Sk,m(∆) :=
{
s ∈ Cm−1[−1, 1] : s|(ti−1,ti) is a polynomial of degree < k, i = 1, . . . , N + 1

}
of splines of order k satisfying m smoothness conditions at each interior breakpoint of ∆.
Notice that we have to require 0 ≤ m ≤ k − 1. Following the practice of writing PV for the
orthogonal projector onto a space V , the orthoprojector from L2[−1, 1] onto Sk,m(∆) is denoted
by PSk,m(∆). We shall regard this projector as an operator on L∞[−1, 1], then consider its
associated norm, and finally examine the supremum over all breakpoint sequences. In short,
we are interested in the quantity

Λk,m := sup
∆

∥∥PSk,m(∆)

∥∥
∞ = sup

∆
sup
‖f‖∞≤1

∥∥PSk,m(∆)(f)
∥∥
∞.

Shadrin’s theorem ensures that
Λk,m ≤ Λk,k−1 <∞.

But estimating the quantity Λk,m, or merely its order, remains a challenge — only for m = 1, 2
is it known [2] that the ratio Λk,m/

√
k is bounded from above and from below. We are going to
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suggest some open problems that go in the direction of a precise estimate. Significantly, it is
our belief that the lower bound σk,m of [2] is the actual value of Λk,m. This belief incorporates
Shadrin’s conjecture [9] that Λk,k−1 = 2k − 1.

1 The spline orthoprojector question

Our main conjecture takes an elegant form. It reads

Λk,m := sup
∆

∥∥PSk,m(∆)

∥∥
∞

?=
k

k −m
∥∥PPk,m

∥∥
∞,

where the subspace Pk,m of C[−1, 1] is made of polynomials of order k that vanish m-fold at
the endpoint −1, that is

Pk,m := span
[
(1 + •)m, . . . , (1 + •)k−1

]
.

This presentation, however, hides the important details that follow. We shall use the subscript
N to indicate that the breakpoint sequence ∆N := (−1 = t0 < t1 < · · · < tN < tN+1 = 1)
is required to possess N interior breakpoints. With the linear functional Ex denoting the
evaluation at the point x, we consider the quantities

Λk,m,N := sup
∆N

∥∥PSk,m(∆N )

∥∥
∞,

Υk,m,N := sup
∆N

∥∥E1PSk,m(∆N )

∥∥
∞ = sup

∆N

sup
‖f‖∞≤1

∣∣PSk,m(∆N )(f)(1)
∣∣.

Beware that this Υk,m,N corresponds to the Υk,m,N+1 of [2]. These quantities are connected
with quantities relative to the space Pk,m, namely

ρk,m := %k,m(1), where %k,m(x) :=
∥∥ExPPk,m

∥∥
∞ = sup

‖f‖∞≤1

∣∣PPk,m
(f)(x)

∣∣,
σk,m :=

k

k −m
ρk,m.

Indeed, we established in [2] that

Υk,m,N ≥
m

k
Υk,m,N−1 + ρk,m, i.e.

[
Υk,m,N − σk,m

]
≥ m

k

[
Υk,m,N−1 − σk,m

]
.

Since the observation Υk,m,0 = ρk,0 = σk,0 is immediate, we derived that

(1) Υk,m,N ≥
[(m

k

)N]
σk,0 +

[
1−

(m
k

)N]
σk,m.
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We take Λk,m ≥ Λk,m,N ≥ Υk,m,N into account, and we retrieve the lower bound σk,m previously
mentioned by letting N grow to infinity. Namely, we have

(2) Λk,m ≥ σk,m, that is sup
∆

∥∥PSk,m(∆)

∥∥
∞ ≥

k

k −m
∥∥E1PPk,m

∥∥
∞.

To match our main conjecture, we believe that equality occurs in (2), and additionally in (1).

Problem 1. Λk,m,N
?= Υk,m,N

?=
[(m

k

)N]
σk,0 +

[
1−

(m
k

)N]
σk,m.

The first nontrivial case, k = 2 and m = 1, corresponds to continuous broken lines. It was
settled by Malyugin in the rather technical paper [7]. Let us point out that the problem breaks
into two distinct parts. The first one asks if the Lebesgue function x 7→ sup∆ ‖ExPSk,m(∆)‖∞
achieves its maximum at the endpoints of the interval [−1, 1] — Section 2 contains related
questions. The other one is concerned with the optimal breakpoint sequences that would
yield equality in Υk,m,N ≥

m

k
Υk,m,N−1 + ρk,m — Section 3 investigates a particular case.

2 Purely polynomial questions

Assuming a positive answer to Problem 1, we could deduce our main conjecture using the two
further ingredients

∥∥PPk,m

∥∥
∞

?=
∥∥E1PPk,m

∥∥
∞ and σk,m

?
≥ σk,0.

These issues are to be explored in the next two subsections.

2.1 The maximization of the Lebesgue function of PPk,m

We are confident that the max-norm of the orthoprojector PPk,m
is taken at the right endpoint

of the interval [−1, 1]. To rephrase this statement, we expect a positive answer to the following
problem.

Problem 2. sup
x∈[−1,1]

%k,m(x) ?= %k,m(1).
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We could verify this numerically for k ≤ 20 by sampling the functions %k,m at 201 equidistant
points. The problem can also be solved for some particular values of m. For instance, the
solution is almost immediate for m = k − 1, but it appears tedious for m = k − 2, hence we
chose not to include it. For m = 0, the statement can be found in [6], and can be traced further
back to [4, p.326–327]. The method of proof — the only one we are aware of — goes along the
lines below. Specializing a result [3] about Jacobi polynomials to the Legendre polynomials
Pn, there exists a symmetric kernel K(x, y, z) ≥ 0 such that

(3) Pn(x)Pn(y) =
∫ 1

−1
Pn(z)K(x, y, z) dz, x, y ∈ [−1, 1].

Then, in view of the expression

PPk,0
(f)(x) =

k−1∑
i=0

〈Pi, f〉
‖Pi‖22

Pi(x) =:
∫ 1

−1

k−1∑
i=0

Pi(x)Pi(y)
hi

· f(y) dy =:
∫ 1

−1
Kk,0(x, y) · f(y) dy,

we note that the max-norm of the functional ExPPk,0
equals the L1-norm of the polynomial

Kk,0(x, •). The latter satisfies

Kk,0(x, y) =
k−1∑
i=0

Pi(x)Pi(y)
hi

=
k−1∑
i=0

1
hi

∫ 1

−1
Pi(z)K(x, y, z) dz =

∫ 1

−1
Kk,0(z, 1)K(x, y, z) dz.

We have made use of the fact that Pi(1) = 1 in the last equality. We now use (3)n=0, that is∫ 1

−1
K(x, y, z) dz = 1, and the symmetry of K(x, y, z) to derive

∥∥ExPPk,0

∥∥
∞ =

∫ 1

−1

∣∣∣Kk,0(x, y)
∣∣∣ dy =

∫ 1

−1

∣∣∣ ∫ 1

−1
Kk,0(z, 1)K(x, y, z) dz

∣∣∣ dy
≤

∫ 1

−1

∫ 1

−1

∣∣∣Kk,0(z, 1)
∣∣∣K(x, y, z) dz dy =

∫ 1

−1

∣∣∣Kk,0(z, 1)
∣∣∣ ∫ 1

−1
K(x, y, z) dy dz

=
∫ 1

−1

∣∣∣Kk,0(z, 1)
∣∣∣ dz =

∥∥E1PPk,0

∥∥
∞.

It is tempting modify this argument by replacing the orthogonal basis (P0, . . . , Pk−1) of Pk,0 by
the orthogonal bases (p0, . . . , pk−1−m) or (qm, . . . , qk−1) of Pk,m, where

pi(x) :=
(1 + x

2

)m
P

(0,2m)
i (x) and qi(x) :=

(1 + x

2

)i
P

(0,2i+1)
k−1−i (x).

Here we have used the traditional notation P
(α,β)
n (x) for the Jacobi polynomials of degree n,

which are orthogonal on [−1, 1] with respect to the weight (1− x)α(1 + x)β and are normalized
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by P (α,β)
n (1) =

(
n+ α

n

)
. Unfortunately, such a program is doomed. Indeed, the existence of a

kernel K(x, y, z) ≥ 0 such that

fi(x)fi(y) =
∫ 1

−1
fi(z)K(x, y, z) dz

for some functions f0, . . . , fn defined on [−1, 1] is equivalent to the property
n∑
i=0

aifi(z) ≥ 0, z ∈ [−1, 1] =⇒
n∑
i=0

aifi(x)fi(y) ≥ 0, x, y ∈ [−1, 1].

In the case k = 3 and m = 1, the choices (a0, a1) = (1,−1) for (p0, p1) and (a0, a1) = (−1, 1) for
(q1, q2) reveal — graphically or not — that this property does not hold.

Note that a reformulation of Problem 2 in terms of the L1-norm of a polynomial depending on
a parameter x, and its speculative maximization at x = 1, is not specific to the case m = 0.
Precisely, with n := k − 1−m, the kernel of the orthoprojector PPk,m

is

Kk,m(x, y) :=
n∑
i=0

pi(x) pi(y)
‖pi‖22

=
n∑
i=0

(1 + x)m(1 + y)m

h
(0,2m)
i

P
(0,2m)
i (x)P (0,2m)

i (y),

and Problem 2 asks if
∥∥Kk,m(x, •)

∥∥
1

is maximized at x = 1. We put forward a stronger question.

Problem 3.
∥∥Kk,m(x, •)

∥∥
p

?
≤
∥∥Kk,m(1, •)

∥∥
p

for all p ∈ [1,∞].

This is merely motivated by the results for p = 2 and p = ∞. Both are consequences of the
fact — see [10, Theorem 7.2, p.161] — that max

x∈[−1,1]
|pi(x)| = pi(1) . For p = 2, we simply write

∥∥Kk,m(x, •)
∥∥2

2
=

n∑
i=0

pi(x)2

‖pi‖22
≤

n∑
i=0

pi(1)2

‖pi‖22
=
∥∥Kk,m(1, •)

∥∥2

2
=
k2 −m2

2
.

To obtain the last equality, we have applied the linear functional E1PPk,m
to the polynomial

Kk,m(1, •) ∈ Pk,m to get
Kk,m(1, 1) =

∥∥Kk,m(1, •)
∥∥2

2
,

and we read the value of Kk,m(1, 1) in the special form — see [10, p.71] —

(4) Kk,m(1, y) =
k +m

2

(1 + y

2

)m
P

(1,2m)
k−1−m(y).

The case p =∞ is just as simple to deal with, since∥∥Kk,m(x, •)
∥∥
∞ ≤

n∑
i=0

|pi(x)| ‖pi‖∞
‖pi‖22

≤
n∑
i=0

pi(1) pi(1)
‖pi‖22

= Kk,m(1, 1) =
∥∥Kk,m(1, •)

∥∥
∞ =

k2 −m2

2
.
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2.2 The behavior of the constant σk,m

2.2.1 Monotonicity

Identity (4) offers an easy way to compute the quantities ρk,m, and in turn σk,m. Backed up by
a table of values for k ≤ 50, we trust that the next problem has a positive answer.

Problem 4. Is σk,m increasing with m ?

It is worth remembering that σk,m is the conjectured value for Λk,m := sup∆

∥∥PSk,m(∆)

∥∥
∞. Note

that, even though the inequality Λk,m ≤ Λk,k−1 is known, the inequality σk,m ≤ σk,k−1 is not.
Incidentally, neither is the inequality σk,0 ≤ σk,m. In proving the monotonicity of σk,m, an
elementary step should surely be the identity

(5) Kk,m(x, y) = Kk,m+1(x, y) +
2m+ 1

2
qm(x) qm(y),

derived from the orthogonal decomposition

Pk,m = Pk,m+1

⊥
⊕ span

[
qm
]
, qm(x) :=

(1 + x

2

)m
P

(0,2m+1)
k−1−m (x).

This identity was exploited in [2] to establish that σk,0 ≤ σk,1. The argument relies on the
symmetry relation for Jacobi polynomials, that is P (α,β)

n (−x) = (−1)nP (β,α)
n (x), and reads

σk,0 = ρk,0 =
∫ 1

−1

∣∣Kk,0(1, y)
∣∣ dy =

∫ 1

−1

∣∣Kk,1(1, y) +
1
2
P

(0,1)
k−1 (y)

∣∣ dy
≤
∫ 1

−1

∣∣Kk,1(1, y)
∣∣ dy +

1
2

∫ 1

−1

∣∣P (0,1)
k−1 (y)

∣∣ dy =
∫ 1

−1

∣∣Kk,1(1, y)
∣∣ dy +

1
k

∫ 1

−1

k

2

∣∣P (1,0)
k−1 (y)

∣∣ dy
= ρk,1 +

1
k
ρk,0 =

k − 1
k

σk,1 +
1
k
σk,0.

The inequality σk,0 ≤ σk,1 follows. This simple argument based on a triangle inequality cannot
be carried over to all m, not even to prove that σk,0 ≤ σk,m, as a numerical experiment with
k = 6 and m = 3 would reveal.

2.2.2 Order of growth

The order of growth of the quantity σk,m, or equivalently of ρk,m, constitutes another critical
issue. We believe that the max-norm of the orthoprojector onto the space Pk,m is bounded from
above and from below by a constant times the square root of the dimension of the space.
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Problem 5. ρk,m
?�
√
k −m.

Some particular evaluations of ρk,m were given in [2]. They confirm the previous guess when
m = k−3, k−2, k−1 and whenm is independent of k. We can also add the claim that ρk,m �

√
k

when m ≤ const ·
√
k with const < 2

√
2/π. Indeed, we can deduce from (5) that

Kk,0(x, y) = Kk,m(x, y) +
m−1∑
i=0

2i+ 1
2

qi(x) qi(y) =: Kk,m(x, y) +Hk,m(x, y),

where Hk,m(x, y) denotes the kernel associated with the orthogonal projector onto Pk,0
⊥
	Pk,m.

We then have∣∣∣∥∥Kk,m(1, •)
∥∥

1
−
∥∥Kk,0(1, •)

∥∥
1

∣∣∣ ≤ ∥∥Hk,m(1, •)
∥∥

1
≤
√

2
∥∥Hk,m(1, •)

∥∥
2

=
√

2
[∥∥Kk,0(1, •)

∥∥2

2
−
∥∥Kk,m(1, •)

∥∥2

2

]1/2
=
√

2
[k2

2
− k2 −m2

2

]1/2
= m.

The claim is simply derived from the behavior
∥∥Kk,0(1, •)

∥∥
1
∼
k∞

2
√

2/π
√
k, recalled in [2].

Let us point out that, to unite ρk,0 �
√
k and ρk,k−1 � 1, the order k(k−m)/(2k) could also seem

natural. However, it would impose the order k1/4 for ρk,k/2, whereas the predicted order k1/2

is much more plausible. We illustrate this with the graph of ρ2m,m/
√
m against m.

Remark. The table of values also suggests that ρk,m increases with k. This has been shown
by Qu and Wong in [8] for m = 0. Their technique — use of an asymptotic expansion for k
large enough, numerical evaluations otherwise — cannot be adapted here.
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2.2.3 Monotonicity and order of growth

The previous two problems could be tackled at once, provided this next one could be solved.
It has been verified numerically for k ≤ 50. Moreover, it can be checked for m = k − 3 and
m = k − 2 using the precise values of ρk,k−3, ρk,k−2, and ρk,k−1.

Problem 6. ρk,m
?
≤ k −m− 1/2

k −m− 1
ρk,m+1.

Observe that the monotonicity of σk,m simply follows from k −m − 1/2 ≤ k −m. Finding the
order

√
k −m requires a little more work. First, we apply the above speculative inequality

repeatedly to obtain

ρk,m ≤
(k −m− 1/2) · · · (3/2)
(k −m− 1) · · · 1

ρk,k−1 =
k −m

1/2

(
k −m− 1/2

k −m

)
ρk,k−1,

ρk,m ≥
(k −m) · · · (k − 1)

(k −m+ 1/2) · · · (k − 1/2)
ρk,0 =

k −m
k

(
k −m− 1/2

k −m

)
(
k − 1/2

k

) ρk,0.

We then make use of ρk,k−1 = 2− 1/k ≤ 2 and of ρk,0 ≥ 2k
(
k − 1/2

k

)
, which is obtained from∥∥Kk,0(1, •) / ldg[Kk,0(1, •)]

∥∥
1
≥
∥∥Uk−1 / ldg[Uk−1]

∥∥
1
, Uk−1 : second-kind Chebyshev polynomial,

where the notation ldg[p] stands for the leading coefficient of a polynomial p. Assuming that
Problem 6 has a positive answer, we would therefore have

2 (k −m)
(
k −m− 1/2

k −m

)
≤ ρk,m ≤ 4 (k −m)

(
k −m− 1/2

k −m

)
.

Finally, Wallis’s inequality

1√
π(n+ 1/2)

≤
(
n− 1/2

n

)
=

1
22n

(
2n
n

)
≤ 1√

πn

would confirm the order
√
k −m predicted for the quantity ρk,m.

3 The optimality question in a particular case

In view of Problem 1, the inequality Υk,m,N ≥
m

k
Υk,m,N−1 +ρk,m should be sharp. Let us recall

the way it was obtained. A breakpoint sequence ∆N−1 = (−1 = t0 < t1 < · · · < tN−1 < tN = 1)
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was refined to form
∆t = (−1 = t0 < t1 < · · · < tN−1 < t < tN = 1).

We then established that

Υk,m,N ≥
∥∥E1PSk,m(∆t)

∥∥ ≥ m

k

∥∥E1PSk,m(∆N−1)

∥∥+
∥∥E1PPk,m

∥∥− εt,
with εt −→

t→1
0. We concluded by letting t tend to 1, and by taking the supremum over ∆N−1.

Since we believe this situation to be extremal, we expect e.g. to get

sup
∆N

∥∥PSk,m(∆N )

∥∥
∞

?= lim
θ→0

∥∥PSk,m(∆N (θ))

∥∥
∞, where ∆N (θ) := (−1 < 1− θ < · · · < 1− θN < 1).

In any event, if the breakpoint sequence δ = (−1 < t < 1) is prescribed to only possess
one interior breakpoint, the extremal situation should occur when the interior breakpoint
approaches an endpoint, say when t→ 1. We are now going to examine this particular case for
continuous splines, that is for m = 1. Our objective is to show that the problem is equivalent
to yet another polynomial question, which is reminiscent of Problem 2. It has been verified
numerically for k ≤ 25 by sampling at 201 equidistant points.

Problem 7. Is
∫ 1

−1

[∣∣Kk,0(u, v)−Kk,1(u, v)
∣∣+
∣∣Kk,1(u, v)

∣∣] dv maximized at u = 1?

Let us justify our equivalence claim. In terms of the Lebesgue function

Lt(x) := sup
‖f‖∞≤1

∣∣PSk,1(δ)(f)(x)
∣∣, x ∈ [−1, 1],

the question of the optimal breakpoint sequence is combined with Problem 1 to give

(6) Lt(x)
?
≤ lim

τ→1
Lτ (1) ?=

[1
k

]
σk,0 +

[
1− 1

k

]
σk,1.

This should hold for any x, which by symmetry can be assumed to belong to the interval [t, 1].
According to the method used in [2], the orthogonal complement of Sk,1(δ) in Sk,0(δ) can be
described explicitly. We have

Sk,0(δ) = Sk,1(δ)
⊥
⊕ span

[
st
]
, st(y) :=


2

t+ 1
P

(1,0)
k−1

(2y + 1− t
t+ 1

)
, y ∈ (−1, t),

−2
1− t

P
(1,0)
k−1

(1 + t− 2y
1− t

)
, y ∈ (t, 1).
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Let us underline the identity 〈st, ŝt〉 = 1 where the normalization ŝt :=
1− t2

8
st is used. Thus,

associating u =
2x− 1− t

1− t
∈ [−1, 1] with x ∈ [t, 1], the orthogonal projection of a function f

onto span
[
st
]

is

P span[st](f)(x) = 〈st, f〉 ŝt(x)

= −1 + t

4
P

(1,0)
k−1 (−u)

[ ∫ t

−1

2
1 + t

P
(1,0)
k−1

(2y + 1− t
t+ 1

)
f(y) dy +

∫ 1

t

−2
1− t

P
(1,0)
k−1

(1 + t− 2y
1− t

)
f(y) dy

]
= −1 + t

4
P

(1,0)
k−1 (−u)

[ ∫ 1

−1
P

(1,0)
k−1 (v) f1(v) dv −

∫ 1

−1
P

(1,0)
k−1 (−v) f2(v) dv

]
,

where f1 and f2 stand for the restrictions of f to [−1, t] and [t, 1], transposed to the interval
[−1, 1]. Besides, the orthogonal projection of f onto Sk,0(δ) is

PSk,0(δ)(f)(x) = PPk,0
(f2)(u) =

∫ 1

−1
Kk,0(u, v) f2(v) dv

It follows that the orthogonal projection of f onto Sk,1(δ) is

PSk,1(δ)(f)(x) = PSk,0(δ)(f)(x)− Pspan[st](f)(x)

=
∫ 1

−1

1 + t

4
P

(1,0)
k−1 (−u)P (1,0)

k−1 (v) f1(v) dv +
∫ 1

−1

[
Kk,0(u, v)− 1 + t

4
P

(1,0)
k−1 (−u)P (1,0)

k−1 (−v)
]
f2(v) dv.

Since f1 and f2 can be chosen arbitrarily, we deduce with the help of the symmetry relation
for Jacobi polynomials that

Lt(x) =
∫ 1

−1

∣∣∣1 + t

4
P

(0,1)
k−1 (u)P (0,1)

k−1 (v)
∣∣∣ dv +

∫ 1

−1

∣∣∣Kk,0(u, v)− 1 + t

4
P

(0,1)
k−1 (u)P (0,1)

k−1 (v)
∣∣∣ dv.

The remaining ingredients are the identities (5)m=0 and (4)m=0, that is

Kk,0(u, v) = Kk,1(u, v) +
1
2
P

(0,1)
k−1 (u)P (0,1)

k−1 (v),

Kk,0(1, v) =
k

2
P

(1,0)
k−1 (v) = (−1)k−1 k

[
Kk,0(1,−v)−Kk,1(1,−v)

]
.

Hence, we may write

Lt(x) =
∫ 1

−1

∣∣∣1 + t

2
[
Kk,0(u, v)−Kk,1(u, v)

]∣∣∣ dv +
∫ 1

−1

∣∣∣1− t
2
Kk,0(u, v) +

1 + t

2
Kk,1(u, v)

∣∣∣ dv.
We could observe that Lt(t) = σk,0 independently of t, but we are more interested in

lim
τ→1

Lτ (1) =
1
k

∫ 1

−1

∣∣Kk,0(1, v)
∣∣ dv +

∫ 1

−1

∣∣Kk,1(1, v)
∣∣ dv =

ρk,0
k

+ ρk,1 =
[1
k

]
σk,0 +

[
1− 1

k

]
σk,1,
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which settles one part of (6). As for the other part, observe that

Lt(x) ≤ 1 + t

2

(∫ 1

−1

∣∣Kk,0(u, v)−Kk,1(u, v)
∣∣ dv +

∫ 1

−1

∣∣Kk,1(u, v)
∣∣ dv)+

1− t
2

(∫ 1

−1

∣∣Kk,0(u, v)
∣∣ dv).

Since the second term is known to be maximized at u = 1, it is sufficient to establish that the
first term is maximized at u = 1, for the inequality σk,0 ≤ σk,1 would allow to write

Lt(x) ≤ 1 + t

2

([1
k

]
σk,0 +

[
1− 1

k

]
σk,1

)
+

1− t
2

(
σk,0

)
≤
[1
k

]
σk,0 +

[
1− 1

k

]
σk,1.

Conversely, because limt→1 Lt(x) ≤ limt→1 Lt(1) must also hold, we see that it is also necessary
to establish that the first term is maximized at u = 1. Our equivalence claim is now shown.

Remark. Without any restriction on the number of interior breakpoints but still in the case
m = 1, Kayumov [5] mentioned — in different notation — that some of his computations
support the conjecture that Λk,1 = σk,1 for k ≤ 31.
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