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Sparse Recovery by means of
Nonnegative Least Squares

Simon Foucart and David Koslicki

Abstract—This short note demonstrates that sparse
recovery can be achieved by an `1-minimization ersatz
easily implemented using a conventional nonnegative
least squares algorithm. A connection with orthogonal
matching pursuit is also highlighted. The preliminary
results call for more investigations on the potential
of the method and on its relations to classical sparse
recovery algorithms.

Index Terms—compressive sensing, sparse recovery,
`1-minimization, orthogonal matching pursuit, non-
negative least squares, adjacency matrices of bipartite
graphs, k-mer frequency matrices, Gaussian matrices.

Throughout this note, we consider the standard com-
pressive sensing problem, i.e., the recovery of a sparse
(possibly just almost sparse) vector x ∈ RN from the
mere knowledge of its measurement vector (possibly
corrupted by noise) y = Ax ∈ Rm with m < N . The
measurement matrix A ∈ Rm×N is perfectly known.
Among popular methods to produce an estimate for x,
we single out the very popular
• basis pursuit:

min
z∈RN

‖z‖1 subject to Az = y; (BP)

• orthogonal matching pursuit: construct sequences
(Sn) of support sets and (xn) of vectors from S0 = ∅,
x0 = 0, and iterate, for n ≥ 1,

Sn = Sn−1 ∪ {jn}, with jn chosen as (OMP1)
|A∗(y −Axn−1)jn | = max

1≤j≤N
|A∗(y −Axn−1)j |,

xn = argmin
z∈RN

{‖y −Az‖2, supp(z) ⊆ Sn}. (OMP2)

We will introduce a seemingly (and surprisingly) new
method which has analogies with both (BP) and
(OMP). We start by dealing with nonnegative sparse
vectors before considering arbitrary sparse vectors.

I. NONNEGATIVE SPARSE RECOVERY

A. Exact Measurements
In a number of practical situations, the sparse vector

x ∈ RN to be recovered from y = Ax ∈ Rm has
nonnegative entries. Although ordinary basis pursuit
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is sometimes used (see [2]), it can be modified to
incorporate the nonnegativity constraint, leading to
• nonnegative basis pursuit:

min
z∈RN

‖z‖1 subject to Az = y and z ≥ 0. (NNBP)

It is folklore1 — but not well-known enough — that,
for certain matrices A (including frequency matrices,
see (1) below), if x is the unique solution of (BP) or
the unique solution of (NNBP), then it is in fact the
unique solution of the feasibility problem

find z ∈ RN such that Az = y and z ≥ 0. (F)

Appendix A contains the proofs of this fact and of
a few others. For frequency matrices, it is therefore
irrelevant to try and recover nonnegative vectors via
`1-minimization, since we might as well minimize a
constant function subject to the constraints Az = y
and z ≥ 0. We may also consider solving the problem
• nonnegative least squares:

min
z∈RN

‖y −Az‖2 subject to z ≥ 0. (NNLS)

This minimization program is directly implemented
in MATLAB as the function lsqnonneg. It executes
the active-set algorithm of Lawson and Hanson (see
[14, Chapter 23]), which seems particularly adapted
to sparse recovery. Indeed, it is structured as
• Lawson–Hanson algorithm: construct sequences (Sn)
of support sets and (xn) of vectors from S0 = ∅, x0 = 0,
and iterate, for n ≥ 1,

Sn = Sn−1 ∪ {jn}, with jn chosen as (LH1)
A∗(y −Axn−1)jn = max

1≤j≤N
A∗(y −Axn−1)j ,

x̃n = argmin
z∈RN

{‖y −Az‖2, supp(z) ⊆ Sn}, (LH2)

if x̃n ≥ 0, then one sets xn to x̃n,

otherwise, an inner loop reduces the active set Sn

until x̃n ≥ 0 and then one sets xn to x̃n.

Aside from the inner loop, there is a peculiar analogy
between this algorithm (dated from 1974) and orthog-
onal matching pursuit (usually attributed to [16] in
1993). In the reproducible MATLAB file accompanying
this note, the benefit of the inner loop is revealed by
the frequencies of successful nonnegative recovery via
(NNLS) and (OMP).

1see for instance [5] which contains results along these lines
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Usual conditions ensuring sparse recovery via (BP)
and (OMP) involve restricted isometry constants of the
matrix A (see e.g. [10, chapter 6]). The guarantees are
valid for all sparse vectors x ∈ RN simultaneously, in
particular for all nonnegative sparse vectors x ∈ RN .
Under these conditions, from the strict point of view
of recovery success (i.e., disregarding computational
effort), there is nothing to be gained from solving
(NNBP) or (F) instead of (BP). Even for (renormalized)
adjacency matrices of lossless expanders, which do not
possess the restricted isometry property (see [7]), the
sparse recovery of all sparse vectors x ∈ RN via (BP)
is ensured (see [3] or [10, chapter 13]). Since these
are frequency matrices, the recovery of all nonnegative
sparse vectors x ∈ RN is guaranteed via (NNBP)
and (F), too, but again no gain in terms of recovery
success arises. Nonetheless, there are empirical exam-
ples where nonnegative sparse recovery via (NNBP)
and (F) succeeds, while arbitrary sparse recovery via
(BP) fails. One such example is provided by the k-mer
frequency matrix of DNA sequences. Its columns are
indexed by organisms in a database and its rows are
indexed by all 4k possible DNA subwords of length k.
It is obtained after column-normalizing the matrix
whose (i, j)th entry counts the number of occurrence
of the ith subword in the DNA sequence of the jth
organism. We supply such a k-mer frequency matrix in
the reproducible MATLAB file and we verify (using the
optimization package CVX [11]) that all nonnegative
sparse vectors supported on a given set S are recovered
via (NNBP) — or equivalently via (F) or (NNLS) —
while arbitrarily signed sparse vectors supported on S
may not be recovered by (BP).

B. Inaccurate Measurements

Let us now consider the more realistic situation
where the acquisition of the vector x ∈ RN is not
perfect, so that the measurement vector y = Ax+ e ∈
Rm contains an error term e ∈ Rm. If we know a
reasonable bound ‖e‖2 ≤ η, a common strategy for the
approximate recovery of x is to solve the inequality-
constrained basis pursuit consisting of minimizing
‖z‖1 subject to ‖Az− y‖2 ≤ η. Another common strat-
egy is the LASSO (see [17]) consisting of minimizing
‖Az − y‖2 subject to ‖z‖1 ≤ τ . Ordinary LASSO is
sometimes used for nonnegative recovery (as in [1]),
but one can also incorporate the constraint z ≥ 0,
leading to the so-called nonnegative garrote (see [4]). A
third strategy (intimately linked to the previous two)
is basis pursuit denoising (see [8]) consisting of min-
imizing ‖z‖1 + ν‖Az − y‖22. For nonnegative recovery,
incorporating an additional nonnegativity constraint
has been employed e.g. in [15], [13]. Here, we replace
the `1-norm in the objective function by a squared
`1-norm (which is arguably more natural), i.e., we
consider the program

• `1-squared nonnegative regularization:

min
z∈RN

‖z‖21 + λ2‖Az− y‖22 subject to z ≥ 0 (NNREG)

for some large λ > 0. Our main observation (already
exploited fruitfully in [12]) is that (NNREG) can be
recast as a nonnegative least squares problem, for
which the algorithm of Lawson and Hanson is par-
ticularly well adapted. Indeed, since z ≥ 0, we have
‖z‖1 =

∑N
j=1 zj , so (NNREG) takes the form

min
z∈RN

‖Ãz− ỹ‖22 subject to z ≥ 0

where Ã ∈ R(m+1)×N and ỹ ∈ Rm+1 are defined by

Ã =

[
1 · · · 1

λA

]
and ỹ =

[
0
λy

]
.

As exhibited in the reproducible file, the execution
time compares favorably to state-of-the-art algorithms
for `1-minimization (we selected YALL1 [20]) but the
choice of the parameter λ is critical in our current
implementation.

C. Theoretical Justifications
To support the previous heuristics, we prove that, as

λ → ∞, the solutions xλ of (NNREG) converge to the
solution x] of (NNBP) — assumed to be unique. This
is done for matrices A with nonnegative entries and
all column-sums equal to one, i.e.,

Ai,j ≥ 0 for all i, j and
m∑
i=1

Ai,j = 1 for all j. (1)

We call such matrices frequency matrices. Examples
are given by k-mer frequency matrices and by (renor-
malized) adjacency matrices of left-regular bipartite
graphs. For t ∈ [0, 1], the vector (1 − t)x] + txλ is
nonnegative, so the minimality of xλ yields

‖xλ‖21 + λ2‖Axλ − y‖22
≤ ‖(1− t)x] + txλ‖21 + λ2‖A((1− t)x] + txλ)− y‖22.

The triangle inequality and the fact that y = Ax] give

‖xλ‖21 + λ2‖A(xλ − x])‖22
≤ ((1− t)‖x]‖1 + t‖xλ‖1)2 + λ2t2‖A(xλ − x])‖22.

After rearrangement, we obtain

λ2(1− t2)‖A(xλ − x])‖22 ≤ (1− t)(‖x]‖1 − ‖xλ‖1)
× ((1− t)‖x]‖1 + (1 + t)‖xλ‖1). (2)

The left-hand side being nonnegative, we notice that
‖xλ‖1 ≤ ‖x]‖1. We also take into account that

‖A(xλ − x])‖2 ≥
1√
m
‖A(xλ − x])‖1

=
1√
m

m∑
i=1

∣∣∣ N∑
j=1

Ai,j(x
λ
j − x

]
j)
∣∣∣ ≥ 1√

m

N∑
j=1

m∑
i=1

Ai,j(x
]
j − x

λ
j )

=
1√
m

N∑
j=1

(x]j − x
λ
j ) =

1√
m
(‖x]‖1 − ‖xλ‖1).
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Substituting the latter inequality into (2) and dividing
by (1− t)(‖x]‖1 − ‖xλ‖1) ≥ 0 implies that

λ2(1 + t)

m
(‖x]‖1 − ‖xλ‖1) ≤ (1− t)‖x]‖1 + (1 + t)‖xλ‖1,

that is to say(λ2
m
− 1− t

1 + t

)
‖x]‖1 ≤

(
1 +

λ2

m

)
‖xλ‖1.

With the optimal choice t = 1, we derive the estimates

λ2/m

1 + λ2/m
‖x]‖1 ≤ ‖xλ‖1 ≤ ‖x]‖1, (3)

which shows that ‖xλ‖1 → ‖x]‖1 as λ→∞. From here,
we can prove that xλ → x] as λ → ∞. Indeed, if not,
there would exist a number of ε > 0 and an increasing
sequence (λn) such that ‖xλn − x]‖1 ≥ ε for all n.
Since the sequence (xλn) is bounded, we can extract
a subsequence (xλnk ) converging to some x? ∈ RN . We
note that ‖x?−x]‖1 ≥ ε. We also note that x? ≥ 0 and
‖x?‖1 = ‖x]‖1. Moreover, the inequality

‖xλnk ‖21 + λ2nk
‖Axλnk − y‖22 ≤ ‖x]‖21 + λ2nk

‖Ax] − y‖22
= ‖x]‖21

passed to the limit yields Ax? = y. By uniqueness
of x] as a minimizer of ‖z‖1 subject to Az = y and
z ≥ 0, we deduce that x? = x], which contradicts
‖x? − x]‖1 ≥ ε. We conclude that xλ does converge
to x], as announced. The reproducible file includes
experimental evidence that the left-hand side of (3)
captures the correct behavior of (‖x]‖1 − ‖xλ‖1)/‖x]‖1
as a function of the parameter λ.

II. ARBITRARILY SIGNED SPARSE RECOVERY

We consider in this section the sparse recovery of
arbitrary vectors, not necessarily nonnegative ones.
We build on the previous considerations to introduce a
nonnegative-least-squares surrogate for basis pursuit.
The method does not require knowledge of convex
optimization to be implemented — it is easily written
in MATLAB and its execution time is rather fast.

A. Rationale
The crucial point is again to replace the `1-norm in

basis pursuit denoising by its square, thus introducing
• `1-squared regularization:

min
z∈RN

‖z‖21 + λ2‖Az− y‖22. (REG)

Next, decomposing any z ∈ RN as z = z+ − z− with
z+ ≥ 0 and z− ≥ 0, (REG) is transformed into the
nonnegative least squares problem

min
z̃∈R2N

‖Ãz̃− ỹ‖2 subject to z̃ ≥ 0,

where Ã ∈ R(m+1)×2N and ỹ ∈ Rm+1 are defined by

Ã =

[
1 · · · 1 1 · · · 1

λA −λA

]
, ỹ =

[
0
λy

]
.

To see the equivalence of the optimization problems,
we simply observe that the objective function in (REG)

is, with z̃ =

[
z+
z−

]
,

(‖z+‖1 + ‖z−‖1)2 + λ2‖Az+ −Az− − y‖22 = ‖Ãz̃− ỹ‖22.

B. Theoretical Justifications
We support the previous heuristics by a result valid

for random matrices A ∈ Rm×N whose entries are
independent Gaussian variables with mean zero and
variance 1/m. With high probability, these matrices
satisfy both the `1-quotient property and the restricted
isometry property of optimal order s � m ln(N/m).
This implies (see [18] or [10, chapter 11]) that, for any
x ∈ RN and any e ∈ Rm in y = Ax+ e, the solution x]

of (BP) approximates x with an error controlled as

‖x− x]‖1 ≤ Cσs(x)1 +D
√
s‖e‖2 (4)

for some constants C,D > 0. Here, the sparsity defect
appears in σs(x)1 = min{‖x−z‖1, z is s-sparse}. Unlike
Subsection I-C, we do not prove that the solution xλ of
(REG) converges to x], but rather that it approximates
x with an error controlled almost as in (4), namely

‖x− xλ‖1 ≤ Cσs(x)1 +D
√
s‖e‖2 +

E s

λ2
‖x‖1 (5)

for some constants C,D,E > 0 when λ is chosen large
enough. First, we use the minimality of xλ to write

‖xλ‖21 + λ2‖Axλ − y‖22 ≤ ‖x]‖21 + λ2‖Ax] − y‖22
= ‖x]‖21, (6)

so ‖xλ‖1 ≤ ‖x]‖1 follows in particular. Next, the
restricted isometry property implies the `2-robust null
space property (see [10, Theorem 6.13]) and we derive
in turn (see [10, Theorem 4.20]) that

‖xλ − x]‖1
≤ c(‖xλ‖1 − ‖x]‖1 + 2σs(x

])1) + d
√
s‖A(xλ − x])‖2

≤ 2cσs(x
])1 + d

√
s‖Axλ − y‖2

for some constant c, d > 0. Therefore,

‖xλ − x]‖21 ≤ 8c2σs(x
])21 + 2d2s‖Axλ − y‖22. (7)

But (6) also implies that

‖Axλ − y‖22 ≤
(‖x]‖1 + ‖xλ‖1)(‖x]‖1 − ‖xλ‖1)

λ2

≤ 2‖x]‖1(‖x] − xλ‖1)
λ2

.

This inequality substituted in (7) gives

‖xλ − x]‖21 ≤ 8c2σs(x
])21 +

4d2s‖x]‖1(‖x] − xλ‖1)
λ2

.

Solving this quadratic inequality in ‖xλ − x]‖1 yields

‖xλ − x]‖1 ≤
2d2s‖x]‖1

λ2
+

√
4d4s2‖x]‖21

λ4
+ 8c2σs(x])21

≤ 4d2s‖x]‖1
λ2

+
√
8cσs(x

])1.
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Now using the facts that ‖x]‖1 ≤ ‖x‖1 + ‖x] − x‖1 and
that σs(x])1 ≤ σs(x)1 + ‖x] − x‖1, we derive

‖xλ − x]‖1 ≤
4d2s‖x‖1

λ2
+
√
8cσs(x)1

+

(
4d2s

λ2
+
√
8c

)
‖x] − x‖1.

We finally deduce (5) by calling upon (4) — provided
that λ is chosen large enough to have λ2 ≥ s, say. The
experiment conducted in the reproducible file strongly
suggests that (5) reflects the correct behavior as a
function of λ when x is exactly s-sparse and e = 0.

III. CONCLUSION

We have established a connection between basis
pursuit and orthogonal matching pursuit by introduc-
ing a simple method to approximate `1-minimizers by
solutions of nonnegative least squares problems. Sev-
eral computational improvements can be contemplated
(e.g. the choice of the parameter λ, the possibility
of varying λ at each iteration within Lawson and
Hanson’s algorithm, the combined reconstruction of
positive and nonnegative parts and the implementa-
tion of QR-updates in the iterative algorithm). Sev-
eral theoretical questions can also be raised (e.g. is
the number of iterations to solve (NNLS) at most
proportional to the sparsity, at least under restricted
isometry conditions as in [19], see also [10, Theorem
6.25]?). Importantly, a careful understanding of the
relations between `1-minimization-like and OMP-like
algorithms would be extremely valuable.

APPENDIX A
Let x ∈ RN be a fixed nonnegative vector and let S

be its support. It is not hard to verify that
• x is the unique solution of (BP) if and only if

for all v ∈ kerA \ {0},
∣∣∣∑
j∈S

vj

∣∣∣ <∑
`∈S

|v`|; (BP’)

• x is the unique solution of (NNBP) if and only if

for all v ∈ kerA\{0}, vS ≥ 0⇒
N∑
i=1

vi > 0; (NNBP’)

• x is the unique solution of (F) if and only 2

for all v ∈ kerA \ {0}, vS ≥ 0 is impossible. (F’)

The implication (F’)⇒(NNBP’) is clear ((F)⇒(NNBP)
is clearer if the logical statement ‘FALSE implies any-
thing’ is troublesome). The implication (BP’)⇒(NNBP’)
also holds in general: indeed, for v ∈ kerA \ {0}, if
vS ≥ 0, then

∣∣∑
j∈S vj

∣∣ <∑`∈S |v`| yields

2This allows to check that an algorithm’s output x] satisfying
Ax] = y and x] ≥ 0 is the true solution x: verify (F’) for
S] = supp(x]) by using e.g. CVX [11] to solve the convex pro-
gram minimize max

`∈S] v` subject to Av = 0 (and an additional
constraint to exclude the zero solution) — the minimum should be
positive

N∑
i=1

vi =
∑
j∈S

vj +
∑
`∈S

v` ≥ −
∣∣∣∑
j∈S

vj

∣∣∣+∑
`∈S

|v`| > 0.

Let us now assume that the matrix A satisfies the
condition

∑N
i=1 vi = 0 for all v ∈ kerA \ {0}. This

condition can be imposed by appending a row of ones
to any matrix, but it is also fulfilled for frequency
matrices, since Av = 0 gives

0 =

m∑
i=1

(Av)i =

m∑
i=1

N∑
j=1

Ai,jvj =

N∑
j=1

m∑
i=1

Ai,jvj =

N∑
j=1

vj .

Under this condition on A, (NNBP’)⇒(F’)⇒(BP’) holds,
so that (BP), (NNBP), and (F) are all equivalent, as
announced in Subsection I-A. Indeed, (NNBP’) implies
(F’) because if vS ≥ 0, then

∑N
i=1 vi could not be

zero by (NNBP’), and (F’) implies (BP’) because the
impossibility of vS ≥ 0 gives

∣∣∑
`∈S v`

∣∣ <∑`∈S |v`|, so∣∣∣∑
j∈S

vj

∣∣∣ = ∣∣∣−∑
`∈S

v`

∣∣∣ <∑
`∈S

|v`|.
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