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Abstract

We investigate the minimal number of linear measurements needed to recover sparse disjointed
vectors robustly in the presence of measurement error. First, we analyze an iterative hard
thresholding algorithm relying on a dynamic program computing sparse disjointed projections
to upper-bound the order of the minimal number of measurements. Next, we show that this
order cannot be reduced by any robust algorithm handling noninflating measurements. As a
consequence, we conclude that there is no benefit in knowing the simultaneity of sparsity and
disjointedness over knowing only one of these structures.

Key words and phrases: sparse vectors, disjointed vectors, simultaneously structured models,
dynamic programming, compressive sensing, subgaussian matrices, restricted isometry property,
iterative hard thresholding.

1 Introduction and Main Result

In this note, we examine the recovery of sparse disjointed vectors x ∈ CN from linear measurements
y = Ax ∈ Cm with m � N . We recall that a vector x ∈ CN is said to be s-sparse if it has no
more than s nonzero entries, i.e., if card(supp(x)) ≤ s, where supp(x) := {i ∈ J1 : NK : xi 6= 0}.
It is said to be d-disjointed if there are always at least d zero entries between two nonzero entries,
i.e., if |j− i| > d for all distinct i, j ∈ supp(x). We investigate here vectors that are simultaneously
s-sparse and d-disjointed. This investigation was prompted by grid discretizations in MIMO radar
problems [9]: the nonzero entries represent the positions of airplanes in an observation frame, so
it is natural to assume that their number is low and that they are not too close to one another.
Sparse disjointed vectors also serve as a pertinent model for neural spike trains, see [8] which
already established recovery results akin to those presented in Section 3. In this note, however,
we emphasize the question of the minimal number of measurements needed for robust uniform
recovery of sparse disjointed vectors. We provide a complete answer with regard to noninflating
measurements relative to this model (see Section 4 for the explanation of this terminology). As a
reminder, the uniform recovery of s-sparse vectors is achievable from

(1) m � mspa := s ln

(
e
N

s

)
∗S. F. is partially supported by NSF grant number DMS-1120622
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random linear measurements. It can be carried out efficiently using convex optimization or iterative
greedy algorithms. The recovery is robust with respect to measurement error and stable with respect
to sparsity defect. The number of measurements in (1) is optimal when stability is required. As
for the uniform recovery of d-disjointed vectors, it is achievable from

(2) m � mdis :=
N

d

deterministic Fourier measurements and it can be carried out efficiently using convex optimization
(see [4, Corollary 1.4]). The number of measurements (2) is easily seen to be optimal, even without
requiring stability. Concerning simultaneously sparse and disjointed vectors, our main result is
informally stated below.

Theorem 1. The minimal number of noninflating measurements needed to achieve robust uniform
recovery of s-sparse d-disjointed vectors is of the order of

(3) mspa&dis := s ln

(
e
N − d(s− 1)

s

)
.

The significance of this result lies in its interpretation: for mspa&dis to be of smaller order than mspa,
we need t := (N−d(s−1))/s ≤ N/(2s); but then d = (N−st)/(s−1) ≥ (N−N/2)/(s−1) ≥ N/(2s),
i.e., N/d ≤ 2s, which implies that mdis is of smaller order than mspa&dis. In short, we arrive at

(4) mspa&dis � min {mspa,mdis} .

Expressed differently, there is no benefit in knowing the simultaneity of sparsity and disjointness
as far as the number of noninflating measurements is concerned. This echoes the message of [10],
which showed that vectors possessing certain structures simultaneously require at least as many
Gaussian random measurements for their recovery via combined convex relaxations as what could
have been achieved via the convex relaxation associated to one of the structures. Our result is
narrower since it focuses on a particular simultaneity of structures, but no limitation is placed on
the nature of the recovery algorithm and the measurements are only assumed to be noninflating
instead of Gaussian. Note that restricting to `1-minimization and Gaussian measurements would
have been irrelevant here, because even nonuniform recovery, i.e., the recovery of a single sparse
vector—a fortiori of a disjointed one—already requires a number of measurements of order at least
mspa, as inferred from known results on phase transition (see [5] for the original arguments and [1]
for recent arguments).

The rest of this note is organized as follows. In Section 2, we discuss basic facts about sparse
disjointed vectors. In particular, we reveal how projections onto the set of sparse disjointed vectors
can be computed by dynamic programming. The ability to compute these projections would
allow for the modification of virtually all sparse recovery iterative greedy algorithms to fit the
sparse disjointed framework, but we focus only on iterative hard thresholding (IHT)—arguably the
simplest of these algorithms—in Section 3. There, we give a short justification that robust uniform
recovery can be carried out efficiently based on random measurements (which are noninflating)
provided their number has order at least mspa&dis. Finally, Section 4 contains the crucial result
that robust uniform recovery schemes for sparse disjointed vectors cannot exist if the number of
noninflating measurements has order less than mspa&dis.
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2 Preliminary Considerations on Sparse Disjointed Vectors

We observe first that sparsity and disjointness are not totally independent structures, since a highly
disjointed vector is automatically quite sparse when its length N is fixed. Viewed differently, an
exactly s-sparse vector that is d-disjointed cannot have too small a length. Precisely, there holds
N ≥ s+ d(s− 1), because there must be s nonzero entries and at least d zero entries in each of the
s− 1 spaces between them. In connection with (3), we rephrase this inequality as N − d(s− 1) ≥ s
to highlight that the logarithmic factor is at least equal to 1. Figure 1 depicts an alternative way
to think of an s-sparse d-disjointed vector that is sometimes useful. Namely, we artificially insert
d zero entries at the right end, hence forming a vector of length N + d containing s blocks of size
d+ 1. Each block consists of one nonzero entry followed by d zero entries. Then, identifying every
block with a collapsed object of length 1 reveals a one-to-one correspondence between s-sparse
d-disjointed vectors of length N and s-sparse vectors of length N − d(s− 1). This correspondence
will be used again in Section 4, but for now it immediately explains the following fact already
exploited in [8].

≥  d1 2 ≥  d 3   s
Length  N  

Length  N+d
d+1 d+1

Length  N-‐d(s-‐1)

insert  d
Length  N+d

d+1

Figure 1: Pictorial representation of sparse disjointed vectors (hollow circles represent zero values).

Fact 2. The number of d-disjointed subsets of J1 : NK with size s is

(
N − d(s− 1)

s

)
.

This formula could instead be justified by the inductive process at the basis of Fact 3 below, which
concerns the computation of best approximations by s-sparse d-disjointed vectors in `p for p ∈ (0,∞)
(one talks about projections if p = 2). This task is not immediate, unlike the computation of the
best approximations by s-sparse vectors (called hard thresholding), which simply consists of keeping
the s largest absolute entries and setting the other entries to zero. Perhaps counterintuitively, the
largest absolute entry need not be part of the support of the best approximation in the sparse
disjointed case1, as illustrated on Figure 2 by the example x = (1, 0, 1, 21/4, 1, 0, 2−1/2) whose best
3-sparse 1-separated approximation is (1, 0, 1, 0, 1, 0, 0) for p = 2. Note that the best approximation
is (1, 0, 0, 21/4, 0, 0, 2−1/2) for p = 4, highlighting another difference with the sparse case, namely
the possible dependence on p of the best approximation. The strategy adopted in [8] for computing
best sparse disjointed approximations consisted in recasting the problem as an integer program and

1in particular, the nested approximation property of [2] does not hold in this case

3



Sparse disjointed recovery

relaxing it to a linear program proved to yield the same solution. We propose a different approach
here. The corresponding Matlab implementation is accessible on the first author’s webpage as
part of the reproducible accompanying this note.

Fact 3. The best `p-approximation of a vector x ∈ CN from the set of s-sparse d-disjointed vectors
can be efficiently computed by dynamic programming for any p ∈ (0,∞).

The program determines F (N, s), where F (n, r) is defined for n ∈ J1 : NK and r ∈ J0 : sK by

(5) F (n, r) := min


n∑
j=1

|xj − zj |p : z ∈ Cn is r-sparse d-disjointed

 .

We claim that, for n ∈ Jd+ 2, NK and r ∈ J1, sK,

(6) F (n, r) = min


F (n− 1, r) + |xn|p,

F (n− d− 1, r − 1) +
n−1∑
j=n−d

|xj |p.

This relation may be considered straightforward, as it simply distinguishes between a zero and a
nonzero value at the last entry of the minimizer for F (n, r). To be more rigorous, we establish
first the lower estimate on F (n, r) by considering a minimizer x̂ ∈ Cn for F (n, r): if x̂n = 0, then
F (n, r) =

∑n−1
j=1 |xj− x̂j |p+ |xn|p ≥ F (n−1, r)+ |xn|p since x̂J1:n−1K ∈ Cn−1 is r-sparse d-disjointed;

if x̂n 6= 0, so that x̂n−d = · · · = x̂n−1 = 0 by d-disjointedness, then F (n, r) =
∑n−d−1

j=1 |xj − x̂j |p +∑n−1
j=n−d |xj |p + |xn − x̂n|p ≥ F (n − d − 1, r − 1) +

∑n−1
j=n−d |xj |p since x̂J1:n−d−1K ∈ Cn−d−1 is

(r − 1)-sparse d-disjointed. Second, we establish the upper estimate on F (n, r) by separating cases
for the minimum in (6): if F (n− 1, r) + |xn|p is the smallest value, selecting a minimizer x̃ ∈ Cn−1

for F (n − 1, r) and considering the r-sparse d-disjointed vector x̂ := (x̃, 0) ∈ Cn yields F (n, r) ≤∑n
j=1 |xj− x̂j |p =

∑n−1
j=1 |xj− x̃j |p+ |xn|p = F (n−1, r) + |xn|p; if F (n−d−1, r−1) +

∑n−1
j=n−d |xj |p

is the smallest value, selecting a minimizer x̃ ∈ Cn−d−1 for F (n − d − 1, r − 1) and considering
the r-sparse d-separated vector x̂ := (x̃, 0, . . . , 0, xn) ∈ Cn yields F (n, r) ≤

∑n
j=1 |xj − x̂j |p =∑n−d−1

j=1 |xj − x̃j |p +
∑n−1

j=n−d |xj |p = F (n− d− 1, r− 1) +
∑n−1

j=n−d |xj |p. With the relation (6) now
fully justified, we can fill in a table of values for F (n, r) from the initial values

F (n, 0) = ‖xJ1:nK‖pp, n ∈ J1 : NK, F (n, r) = ‖xJ1:nK‖pp− max
j∈J1:nK

|xj |p, n ∈ J1 : d+1K, r ∈ J1 : sK.

The latter relation reflects the absence of exactly r-sparse d-disjointed vectors in Cn when r ≥ 2
and n ≤ d + 1. Let us observe that, according to (6), determining one entry of the table requires
O(d) arithmetic operations and that there are O(sN) entries, so computing the error of best
approximation by s-sparse d-disjointed vectors requires a total of O(dsN) = O(N2) arithmetic
operations (to compare with O(N3.5) for the linear programming strategy of [8]). As for the
best approximation itself, we need to keep track of the cases producing the minima in (6)2. As
illustrated in Figure 2, we follow the path of bold arrows starting from the (N, s)th box until the
italicized section: if an arrow points northwest from the (n, r)th box, then the index n is selected
for the support of the best approximation, and in the italicized section (first column excluded), the
underlined index is selected. Once the support is determined in this way, the best approximation
is the vector equal to x on the support.

2we break possible ties arbitrarily by choosing preferentially the second case
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x

1
0
1

1.1892
1
0

0.7071

F (n, r) r = 0 r = 1 r = 2 r = 3

n = 1 1 0 0 0
n = 2 1 0 0 0
n = 3 2 1 0 0
n = 4 3 .4142 2 1 1
n = 5 4 .4142 3 2 1.4142
n = 6 4 .4142 3 2 1.4142
n = 7 4 .9142 3.5 2.5 1.9142

F (n, r) r = 0 r = 1 r = 2 r = 3

n = 1 1 0 0 0
n = 2 1 0 0 0
n = 3 2 1 0 0
n = 4 4 2 1 1
n = 5 5 3 2 2
n = 6 5 3 2 2
n = 7 5 .25 3.25 2.25 2

Figure 2: Sketch of the dynamic program computing the best s-sparse d-disjointed approximations
to x = (1, 0, 1, 21/4, 1, 0, 2−1/2) with s = 3 and d = 1 for p = 2 (left) and p = 4 (right).

3 Sufficient Number of Measurements

The purpose of this section is to show that a number of measurements proportional to mspa&dis is
enough to ensure robust recovery of sparse disjointed vectors. Such a result was already stated in
[8, Theorem 3], see [2] for the proof. The algorithm considered in these articles is an adaptation
of CoSaMP, whereas we analyze an adaptation of IHT. We include all the details here mostly
for completeness, but also because we believe that they simplify existing arguments. The main
tool is a restricted-isometry-like property valid in the general context of union of subspaces, see
[3, Theorem 3.3]. The slight difference with the theorem stated below is that the scaling in δ has
been reduced from ln(1/δ)/δ2 to the optimal 1/δ2.

Theorem 4. Let δ ∈ (0, 1) and let A ∈ Cm×N be populated by independent identically distributed
subgaussian random variables with variance 1/m. Then, with probability at least 1−2 exp(−cδ2m),

(7) (1− δ)‖z + z′ + z′′‖22 ≤ ‖A(z + z′ + z′′)‖22 ≤ (1 + δ)‖z + z′ + z′′‖22

for all s-sparse d-disjointed z, z′, z′′ ∈ CN , provided

m ≥ C

δ2
s ln

(
e
N − d(s− 1)

s

)
.

The constants c, C > 0 depend only on the subgaussian distribution.

Proof. We prove the equivalent statement that, with probability at least 1− 2 exp(−cδ2m),

‖A∗TAT − I‖2→2 ≤ δ

for all sets T ⊆ J1 : NK of the form S ∪ S′ ∪ S′′ where S, S′, S′′ are d-disjointed subsets of J1 : NK
with size s. Such sets are of size at most 3s and their number is upper-bounded by the cube of the
number of d-disjointed subsets with size s, i.e., by(

N − d(s− 1)

s

)3

≤
(
e
N − d(s− 1)

s

)3s

.
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Now, if T is fixed, it is known (see e.g. [7, Theorem 9.9 and Equation (9.12)]) that

P (‖A∗TAT − I‖2→2 > δ) ≤ 2 exp
(
−c′δ2m+ c′′s

)
with constants c′, c′′ > 0 depending only on the subgaussian distribution. Taking a union bound
over all possible T , we see that the desired result holds with failure probability at most(

e
N − d(s− 1)

s

)3s

2 exp
(
−c′δ2m+ c′′s

)
≤ 2 exp

(
−c′δ2m+ (c′′ + 3)s ln

(
e
N − d(s− 1)

s

))
≤ 2 exp(−c′δ2m/2),

where the last inequality holds if one imposes m ≥ [2(c′′ + 3)/c′]δ−2s ln(e(N − d(s− 1))/s).

The restricted-isometry-like property will not be used directly in the form (7), but rather through
its two consequences below.

Proposition 5. Suppose that A satisfies (7). Then, for all s-sparse d-disjointed x,x′,x′′ ∈ CN ,

(8) |〈x− x′, (A∗A− I)(x− x′′)〉| ≤ δ‖x− x′‖2‖x− x′′‖2,

and, for all e ∈ Cm and all d-disjointed subsets S, S′ of J1 : NK with size s,

(9) ‖(A∗e)S∪S′‖2 ≤
√

1 + δ ‖e‖2.

Proof. Setting u = eiθ(x − x′)/‖x − x′‖2 and v = eiυ(x − x′′)/‖x − x′′‖22 for properly chosen
θ, υ ∈ [−π, π], we have

|〈x− x′, (A∗A− I)(x− x′′)〉|
‖x− x′‖2‖x− x′′‖2

= Re〈u, (A∗A− I)v〉 = Re〈Au,Av〉 − Re〈u,v〉

=
1

4

(
‖A(u + v)‖22 − ‖A(u− v)‖22

)
− 1

4

(
‖u + v‖22 − ‖u− v‖22

)
≤ 1

4

∣∣‖A(u + v)‖22 − ‖u + v‖22
∣∣+

1

4

∣∣‖A(u− v)‖22 − ‖u− v‖22
∣∣ .

Noticing that both u + v and u − v take the form z + z′ + z′′ for some s-sparse d-disjointed
z, z′, z′′ ∈ CN , we apply (7) to deduce

|〈x− x′, (A∗A− I)(x− x′′)〉|
‖x− x′‖2‖x− x′′‖2

≤ δ

4

(
‖u + v‖22 + ‖u− v‖22

)
=
δ

2

(
‖u‖22 + ‖v‖22

)
= δ.

This shows the desired inequality (8). To prove inequality (9), we write

‖(A∗e)S∪S′‖22 = 〈(A∗e)S∪S′ ,A
∗e〉 = 〈A((A∗e)S∪S′), e〉 ≤ ‖A((A∗e)S∪S′)‖2‖e‖2.

It now suffices to notice that (A∗e)S∪S′ takes the form z + z′ + z′′ for some s-sparse d-disjointed
z, z′, z′′ ∈ CN (with z′′ = 0) to derive ‖A((A∗e)S∪S′)‖2 ≤

√
1 + δ ‖(A∗e)S∪S′‖2 from (7). The

inequality (9) follows after simplifying by ‖(A∗e)S∪S′‖2.
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With Proposition 5 at hand, robust uniform recovery is quickly established for the iterative hard
thresholding algorithm adapted to the framework of s-sparse d-disjointed vectors. In the description
of this algorithm below, Ps,d represents the projection onto (i.e., best `2-approximation by) s-sparse
d-disjointed vectors discussed in Section 2.'

&

$

%

Iterative hard thresholding (IHT)

Input: measurement matrix A, measurement vector y, sparsity level s, disjointedness level d.
Initialization: s-sparse d-disjointed vector x0, typically x0 = 0.
Iteration: repeat until a stopping criterion is met at n = n̄:

(IHT) xn+1 = Ps,d(x
n + A∗(y −Axn)).

Output: the s-sparse d-disjointed vector x] = xn̄.

Theorem 6. Suppose that A ∈ Cm×N satisfies (7) with δ < 1/2. Then for every s-sparse
d-disjointed vector x ∈ CN acquired via y = Ax + e ∈ Cm with an adversarial error e ∈ Cm,
the output x] := lim

n→∞
xn of IHT approximates x with `2-error

(10) ‖x− x]‖2 ≤ D‖e‖2,

where D > 0 is a constant depending only on δ. In particular, this conclusion is valid with high
probability on the draw of a matrix populated by independent zero-mean Gaussian entries with
variance 1/m provided

m ≥ Cmspa&dis

for some absolute constant C > 0.

Proof. We observe that xn+1 is a better s-sparse d-disjointed `2-approximation to the vector
xn + A∗(y −Axn) = xn + A∗A(x− xn) + A∗e than x is to derive

‖(xn + A∗A(x− xn) + A∗e)− xn+1‖22 ≤ ‖(xn + A∗A(x− xn) + A∗e)− x‖22,

i.e.,
‖x− xn+1 + (A∗A− I)(x− xn) + A∗e‖22 ≤ ‖(A∗A− I)(x− xn) + A∗e‖22.

After expanding the squares and rearranging, we deduce

‖x− xn+1‖22 ≤ −2〈x− xn+1, (A∗A− I)(x− xn) + A∗e〉
≤ 2|〈x− xn+1, (A∗A− I)(x− xn)〉|+ 2‖x− xn+1‖2‖(A∗e)S∪Sn+1‖2,

where S and Sn+1 denote the supports of x and xn+1, respectively. Applying (8) and (9) and
simplifying by ‖x− xn+1‖2 gives

‖x− xn+1‖2 ≤ 2δ‖x− xn‖2 + 2
√

1 + δ ‖e‖2.

With δ < 1/2, this inequality readily implies the desired result (10) with D := 2
√

1 + δ/(1 − 2δ).
Combining it with Theorem 4 yields the rest of the statement.

7



Sparse disjointed recovery

4 Necessary Number of Measurements

The purpose of this section is to show that a number of noninflating measurements at least
proportional to mspa&dis is necessary to ensure robust recovery of sparse disjointed vectors. By
noninflating measurements relative to the s-sparse d-disjointed model, we mean that the matrix A
associated with the measurement process satisfies, for some absolute constant c > 0,

‖Az‖2 ≤ c‖z‖2 whenever z ∈ CN is s-sparse d-disjointed.

Figuratively, the energy of a signal with the targeted structure is not inflated by the measurement
process. According to Theorems 4 and 6, a random measurement process is likely to be noninflating
(with constant c ≤ 1 + δ) and it enables robust uniform recovery of s-sparse d-disjointed vectors
when the number of measurements obeys m ≥ Cmspa&dis. We show below that this is optimal.
The key to the argument is a generalization of a lemma used in [6] (see also [7, Lemma 10.12]).

Lemma 7. There exist

(11) n ≥
(
N − d(s− 1)

c1s

)c2s
d-disjointed subsets S1, . . . , Sn of J1 : NK such that

card(Si) = s for all i and card(Si ∩ Sj) <
s

2
for all i 6= j.

The constants c1, c2 > 0 are universal—precisely, one can take c1 = 12e and c2 = 1/2.

Proof. Let A be the collection of all d-disjointed subsets of J1 : NK with size s. Let us fix an
arbitrary S1 ∈ A. We then consider the collection A1 of sets in A whose intersection with S1 has
size s/2 or more, i.e.,

A1 =
s⋃

j=ds/2e

Aj1, where Aj1 := {S ∈ A : card(S1 ∩ S) = j} .

We claim that, for any j ∈ Jds/2e : sK,

(12) card(Aj1) ≤
(
s

j

)(
N − d(s− 1)

s− j

)
≤
(
s

j

)(
N − d(s− 1)

bs/2c

)
.

The first factor upper-bounds the possible choices of the intersection J := S1 ∩ S. The second
factor upper-bounds the number of d-disjointed subsets of J1 : NK with size s whose intersection
with S1 is a fixed set J of size j: indeed, by thinking of s-sparse d-disjointed vectors of length N as
s blocks with size d+ 1 inside a set with size N + d, as we did in Figure 1, we observe in Figure 3
that the d-disjointed subsets of J1 : NK with size s whose intersection with S1 equals J inject into
the d-disjointed subsets of J1 : N − (d+ 1)jK with size s− j by the process of removing the blocks
attached to J , so the desired number is at most(

N − (d+ 1)j − d(s− j − 1)

s− j

)
=

(
N − d(s− 1)− j

s− j

)
≤
(
N − d(s− 1)

s− j

)
.
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Length  N  

Length  N+d
d+1

insert  d
Length  N+d

Fixed  Intersection  Set  J

Length  N+d-‐(d+1)j

d+1

remove

d+1

remove

Figure 3: Illustration of the counting argument in the proof of Lemma 7.

This finishes the justification of the first inequality in (12). The second inequality holds because
s− j ≤ bs/2c ≤ d(N − d(s− 1))/2e. It then follows from (12) that

card(A1) ≤
s∑

j=ds/2e

(
s

j

)(
N − d(s− 1)

bs/2c

)
≤ 2s

(
N − d(s− 1)

bs/2c

)
.

Let us now fix an arbitrary set S2 ∈ A \ A1, provided the latter is nonempty. We consider the
collection A2 of sets in A \ A1 whose intersection with S2 has size s/2 or more, i.e.,

A2 =

s⋃
j=ds/2e

Aj2, where Aj2 := {S ∈ A \ A1 : card(S2 ∩ S) = j} .

The same reasoning as before yields

card(A2) ≤ 2s
(
N − d(s− 1)

bs/2c

)
.

We repeat the procedure of selecting sets S1, . . . , Sn until A \ (A1 ∪ · · · ∪ An) becomes empty. In
this way, for any i < j, the condition card(Si ∩ Sj) < s/2 is automatically fulfilled by virtue of
Sj ∈ A \ (A1 ∪ · · · ∪ Aj−1) ⊆ A \ (A1 ∪ · · · ∪ Ai). Finally, the number n of subsets satisfies

n ≥ card(A)

max
i∈J1:nK

card(Ai)
≥

(
N − d(s− 1)

s

)
2s
(
N − d(s− 1)

bs/2c

) ≥
(
N − d(s− 1)

s

)s
2s
(
e
N − d(s− 1)

bs/2c

)bs/2c ≥
(
N − d(s− 1)

s

)s
2s
(
e
N − d(s− 1)

s/3

)s/2
=

(
N − d(s− 1)

12es

)s/2
.

We can now turn to the main result of this section.

Theorem 8. Let A ∈ Cm×N be the matrix of a noninflating measurement process with constant c
relative to the s-sparse d-disjointed model and let ∆ : Cm → CN be a reconstruction map providing
a robustness estimate

(13) ‖x−∆(Ax + e)‖2 ≤ D‖e‖2
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which is valid for all s-sparse d-disjointed vectors x ∈ CN and all measurement error e ∈ Cm. Then
the number m of measurements is lower-bounded as

m ≥ Cs ln

(
e
N − d(s− 1)

s

)
.

The constant C > 0 depends only on c and D.

Proof. With each Si of Lemma 7, we associate an s-sparse d-disjointed vector xi ∈ CN defined by

xi` =

{
1/
√
s, if ` ∈ Si,

0, if ` 6∈ Si.

We notice that each xi satisfies ‖xi‖2 = 1. We also notice that each xi−xj , i 6= j, is supported on
the symmetric difference (Si ∪ Sj) \ (Si ∩ Sj), which has size larger than s, and since its nonzero
entries are ±1/

√
s, we have

‖xi − xj‖2 > 1, i 6= j.

Setting ρ := 1/(2D), let us consider the balls in Cm ≡ R2m with radius ρ and centered at the Axi,
i.e.,

Bi := Axi + ρBm
2 .

Using the noninflating property, we easily see that each ball Bi is contained in (c + ρ)Bm
2 . This

implies that

(14) Vol

(
n⋃
i=1

Bi

)
≤ Vol ((c+ ρ)Bm

2 ) = (c+ ρ)2mVol(Bm
2 ).

Moreover, we claim that the balls Bi are disjoint. Indeed, if Bi ∩ Bj 6= ∅ for some i 6= j, then there
would exist ei, ej ∈ Bm

2 such that Axi + ρei = Axj + ρej =: y. Exploiting (13), we could then
write

1 < ‖xi − xj‖2 ≤ ‖xi −∆(y)‖2 + ‖xj −∆(y)‖2 ≤ D‖ρei‖2 +D‖ρej‖2 ≤ 2Dρ = 1,

which is absurd. It follows that

(15) Vol

(
n⋃
i=1

Bi

)
=

n∑
i=1

Vol(Bi) = nVol(ρBm
2 ) = nρ2mVol(Bm

2 ).

Putting (14) and (15) together before making use of (11), we obtain(
1 +

c

ρ

)2m

≥ n, hence 2m ln

(
1 +

c

ρ

)
≥ ln(n) ≥ c2s ln

(
N − d(s− 1)

c1s

)
.

In view of ρ = 1/(2D), we have arrived at

m

s
≥ c3 ln

(
N − d(s− 1)

c1s

)
, c3 :=

c2

2 ln(1 + 2cD)
.

To conclude, we take the obvious lower bound m/s ≥ 1 into account to derive(
1

c3
+ ln(ec1)

)
m

s
≥ ln

(
N − d(s− 1)

c1s

)
+ ln(ec1) = ln

(
e
N − d(s− 1)

s

)
.

This is the desired result with C := c3/(1 + c3 ln(ec1)).
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