On the value of the max-norm of the orthogonal projector onto splines with multiple knots

Simon Foucart
University of Cambridge, Department of Applied Mathematics and Theoretical Physics, Wilberforce Road, Cambridge, CB3 0WA, UK

Abstract

The supremum over all knot sequences of the max-norm of the orthogonal spline projector is studied with respect to the order k of the splines and their smoothness. It is first bounded from below in terms of the max-norm of the orthogonal projector onto a space of incomplete polynomials. Then, for continuous and for differentiable splines, its order of growth is shown to be \sqrt{k}.

Key words: Orthogonal projectors, Splines

1 Introduction

In 2001, Shadrin [10] confirmed de Boor's long standing conjecture [1] that the max-norm of the orthogonal spline projector is bounded independently of the underlying knot sequence. However, the problem was not solved to complete satisfaction as the behavior of the max-norm supremum remains unclear. Shadrin conjectured that its actual value is $2 k-1$, having shown that it cannot be smaller. Here the integer k represents the order of the splines, meaning that the splines are of degree at most $k-1$.

In this paper, we study the max-norm of the orthogonal projector onto splines of lower smoothness. For a knot sequence $\Delta=\left(-1=t_{0}<t_{1}<\cdots<t_{N-1}<\right.$ $\left.t_{N}=1\right)$ and for integers k and m satisfying $0 \leq m \leq k-1$, we denote by
$\mathcal{S}_{k, m}(\Delta):=\left\{s \in \mathcal{C}^{m-1}[-1,1]: s_{\mid\left(t_{i-1}, t_{i}\right)}\right.$ is a polynomial of order $\left.k, i=1, \ldots, N\right\}$
Email address: S.Foucart@damtp.cam.ac.uk (Simon Foucart).
the space of splines of order k satisfying m conditions of smoothness at each breakpoint t_{1}, \ldots, t_{N-1}. Thus $\mathcal{S}_{k, 0}(\Delta)$ is the space of piecewise polynomials, $\mathcal{S}_{k, 1}(\Delta)$ is the space of continuous splines, and so on until $\mathcal{S}_{k, k-1}(\Delta)$ which is the usual space of splines with simple knots. The orthogonal projector $P_{\mathcal{S}_{k, m}}(\Delta)$ onto the space $\mathcal{S}_{k, m}(\Delta)$ is the only linear map from $L_{2}[-1,1]$ into $\mathcal{S}_{k, m}(\Delta)$ satisfying

$$
\left\langle P_{\mathcal{S}_{k, m}(\Delta)}(f), s\right\rangle=\langle f, s\rangle, \quad f \in L_{2}[-1,1], \quad s \in \mathcal{S}_{k, m}(\Delta),
$$

where $\langle\cdot, \cdot\rangle$ is the usual inner product on $L_{2}[-1,1]$. We are interested in the norm of this projector when interpreted as a linear map from $L_{\infty}[-1,1]$ into $L_{\infty}[-1,1]$. Shadrin established the finiteness of

$$
\Lambda_{k, m}:=\sup _{\Delta}\left\|P_{\mathcal{S}_{k, m}(\Delta)}\right\|_{\infty}
$$

by proving that $\Lambda_{k, k-1}=\max _{m} \Lambda_{k, m}$ is finite. His proof was based on the bound

$$
\left\|P_{\mathcal{S}_{k, k-1}(\Delta)}\right\|_{\infty} \leq\left\|G_{\Delta}^{-1}\right\|_{\infty}
$$

in terms of the ℓ_{∞}-norm of the inverse of the B -spline Gram matrix. But he also remarked that the order of the bound obtained as such cannot be better than $4^{k} / \sqrt{k}$, the order of $\left\|G_{\delta}^{-1}\right\|_{\infty}$ for the Bernstein knot sequence δ. Therefore, in order to get closer to the value $2 k-1$, it is necessary to propose a new approach.

The approach we exploit in the second part of this paper originates from the known behavior of the quantity $\Lambda_{k, 0}$. The orthogonal projector onto $\mathcal{S}_{k, 0}(\Delta)$ has a local character, hence is deduced from the orthogonal projector onto the space \mathcal{P}_{k} of polynomials of order k on the interval $[-1,1]$. In particular, for any knot sequence Δ, there holds $\left\|P_{\mathcal{S}_{k, 0}(\Delta)}\right\|_{\infty}=\left\|P_{\mathcal{P}_{k}}\right\|_{\infty}$. Then, according to some properties of the orthogonal projector onto polynomials, see e.g. [5], we have

$$
\begin{equation*}
\left\|P_{\mathcal{S}_{k, 0}(\Delta)}\right\|_{\infty}=\sup _{\|f\|_{\infty} \leq 1}\left|P_{\mathcal{P}_{k}}(f)(1)\right|, \quad \text { so that } \quad \Lambda_{k, 0} \asymp \sqrt{k} . \tag{1}
\end{equation*}
$$

We will show that the behavior of $\Lambda_{k, m}$ is not radically changed if we increase the smoothness to $m=1$ and $m=2$, thus improving de Boor's estimate [2]

$$
\Lambda_{k, 1} \leq\left\|G_{\delta}^{-1}\right\|_{\infty} \asymp 4^{k} / \sqrt{k} .
$$

Namely, we will prove that

$$
\Lambda_{k, m} \leq \mathrm{cst} \cdot \sqrt{k}, \quad m=1,2 .
$$

On the other hand, the order of $\Lambda_{k, m}$ will be shown to be at least \sqrt{k} for $m=1,2$. This is a consequence of a result which gives some insight into the inequality $\Lambda_{k, k-1} \geq 2 k-1$. Indeed, for any m, we will indicate a connection,
extending the one of (1), between $\Lambda_{k, m}$ and the orthogonal projector onto a certain space of incomplete polynomials. To be precise, we introduce the following space of polynomials on $[-1,1]$,

$$
\begin{equation*}
\mathcal{P}_{k, m}:=\operatorname{span}\left\{(1+\bullet)^{m}, \ldots,(1+\bullet)^{k-1}\right\}, \tag{2}
\end{equation*}
$$

and we denote by $\rho_{k, m}$ the value at the point 1 of the Lebesgue function of the orthogonal projector $P_{\mathcal{P}_{k, m}}$ onto the space $\mathcal{P}_{k, m}$, i.e.

$$
\rho_{k, m}:=\sup _{\|f\|_{\infty} \leq 1}\left|P_{\mathcal{P}_{k, m}}(f)(1)\right| .
$$

With this terminology, we prove below the inequality

$$
\begin{equation*}
\Lambda_{k, m} \geq \frac{k}{k-m} \rho_{k, m} \tag{3}
\end{equation*}
$$

This lower bound is of order \sqrt{k} for small values of m and of order k for large values of m, which gives some support to the speculative guess $\Lambda_{k, m} \asymp$ $k / \sqrt{k-m}$.

2 Bounding $\Lambda_{k, m}$ from below

In this section, we formulate a result which readily implies the lower estimate of (3). Let us introduce the quantity

$$
\Upsilon_{k, m, N}:=\sup _{\Delta=\left(-1=t_{0}<\cdots<t_{N}=1\right)}\left[\sup _{\|f\|_{\infty} \leq 1}\left|P_{\mathcal{S}_{k, m}(\Delta)}(f)(1)\right|\right] .
$$

We aim to bound $\Upsilon_{k, m, N+1}$ from below in terms of $\Upsilon_{k, m, N}$, following an idea used for $m=k-1$ in [10] and which appeared first in [8] in the case $k=2$. Namely, we prove in subsections 2.1 and 2.2 that

$$
\begin{equation*}
\Upsilon_{k, m, N+1} \geq \frac{m}{k} \Upsilon_{k, m, N}+\rho_{k, m} . \tag{4}
\end{equation*}
$$

In other words, we have

$$
\left(\Upsilon_{k, m, N+1}-\sigma_{k, m}\right) \geq \frac{m}{k}\left(\Upsilon_{k, m, N}-\sigma_{k, m}\right), \quad \text { where } \quad \sigma_{k, m}:=\frac{k}{k-m} \rho_{k, m}
$$

In view of $\Upsilon_{k, m, 1}=\rho_{k, 0}=\sigma_{k, 0}$, we infer
$\Upsilon_{k, m, N}-\sigma_{k, m} \geq\left(\frac{m}{k}\right)^{N-1}\left(\sigma_{k, 0}-\sigma_{k, m}\right) \underset{N \rightarrow \infty}{\longrightarrow} 0, \quad$ hence $\quad \sup _{N} \Upsilon_{k, m, N} \geq \sigma_{k, m}$.
This translates into the following theorem.

Theorem 1 There hold the inequalities
$\sup _{\Delta=\left(-1=t_{0}<\cdots<t_{N}=1\right)}\left\|P_{\mathcal{S}_{k, m}(\Delta)}\right\|_{\infty} \geq \Upsilon_{k, m, N} \geq\left[\left(\frac{m}{k}\right)^{N-1}\right] \sigma_{k, 0}+\left[1-\left(\frac{m}{k}\right)^{N-1}\right] \sigma_{k, m}$.
In particular, one has

$$
\sup _{\Delta}\left\|P_{\mathcal{S}_{k, m}(\Delta)}\right\|_{\infty} \geq \sigma_{k, m} .
$$

We note that, in the case $k=2$, Malyugin [7] established that these inequalities are all equalities.

2.1 Estimating $\Upsilon_{k, m, N+1}$ in terms of $\Upsilon_{k, m, N}$

In order to derive (4), let us fix a knot sequence

$$
\Delta=\left(-1=t_{0}<t_{1}<\cdots<t_{N-1}<t_{N}=1\right)
$$

and let us consider the refined knot sequence

$$
\Delta_{t}:=\left(-1=t_{0}<t_{1}<\cdots<t_{N-1}<t<t_{N}=1\right) .
$$

We have the splitting
$\mathcal{S}_{k, m}\left(\Delta_{t}\right)=\mathcal{S}_{k, m}(\Delta) \oplus \mathcal{T}_{k, m, t}, \quad$ where $\mathcal{T}_{k, m, t}:=\operatorname{span}\left\{(\bullet-t)_{+}^{m}, \ldots,(\bullet-t)_{+}^{k-1}\right\}$.
Let P_{t}, P and Q_{t} denote the orthogonal projectors onto $\mathcal{S}_{k, m}\left(\Delta_{t}\right), \mathcal{S}_{k, m}(\Delta)$ and $\mathcal{T}_{k, m, t}$ respectively, and let $\mathbf{1}$ denote the function constantly equal to 1 . We are going to establish first that

$$
\begin{equation*}
\varepsilon_{t}:=\sup _{\|f\|_{\infty} \leq 1}\left\|P_{t}(f)-P(f)-Q_{t}(f)+P(f)(1) Q_{t}(\mathbf{1})\right\|_{\infty} \xrightarrow[t \rightarrow 1]{\longrightarrow} 0 . \tag{5}
\end{equation*}
$$

The following lemma is a kind of folklore.
Lemma 2 The orthogonal projector P from a Hilbert space H onto a finitedimensional subspace $V=V_{1} \oplus V_{2}$ can be expressed in terms of the orthogonal projectors P_{1} and P_{2} onto V_{1} and V_{2} as

$$
P=\left(I-P_{1} P_{2}\right)^{-1} P_{1}\left(I-P_{2}\right)+\left(I-P_{2} P_{1}\right)^{-1} P_{2}\left(I-P_{1}\right) .
$$

PROOF. We remark first that the operator $I-P_{1} P_{2}$ is invertible, because $\left\|P_{1} P_{2}\right\|<1$ for the operator norm subordinated to the Hilbert norm $\|\cdot\|$.

Indeed, for $v_{2} \in V_{2}$, we have

$$
\left\|v_{2}\right\|^{2}=\left\|P_{1} v_{2}\right\|^{2}+\left\|v_{2}-P_{1} v_{2}\right\|^{2}>\left\|P_{1} v_{2}\right\|^{2},
$$

and due to the finite dimension of V_{2}, we derive that $\left\|P_{1 \mid V_{2}}\right\|<1$, hence that $\left\|P_{1} P_{2}\right\| \leq\left\|P_{1 \mid V_{2}}\right\|\left\|P_{2}\right\|<1$. Similar arguments prove that the operator $I-P_{2} P_{1}$ is invertible. Then, for $h \in H$, we write $P h=: v_{1}+v_{2}$ for $v_{1} \in V_{1}$ and $v_{2} \in V_{2}$. We apply P_{1} and $P_{1} P_{2}$ to $P h$, so that, in view of $P_{1} P=P_{1}$ and $P_{2} P=P_{2}$, we get

$$
\begin{gathered}
P_{1} h=v_{1}+P_{1} v_{2}, \quad \text { thus } \quad P_{1}\left(I-P_{2}\right) h=\left(I-P_{1} P_{2}\right) v_{1} . \\
P_{1} P_{2} h=P_{1} P_{2} v_{1}+P_{1} v_{2},
\end{gathered}
$$

We infer that $v_{1}=\left(I-P_{1} P_{2}\right)^{-1} P_{1}\left(I-P_{2}\right) h$. The expression for v_{2} is obtained by exchanging the indices.

In our situation, and in view of $\left(I-Q_{t} P\right)^{-1}=I+Q_{t}\left(I-P Q_{t}\right)^{-1} P$, Lemma 2 reads

$$
\begin{align*}
P_{t} & =\left(I-P Q_{t}\right)^{-1} P\left(I-Q_{t}\right)+\left(I-Q_{t} P\right)^{-1} Q_{t}(I-P) \\
& =\left(I-P Q_{t}\right)^{-1}\left(P-P Q_{t}\right)+Q_{t}-Q_{t} P+Q_{t}\left(I-P Q_{t}\right)^{-1} P Q_{t}(I-P) . \tag{6}
\end{align*}
$$

We claim that, for the operator norm subordinated to the max-norm, one has

$$
Q_{t} P-P(\bullet)(1) Q_{t}(\mathbf{1}) \longrightarrow 0, \quad P Q_{t} \longrightarrow 0
$$

To justify this claim, we remark first that the orthogonal projector Q_{t} is obtained from the orthogonal projector $P_{\mathcal{P}_{k, m}}$ onto the space $\mathcal{P}_{k, m}$ introduced in
(2) by a linear transformation between the intervals $[t, 1]$ and $[-1,1]$. Namely, for $u \in[t, 1]$, we have

$$
Q_{t}(f)(u)=P_{\mathcal{P}_{k, m}}(\tilde{f})\left(\frac{2 u-1-t}{1-t}\right), \quad \tilde{f}(x):=f\left(\frac{(1-t) x+1+t}{2}\right)
$$

Then, for $s \in \mathcal{S}_{k, m}(\Delta),\|s\|_{\infty} \leq 1$, we get, as $\left\|s^{\prime}\right\|_{\infty} \leq C$ for some constant C,

$$
\begin{aligned}
\left\|Q_{t}(s)-s(1) Q_{t}(\mathbf{1})\right\|_{\infty} & =\left\|P_{\mathcal{P}_{k, m}}(\widetilde{s}-s(1) \mathbf{1})\right\|_{\infty} \\
& \leq\left\|P_{\mathcal{P}_{k, m}}\right\|_{\infty}\|s-s(1) \mathbf{1}\|_{\infty,[t, 1]} \leq\left\|P_{\mathcal{P}_{k, m}}\right\|_{\infty} C(1-t) .
\end{aligned}
$$

This implies the first part of our claim. Next, fixing an orthonormal basis $\left(s_{i}\right)_{i=1}^{L}$ of $\mathcal{S}_{k, m}(\Delta)$, a function f vanishing on $[-1, t]$ and such that $\|f\|_{\infty} \leq 1$ satisfies

$$
\|P f\|_{\infty}=\left\|\sum_{i=1}^{L}\left\langle s_{i}, f\right\rangle s_{i}\right\|_{\infty} \leq \sum_{i=1}^{L} \int_{t}^{1}\left|s_{i}(u)\right| d u \cdot\left\|s_{i}\right\|_{\infty}=: \eta_{t}
$$

The second part of our claim follows from the facts that $\eta_{t} \rightarrow 0$ as $t \rightarrow 1$ and that the norm of Q_{t} is independent of t.

Now, looking at the limit of each term of (6) with respect to the operator norm, we derive (5) in the condensed form

$$
P_{t}-P-Q_{t}+P(\bullet)(1) Q_{t}(\mathbf{1}) \underset{t \rightarrow 1}{\longrightarrow} 0
$$

From the definition of ε_{t}, one has in particular

$$
\begin{equation*}
\sup _{\|f\|_{\infty \leq 1}}\left|P_{t}(f)(1)-\left[1-Q_{t}(\mathbf{1})(1)\right] P(f)(1)-Q_{t}(f)(1)\right| \leq \varepsilon_{t} . \tag{7}
\end{equation*}
$$

Let us stress that the quantity $\left[1-Q_{t}(\mathbf{1})(1)\right]$ is independent of t, as it is simply $\left[1-P_{\mathcal{P}_{k, m}}(1)(1)\right]=: \gamma_{k, m}$. For $f, g \in L_{\infty}[-1,1],\|f\|_{\infty} \leq 1,\|g\|_{\infty} \leq 1$, and for $f_{t} \in L_{\infty}[-1,1]$ defined by

$$
f_{t}(x)= \begin{cases}f(x), & x \in[-1, t] \\ g(x), & x \in[t, 1]\end{cases}
$$

we obtain from (7) the inequality

$$
\left|P_{t}\left(f_{t}\right)(1)-\gamma_{k, m} P\left(f_{t}\right)(1)-Q_{t}\left(f_{t}\right)(1)\right| \leq \varepsilon_{t} .
$$

We note that $Q_{t}\left(f_{t}\right)=Q_{t}(g)$ and that $\left|P\left(f_{t}-f\right)(1)\right| \leq \eta_{t}$ to get

$$
\begin{aligned}
\Upsilon_{k, m, N+1} \geq\left|P_{t}\left(f_{t}\right)(1)\right| & \geq\left|\gamma_{k, m} P\left(f_{t}\right)(1)+Q_{t}\left(f_{t}\right)(1)\right|-\varepsilon_{t} \\
& \geq\left|\gamma_{k, m} P(f)(1)+Q_{t}(g)(1)\right|-\left|\gamma_{k, m}\right| \eta_{t}-\varepsilon_{t} .
\end{aligned}
$$

As the functions f and g were arbitrary, we deduce that

$$
\Upsilon_{k, m, N+1} \geq\left|\gamma_{k, m}\right| \sup _{\|f\|_{\infty} \leq 1}|P(f)(1)|+\sup _{\|g\|_{\infty} \leq 1}\left|Q_{t}(g)(1)\right|-\left|\gamma_{k, m}\right| \eta_{t}-\varepsilon_{t} .
$$

The second supremum is simply the constant $\rho_{k, m}$. In this inequality, we now take first the limit as $t \rightarrow 1$ then the supremum over Δ to obtain (4) in the provisional form

$$
\Upsilon_{k, m, N+1} \geq\left|\gamma_{k, m}\right| \Upsilon_{k, m, N}+\rho_{k, m}
$$

2.2 The orthogonal projector onto $\mathcal{P}_{k, m}$

To complete the proof of Theorem 1, we need the value of $\gamma_{k, m}$, thus the value of $P_{\mathcal{P}_{k, m}}(\mathbf{1})(1)$. For this purpose, we call upon a few important properties of Jacobi polynomials which can all be found in Szegö's monograph [12].

The Jacobi polynomials $P_{n}^{(\alpha, \beta)}$ are defined by Rodrigues' formula

$$
\begin{equation*}
(1-x)^{\alpha}(1+x)^{\beta} P_{n}^{(\alpha, \beta)}(x)=\frac{(-1)^{n}}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left[(1-x)^{n+\alpha}(1+x)^{n+\beta}\right] . \tag{8}
\end{equation*}
$$

They are orthogonal on $[-1,1]$ with respect to the weight $(1-x)^{\alpha}(1+x)^{\beta}$, when $\alpha>-1$ and $\beta>-1$ to insure integrability. They obey the symmetry relation $P_{n}^{(\alpha, \beta)}(x)=(-1)^{n} P_{n}^{(\beta, \alpha)}(-x)$ and the differentiation formula

$$
\begin{equation*}
\frac{d}{d x}\left[P_{n}^{(\alpha, \beta)}(x)\right]=\frac{n+\alpha+\beta+1}{2} P_{n-1}^{(\alpha+1, \beta+1)}(x) . \tag{9}
\end{equation*}
$$

Their values at the point 1 are

$$
\begin{equation*}
P_{n}^{(\alpha, \beta)}(1)=\binom{n+\alpha}{n}=\frac{(n+\alpha) \cdots(\alpha+1)}{n!} . \tag{10}
\end{equation*}
$$

These properties recalled, we can formulate the following lemma, which implies in particular that $\gamma_{k, m}=(-1)^{k-m} m / k$.

Lemma 3 There hold the representation

$$
P_{\mathcal{P}_{k, m}}(f)(1)=2^{-m-1}(k+m) \int_{-1}^{1}(1+x)^{m} P_{k-1-m}^{(1,2 m)}(x) f(x) d x
$$

and the equality

$$
P_{\mathcal{P}_{k, m}}(\mathbf{1})(1)=1-(-1)^{k-m} \frac{m}{k} .
$$

PROOF. Let us introduce the polynomials $p_{i} \in \mathcal{P}_{k, m}$ defined by $p_{i}(x):=$ $(1+x)^{m} P_{i}^{(0,2 m)}(x)$. The orthogonality conditions

$$
h_{i}^{(0,2 m)} \cdot \delta_{i, j}:=\int_{-1}^{1}(1+x)^{2 m} P_{i}^{(0,2 m)}(x) P_{j}^{(0,2 m)}(x) d x=\int_{-1}^{1} p_{i}(x) p_{j}(x) d x
$$

show that system $\left(p_{i}\right)_{i=0}^{k-1-m}$ is an orthogonal basis of $\mathcal{P}_{k, m}$. Therefore the orthogonal projector onto $\mathcal{P}_{k, m}$ admits the representation

$$
P_{\mathcal{P}_{k, m}}(f)=\sum_{i=0}^{k-1-m} \frac{\left\langle p_{i}, f\right\rangle}{\left\|p_{i}\right\|_{2}^{2}} p_{i} .
$$

For $y \in[-1,1]$, it reads

$$
\begin{aligned}
P_{\mathcal{P}_{k, m}}(f)(y) & =\sum_{i=0}^{k-1-m} \frac{1}{h_{i}^{(0,2 m)}} \int_{-1}^{1}(1+x)^{m} P_{i}^{(0,2 m)}(x) f(x) d x \cdot(1+y)^{m} P_{i}^{(0,2 m)}(y) \\
& =: \int_{-1}^{1}(1+x)^{m}(1+y)^{m} K_{k-1-m}^{(0,2 m)}(x, y) f(x) d x
\end{aligned}
$$

According to $[12, \mathrm{p} 71]$, the kernel $K_{k-1-m}^{(0,2 m)}(x, 1)$ is $2^{-2 m-1}(k+m) P_{k-1-m}^{(1,2 m)}(x)$, hence the representation mentioned in the lemma. We then have

$$
\begin{aligned}
& P_{\mathcal{P}_{k, m}}(1)(1) \\
&=2^{-m-1}(k+m) \int_{-1}^{1}(1+x)^{m} P_{k-1-m}^{(1,2 m)}(x) d x \\
&= 2^{-m} \int_{-1}^{1}(1+x)^{m} \frac{d}{d x}\left[P_{k-m}^{(0,2 m-1)}(x)\right] d x \\
&=2^{-m}\left(\left[(1+x)^{m} P_{k-m}^{(0,2 m-1)}(x)\right]_{-1}^{1}-m \int_{-1}^{1}(1+x)^{m-1} P_{k-m}^{(0,2 m-1)}(x) d x\right) \\
& \underset{(10)}{=} 1-2^{-m} m \int_{-1}^{1}(1+x)^{m-1} P_{k-m}^{(0,2 m-1)}(x) d x .
\end{aligned}
$$

The latter integral equals $(-1)^{k-m} 2^{m} / k$, as the following calculation shows

$$
\begin{aligned}
\int_{-1}^{1} & (1+x)^{m-1} P_{k-m}^{(0,2 m-1)}(x) d x \\
& =\frac{(-1)^{k-m}}{2^{k-m}(k-m)!} \int_{-1}^{1}(1+x)^{-m} \cdot \frac{d^{k-m}}{d x^{k-m}}\left[(1-x)^{k-m}(1+x)^{k+m-1}\right] d x \\
& =\frac{1}{2^{k-m}(k-m)!} \int_{-1}^{1} \frac{d^{k-m}}{d x^{k-m}}\left[(1+x)^{-m}\right] \cdot(1-x)^{k-m}(1+x)^{k+m-1} d x \\
& =\frac{1}{2^{k-m}(k-m)!} \frac{(-1)^{k-m}(k-1)!}{(m-1)!} \int_{-1}^{1}(1-x)^{k-m}(1+x)^{m-1} d x \\
& =\frac{(-1)^{k-m}(k-1)!}{2^{k-m}(k-m)!(m-1)!} \frac{2^{k}(k-m)!(m-1)!}{k!}=(-1)^{k-m} \frac{2^{m}}{k} .
\end{aligned}
$$

3 On the constant $\rho_{k, m}$

We now justify that the quantity $\Lambda_{k, m}$ is at least of order \sqrt{k} for small values of m and at least of order k for large values of m. Precisely, the behavior of $\sigma_{k, m}$ is given below.

Proposition 4 The lower bounds $\sigma_{k, m}$ for $\Lambda_{k, m}$ satisfy

$$
\begin{aligned}
& \sigma_{k, k-1}=2 k-1, \\
& \sigma_{k, k-2} \\
& \sigma_{k, k-3} c_{k-2}=4 e^{-1} \approx 1.4715 \\
& \sim c_{k-2} k, \\
& \sigma_{k, m} c_{k-3} k, \\
& \sim c_{k-3} \approx 1.2216 \\
& \sim \\
& k \rightarrow \infty
\end{aligned} \quad c=2 \sqrt{2 / \pi} \approx 1.5957, \quad \text { if } m \text { is independent of } k .
$$

This will follow at once when we establish the behavior of the constant $\rho_{k, m}$. According to Lemma 3, this constant can be expressed as

$$
\begin{equation*}
\rho_{k, m}=2^{-m-1}(k+m) \int_{-1}^{1}(1+x)^{m}\left|P_{k-1-m}^{(1,2 m)}(x)\right| d x . \tag{11}
\end{equation*}
$$

To the best of our knowledge, whether $\rho_{k, m}$ equals the max-norm of the orthogonal projector onto $\mathcal{P}_{k, m}$ is an open question, although this is known for $m=0$, is trivial for $m=k-1$ and can be shown for $m=k-2$. It also seems that there has been no attempt to evaluate the order of growth of $\rho_{k, m}$ uniformly in m. Nevertheless, for small and large values of m, such evaluations can be carried out.

Lemma 5 One has

$$
\begin{aligned}
& \rho_{k, k-1}=2-1 / k \\
& \rho_{k, k-2} \underset{k \rightarrow \infty}{\longrightarrow} 8 e^{-1} \approx 2.9430, \\
& \rho_{k, k-3} \underset{k \rightarrow \infty}{\longrightarrow} 2+8(2+\sqrt{3}) e^{(-3-\sqrt{3}) / 2}-8(2-\sqrt{3}) e^{(-3+\sqrt{3}) / 2} \approx 3.6649 .
\end{aligned}
$$

PROOF. The fact that $P_{0}^{(1,2 k-2)}(x)=1$ clearly yields the value of $\rho_{k, k-1}$. We then compute $P_{1}^{(1,2 k-4)}(x)=\frac{1}{2}[(2 k-1)(1+x)-4 k+6]$ and we subsequently obtain

$$
\rho_{k, k-2}=\frac{2}{k}+\frac{4(2 k-3)}{k}\left(\frac{2 k-3}{2 k-1}\right)^{k-1} \underset{k \rightarrow \infty}{\longrightarrow} 8 e^{-1} .
$$

Finally, we find that $P_{2}^{(1,2 k-6)}(x)$ equals

$$
\frac{1}{4}\left[(k-1)(2 k-1)(1+x)^{2}-8(k-1)(k-2)(1+x)+4(k-2)(2 k-5)\right] .
$$

The roots of this quadratic polynomial are

$$
x_{1}=\frac{2 k-7-2 \sqrt{\frac{3(k-2)}{k-1}}}{2 k-1}, \quad x_{2}=\frac{2 k-7+2 \sqrt{\frac{3(k-2)}{k-1}}}{2 k-1} .
$$

After some calculations, we obtain the announced limit from the expression

$$
\begin{aligned}
\rho_{k, k-3}=\frac{2 k-3}{k} & +\frac{4(2 k-3)}{k}\left[(2-k)\left(1+x_{1}\right)+2 k-5\right]\left(\frac{1+x_{1}}{2}\right)^{k-2} \\
& -\frac{4(2 k-3)}{k}\left[(2-k)\left(1+x_{2}\right)+2 k-5\right]\left(\frac{1+x_{2}}{2}\right)^{k-2} .
\end{aligned}
$$

As for small values of m, the behavior of $\rho_{k, m}$ follows from a result of Szegö [11, p 84-86], whose first part was sharpened in [6].

Proposition 6 ([11]) If $2 \lambda-\alpha+3 / 2>0$, there is a constant $c_{\lambda, \mu}^{(\alpha, \beta)}$ such that

$$
\int_{0}^{1}(1-x)^{\lambda}(1+x)^{\mu}\left|P_{n}^{(\alpha, \beta)}(x)\right| d x \underset{n \rightarrow \infty}{\sim} c_{\lambda, \mu}^{(\alpha, \beta)} n^{-\frac{1}{2}}
$$

If $2 \lambda-\alpha+3 / 2<0$, there is a constant $d_{\lambda, \mu}^{(\alpha, \beta)}$ such that

$$
\int_{0}^{1}(1-x)^{\lambda}(1+x)^{\mu}\left|P_{n}^{(\alpha, \beta)}(x)\right| d x \underset{n \rightarrow \infty}{\sim} d_{\lambda, \mu}^{(\alpha, \beta)} n^{-2 \lambda+\alpha-2} .
$$

Only the formula for the constant $c_{\lambda, \mu}^{(\alpha, \beta)}$ is relevant to us, it is

$$
c_{\lambda, \mu}^{(\alpha, \beta)}=\frac{2^{\lambda+\mu+2}}{\pi \sqrt{\pi}} \int_{0}^{\frac{\pi}{2}}(\sin \theta / 2)^{2 \lambda-\alpha+\frac{1}{2}}(\cos \theta / 2)^{2 \mu-\beta+\frac{1}{2}} d \theta .
$$

Lemma 7 If m is independent of k, one has

$$
\rho_{k, m} \underset{k \rightarrow \infty}{\sim} \frac{2 \sqrt{2}}{\sqrt{\pi}} \sqrt{k} .
$$

PROOF. We split the integral appearing in (11) in two and use the symmetry relation to obtain

$$
\begin{aligned}
\int_{-1}^{1}(1+x)^{m} & \left|P_{k-1-m}^{(1,2 m)}(x)\right| d x \\
& =\int_{0}^{1}(1-x)^{m}\left|P_{k-1-m}^{(2 m, 1)}(x)\right| d x+\int_{0}^{1}(1+x)^{m}\left|P_{k-1-m}^{(1,2 m)}(x)\right| d x \\
& \underset{k \rightarrow \infty}{\sim}\left(c_{m, 0}^{(2 m, 1)}+c_{0, m}^{(1,2 m)}\right) k^{-\frac{1}{2}} .
\end{aligned}
$$

Substituting the values of the constants gives

$$
\begin{aligned}
c_{m, 0}^{(2 m, 1)} & +c_{0, m}^{(1,2 m)} \\
& =\frac{2^{m+2}}{\pi \sqrt{\pi}}\left[\int_{0}^{\frac{\pi}{2}}(\sin \theta / 2)^{\frac{1}{2}}(\cos \theta / 2)^{-\frac{1}{2}} d \theta+\int_{0}^{\frac{\pi}{2}}(\sin \theta / 2)^{-\frac{1}{2}}(\cos \theta / 2)^{\frac{1}{2}} d \theta\right] \\
& =\frac{2^{m+2}}{\pi \sqrt{\pi}}\left[\int_{0}^{\frac{\pi}{2}}(\sin \theta / 2)^{\frac{1}{2}}(\cos \theta / 2)^{-\frac{1}{2}} d \theta+\int_{\frac{\pi}{2}}^{\pi}(\cos \eta / 2)^{-\frac{1}{2}}(\sin \eta / 2)^{\frac{1}{2}} d \eta\right] \\
& =\frac{2^{m+2}}{\pi \sqrt{\pi}} \int_{0}^{\pi}(\sin \theta / 2)^{\frac{1}{2}}(\cos \theta / 2)^{-\frac{1}{2}} d \theta .
\end{aligned}
$$

For $p, q>0$, it is known that

$$
\int_{0}^{\pi}(\sin \theta / 2)^{2 p-1}(\cos \theta / 2)^{2 q-1} d \theta=\int_{0}^{1} u^{p-1}(1-u)^{q-1} d u=\frac{\Gamma(p) \Gamma(q)}{\Gamma(p+q)}
$$

Thus, in view of $\Gamma(z) \Gamma(1-z)=\pi / \sin (\pi z)$, we derive that

$$
c_{m, 0}^{(2 m, 1)}+c_{0, m}^{(1,2 m)}=\frac{2^{m+2}}{\pi \sqrt{\pi}} \frac{\Gamma\left(\frac{3}{4}\right) \Gamma\left(\frac{1}{4}\right)}{\Gamma(1)}=\frac{2^{m+2} \sqrt{2}}{\sqrt{\pi}}
$$

and the conclusion follows.

Some numerical values of the constant $\rho_{k, m}$ are indicated in the table below.

$\rho_{k, m}$	$k=1$	$k=2$	$k=3$	$k=4$	$k=5$	$k=6$	$k=7$
$m=0$	1	1.6666	2.1757	2.6042	2.9815	3.3225	3.6360
$m=1$		1.5	2.1066	2.5693	2.9625	3.3120	3.6305
$m=2$			1.6666	2.3221	2.8	3.1959	3.5430
$m=3$				1.75	2.4493	2.9503	3.3586
$m=4$					1.8	2.5332	3.0560
$m=5$						1.8333	2.5927
$m=6$							1.8571

We observe that $\rho_{k, 0}$ increases with k, a fact which has been proved in [9]. It also seems that $\rho_{k, m}$ increases with k for any fixed m. On the other hand, when k is fixed, the quantity $\rho_{k, m}$ does not decrease with m, e.g. we have $\rho_{10,0} \approx 4.4607<\rho_{10,1} \approx 4.4619$. The tentative inequality $\rho_{2 k, k} \leq \rho_{2 k, 0}$ may nevertheless hold and would account for the guess $\sigma_{k, m} \asymp k(k-m)^{-1 / 2}$ rather than the other seemingly natural one, namely $\sigma_{k, m} \asymp k^{(k+m) / 2 k}$. Indeed, we would have $\sigma_{2 k, k}=2 k / k \cdot \rho_{2 k, k} \leq 2 \rho_{2 k, 0} \leq \mathrm{cst} \cdot \sqrt{k}$, so that the order of $\sigma_{2 k, k}$ could not be $k^{3 / 4}$.

We display at last some numerical values of the lower bound $\sigma_{k, m}$.

$\sigma_{k, m}$	$k=1$	$k=2$	$k=3$	$k=4$	$k=5$	$k=6$	$k=7$
$m=0$	1	1.6666	2.1757	2.6042	2.9815	3.3225	3.6360
$m=1$		3	3.16	3.4258	3.7031	3.9744	4.2356
$m=2$			5	4.6443	4.6666	4.7938	4.9603
$m=3$				7	6.1233	5.9006	5.8775
$m=4$					9	7.5996	7.1308
$m=5$						11	9.0745
$m=6$							13

For a fixed k, it seems that $\sigma_{k, m}$ increases with m. However, for a fixed m, it appears that $\sigma_{k, m}$ is not a monotonic function of k. The initial decrease of $\sigma_{k, m}$ could be explained by the facts that $\sigma_{m+1, m}=2 m+1$ and that $\sigma_{2 m, m} \asymp \sqrt{m}$, if confirmed.

4 Bounding $\Lambda_{k, m}$ from above: description of the method

We present here the key steps of the arguments we will use to determine an upper bound for $\Lambda_{k, m}$. The idea of orthogonal splitting comes from Shadrin, who suggested it to us in a private communication.

4.1 Orthogonal splitting

The space $\mathcal{S}_{k, m}(\Delta)$, of dimension $k N-m(N-1)$, is a subspace of the space $\mathcal{S}_{k, 0}(\Delta)$, of dimension $k N$, hence we can consider the orthogonal splitting

$$
\mathcal{S}_{k, 0}(\Delta)=: \mathcal{S}_{k, m}(\Delta) \stackrel{\perp}{\oplus} \mathcal{R}_{k, m}(\Delta), \quad \text { with } \operatorname{dim} \mathcal{R}_{k, m}(\Delta)=m(N-1)
$$

If $P_{\mathcal{S}_{k, 0}(\Delta)}, P_{\mathcal{S}_{k, m}(\Delta)}$ and $P_{\mathcal{R}_{k, m}(\Delta)}$ represent the orthogonal projectors onto $\mathcal{S}_{k, 0}(\Delta), \mathcal{S}_{k, m}(\Delta)$ and $\mathcal{R}_{k, m}(\Delta)$ respectively, we have
$P_{\mathcal{S}_{k, 0}(\Delta)}=P_{\mathcal{S}_{k, m}(\Delta)}+P_{\mathcal{R}_{k, m}(\Delta)}$, thus $\left\|P_{\mathcal{S}_{k, m}(\Delta)}\right\|_{\infty} \leq\left\|P_{\mathcal{S}_{k, 0}(\Delta)}\right\|_{\infty}+\left\|P_{\mathcal{R}_{k, m}(\Delta)}\right\|_{\infty}$.
We have already mentioned that $\left\|P_{\mathcal{S}_{k, 0}(\Delta)}\right\|_{\infty}=\rho_{k, 0}$ for any knot sequence Δ, therefore our task is to bound the norm $\left\|P_{\mathcal{R}_{k, m}}(\Delta)\right\|_{\infty}$.

In order to describe the space $\mathcal{R}_{k, m}(\Delta)$, we set

$$
\begin{aligned}
& (\underbrace{t_{0}=\cdots=t_{0}}_{k}<\underbrace{t_{1}=\cdots=t_{1}}_{k-m}<\cdots<\underbrace{t_{N-1}=\cdots=t_{N-1}}_{k-m}<\underbrace{t_{N}=\cdots=t_{N}}_{k}) \\
& \quad=:\left(\tau_{1} \leq \cdots \leq \tau_{L+k}\right),
\end{aligned}
$$

so that $\mathcal{S}_{k, m}(\Delta)$ admits the basis of L_{1}-normalized B-splines $\left(M_{i}\right)_{i=1}^{L}$, where $M_{i}:=M_{\tau_{i}, \ldots, \tau_{i+k}}$. Using the Peano representation of divided differences, we have

$$
\begin{aligned}
f \in \mathcal{R}_{k, m}(\Delta) & \Longleftrightarrow f \in \mathcal{S}_{k, 0}(\Delta), \int_{-1}^{1} M_{i} \cdot f=0, \text { all } i \\
& \Longleftrightarrow f=F^{(k)}, F \in \mathcal{S}_{2 k, k}(\Delta),\left[\tau_{i}, \ldots, \tau_{i+k}\right] F=0, \text { all } i
\end{aligned}
$$

It is then derived that

$$
\begin{aligned}
& \mathcal{R}_{k, m}(\Delta)=\left\{\begin{aligned}
F & \equiv 0 k \text {-fold at } t_{0}, \\
F^{(k)}, F \in \mathcal{S}_{2 k, k}(\Delta), & F \equiv(k-m) \text {-fold at } t_{i}, \quad i=1, \ldots, N-1, \\
F & \equiv 0 k \text {-fold at } t_{N}
\end{aligned}\right\} \\
& =\mathcal{R}_{k, m}^{1}(\Delta) \oplus \mathcal{R}_{k, m}^{2}(\Delta) \oplus \cdots \oplus \mathcal{R}_{k, m}^{N-1}(\Delta),
\end{aligned}
$$

where each space $\mathcal{R}_{k, m}^{i}(\Delta)$, supported on $\left[t_{i-1}, t_{i+1}\right]$ and of dimension m, is characterized by

$$
\begin{gathered}
f \in \mathcal{R}_{k, m}^{i}(\Delta) \Longleftrightarrow f=F^{(k)} \text { for some } F \in \mathcal{S}_{2 k, k}(\Delta), \operatorname{supp} F=\left[t_{i-1}, t_{i+1}\right], \\
\text { and }\left\{\begin{array}{l}
F \equiv 0 k \text {-fold at } t_{i-1}, \\
F \equiv 0(k-m) \text {-fold at } t_{i}, \\
F \equiv 0 \quad k \text {-fold at } t_{i+1} .
\end{array}\right.
\end{gathered}
$$

4.2 A Gram matrix

The max-norm of the orthogonal projector onto the space $\mathcal{R}_{k, m}(\Delta)$ will be bounded with the help of a Gram matrix. We reproduce here an idea that has been central to the theme of the orthogonal spline projector for some time.

Lemma 8 Let $\left(\varphi_{i}\right)_{i=1}^{m(N-1)}$ and $\left(\widehat{\varphi}_{j}\right)_{j=1}^{m(N-1)}$ be bases of $\mathcal{R}_{k, m}(\Delta)$ and let $M:=$ $\left[\left\langle\varphi_{i}, \widehat{\varphi}_{j}\right\rangle\right]_{i, j=1}^{m(N-1)}$ be the Gram matrix with respect to these bases. If, for some constants κ, γ_{1} and γ_{∞}, there hold
(i) $\left\|M^{-1}\right\|_{\infty} \leq \kappa$,
(ii) $\left\|\varphi_{i}\right\|_{1} \leq \gamma_{1}$,
(iii) $\left\|\sum a_{j} \widehat{\varphi}_{j}\right\|_{\infty} \leq \gamma_{\infty}\|a\|_{\infty}$,
then the max-norm of the orthogonal projector onto $\mathcal{R}_{k, m}(\Delta)$ satisfies

$$
\left\|P_{\mathcal{R}_{k, m}(\Delta)}\right\|_{\infty} \leq \kappa \cdot \gamma_{1} \cdot \gamma_{\infty} .
$$

PROOF. Let P denote the projector $P_{\mathcal{R}_{k, m}(\Delta)}$. For $f \in L_{\infty}[-1,1],\|f\|_{\infty}=1$, let us write $P(f)=\sum_{j=1}^{m(N-1)} a_{j} \hat{\varphi}_{j}$, so that $\|P(f)\|_{\infty} \leq \gamma_{\infty}\|a\|_{\infty}$. The equalities

$$
b_{i}:=\left\langle\varphi_{i}, f\right\rangle=\left\langle\varphi_{i}, P(f)\right\rangle=\sum_{j} a_{j}\left\langle\varphi_{i}, \widehat{\varphi}_{j}\right\rangle=(M a)_{i}
$$

mean that $a=M^{-1} b$. Since $\left|b_{i}\right| \leq\left\|\varphi_{i}\right\|_{1}$, we infer that $\|a\|_{\infty} \leq\left\|M^{-1}\right\|_{\infty}$. $\|b\|_{\infty} \leq \kappa \cdot \gamma_{1}$. Hence we have $\|P(f)\|_{\infty} \leq \kappa \cdot \gamma_{1} \cdot \gamma_{\infty}$, which completes the proof, as the function f was arbitrary.

Let us remark that the entries of the Gram matrix will be easily calculated by applying the following formula, obtained by integration by parts. One has, for $r_{i}:=R_{i}^{(k)} \in \mathcal{R}_{k, m}^{i}(\Delta)$,

$$
\begin{equation*}
\left\langle r_{i}, s\right\rangle=\sum_{l=0}^{m-1}(-1)^{l} R_{i}^{(k-1-l)}\left(t_{i}\right)\left[s^{(l)}\left(t_{i}^{-}\right)-s^{(l)}\left(t_{i}^{+}\right)\right], \quad s \in \mathcal{S}_{k, 0}(\Delta) \tag{12}
\end{equation*}
$$

4.3 Bounding the norm of the inverse of some matrices

If we combine bases of the spaces $\mathcal{R}_{k, m}^{i}(\Delta)$ to obtain L_{1} and L_{∞}-normalized bases of $\mathcal{R}_{k, m}(\Delta)$, with respect to which we form the Gram matrix, we observe that the latter is block-tridiagonal, as a result of the disjointness of the supports of $\mathcal{R}_{k, m}^{i}(\Delta)$ and $\mathcal{R}_{k, m}^{j}(\Delta)$ when $|i-j|>1$. However, we may permute the elements of the bases to obtain the Gram matrix in the form considered in the following lemma and to bound the ℓ_{∞}-norm of its inverse accordingly. Let us recall that a square matrix A is said to be of bandwidth d if $A_{i, j}=0$ as soon as $|i-j|>d$.

Lemma 9 Let B and C be two matrices such that $B C$ and $C B$ are of bandwidth d. If $\zeta:=\max \left(\|B C\|_{1},\|C B\|_{1}\right)<1$, then, with $\xi:=\max \left(\|B\|_{\infty},\|C\|_{\infty}\right)$, the matrix

$$
N:=\left[\begin{array}{c|c}
I & B \\
\hline C & I
\end{array}\right] \text { has an inverse satisfying }\left\|N^{-1}\right\|_{\infty} \leq(1+\xi) \frac{1+(2 d-1) \zeta}{(1-\zeta)^{2}} .
$$

PROOF. First of all, let A be a matrix of bandwidth d satisfying $\|A\|_{1}<1$. For indices i and j, let $q:=\left\lceil\frac{|i-j|}{d}\right\rceil$ represent the smallest integer not smaller than $\frac{|i-j|}{d}$. We borrow from Demko [3] the estimate

$$
\left|(I-A)_{i, j}^{-1}\right| \leq \frac{\|A\|_{1}^{q}}{1-\|A\|_{1}}
$$

Indeed, for any integer p the matrix A^{p} is of bandwidth $p d$ and, as $|i-j|>$ $(q-1) d$, we get

$$
\left|(I-A)_{i, j}^{-1}\right|=\left|\sum_{p=0}^{\infty} A_{i, j}^{p}\right|=\left|\sum_{p=q}^{\infty} A_{i, j}^{p}\right| \leq \sum_{p=q}^{\infty}\left|A_{i, j}^{p}\right| \leq \sum_{p=q}^{\infty}\left\|A^{p}\right\|_{1} \leq \sum_{p=q}^{\infty}\|A\|_{1}^{p},
$$

hence the announced inequality. It then follows that

$$
\begin{align*}
\left\|(I-A)^{-1}\right\|_{\infty} & =\max _{i} \sum_{j}\left|(I-A)_{i, j}^{-1}\right| \\
& \leq \frac{1}{1-\|A\|_{1}}\left[1+2 d \sum_{q=1}^{\infty}\|A\|_{1}^{q}\right]=\frac{1+(2 d-1)\|A\|_{1}}{\left(1-\|A\|_{1}\right)^{2}} . \tag{13}
\end{align*}
$$

We now observe that

$$
\left[\begin{array}{c|c|c}
I & B \\
\hline C & I
\end{array}\right]^{-1}=\left[\begin{array}{c|c}
(I-B C)^{-1} & -B(I-C B)^{-1} \\
\hline-C(I-B C)^{-1} & (I-C B)^{-1}
\end{array}\right]
$$

The estimate of (13) for $A=B C$ and $A=C B$ implies the conclusion.

5 Bounding $\Lambda_{k, m}$ from above: the case of continuous splines

We consider here the case $m=1, k \geq 2$. We have already established that the order of growth of $\Lambda_{k, 1}=\sup _{\Delta}\left\|P_{\mathcal{S}_{k, 1}(\Delta)}\right\|_{\infty}$ is at least \sqrt{k} and we prove in this section that it is in fact \sqrt{k}. We exploit the method we have just described to obtain the following theorem.

Theorem 10 For any knot sequence Δ,

$$
\left\|P_{\mathcal{R}_{k, 1}(\Delta)}\right\|_{\infty} \leq \frac{2 k(k+1)}{(k-1)^{2}} \sigma_{k, 0}, \quad \quad\left\|P_{\mathcal{S}_{k, 1}(\Delta)}\right\|_{\infty} \leq \frac{3 k^{2}+1}{(k-1)^{2}} \sigma_{k, 0}
$$

First of all, we note that the space $\mathcal{R}_{k, 1}^{i}(\Delta)$ is spanned by a single function f_{i} supported on $\left[t_{i-1}, t_{i+1}\right]$. The latter must be the k-th derivative of a piecewise polynomial F_{i} of order $2 k$ that vanishes k-fold at t_{i-1} and at $t_{i+1},(k-1)$-fold at t_{i} and whose $(k-1)$-st derivative is continuous at t_{i}. It is constructed from the following polynomial of order $2 k$,

$$
F(x):=\frac{(-1)^{k-1}}{2^{k-1} k!}(1-x)^{k-1}(1+x)^{k}
$$

which vanishes k-fold at -1 and $(k-1)$-fold at 1 . The notations

$$
h_{i}:=t_{i}-t_{i-1}, \quad \delta_{i}:=\frac{1}{h_{i}}, \quad i=1, \ldots, N,
$$

are to be used in the rest of the paper. We define the function F_{i} by

$$
F_{i}(x)=\left\{\begin{array}{cl}
\left(\frac{h_{i}}{2}\right)^{k-1} F\left(\frac{2 x-t_{i-1}-t_{i}}{h_{i}}\right) & , x \in\left(t_{i-1}, t_{i}\right), \\
\left(\frac{-h_{i+1}}{2}\right)^{k-1} F\left(\frac{t_{i}+t_{i+1}-2 x}{h_{i+1}}\right) & , x \in\left(t_{i}, t_{i+1}\right) \\
0 & , x \notin\left(t_{i-1}, t_{i+1}\right) .
\end{array}\right.
$$

We renormalize the function $f_{i}:=F_{i}^{(k)}$ by setting $\widehat{f}_{i}:=\frac{1}{4\left(\delta_{i}+\delta_{i+1}\right)} f_{i}$, where

$$
f_{i}(x)=\left\{\begin{array}{cl}
2 \delta_{i} F^{(k)}\left(\frac{2 x-t_{i-1}-t_{i}}{h_{i}}\right) & , x \in\left(t_{i-1}, t_{i}\right) \\
-2 \delta_{i+1} F^{(k)}\left(\frac{t_{i}+t_{i+1}-2 x}{h_{i+1}}\right) & , x \in\left(t_{i}, t_{i+1}\right), \\
0 & , x \notin\left(t_{i-1}, t_{i+1}\right)
\end{array}\right.
$$

At this point, let us recall the connection [12, p 64] between the Jacobi polynomials $P_{n}^{(-l, \beta)}$ and $P_{n-l}^{(l, \beta)}$,

$$
\begin{equation*}
\binom{n}{l} P_{n}^{(-l, \beta)}(x)=\binom{n+\beta}{l}\left(\frac{x-1}{2}\right)^{l} P_{n-l}^{(l, \beta)}(x), \quad l=1, \ldots, n, \tag{14}
\end{equation*}
$$

which accounts for the following expression for $F^{(k)}$,

$$
F^{(k)}(x) \underset{(8)}{\overline{(8)}}-2(1-x)^{-1} P_{k}^{(-1,0)}(x) \underset{(14)}{=} P_{k-1}^{(1,0)}(x) .
$$

We are now going to establish that the bases $\left(f_{i}\right)_{i=1}^{N-1}$ and $\left(\widehat{f}_{j}\right)_{j=1}^{N-1}$ of $\mathcal{R}_{k, 1}(\Delta)$ satisfy the three conditions of Lemma 8.

5.1 Condition (i)

First we determine the inner products $\left\langle f_{i}, \widehat{f}_{j}\right\rangle$, non-zero only for $|i-j| \leq 1$. This requires the values of the successive derivatives of F_{i} at t_{i-1}, at t_{i} and at t_{i+1}, which are derived from the values of the successive derivatives of F at -1 and at 1 . These are obtained from (9) and (10), namely they are

$$
\begin{array}{ll}
& F^{(k-1)}(1)=\frac{2}{k}, \\
F^{(k)}(-1)=(-1)^{k-1}, & F^{(k)}(1)=k, \\
F^{(k+1)}(-1)=(-1)^{k} \frac{k^{2}-1}{2}, & F^{(k+1)}(1)=\frac{k\left(k^{2}-1\right)}{4} .
\end{array}
$$

Equation (12) for $r_{i}=f_{i}$ reads

$$
\left\langle f_{i}, s\right\rangle=F_{i}^{(k-1)}\left(t_{i}\right)\left[s\left(t_{i}^{-}\right)-s\left(t_{i}^{+}\right)\right]=\frac{2}{k}\left[s\left(t_{i}^{-}\right)-s\left(t_{i}^{+}\right)\right], \quad s \in \mathcal{S}_{k, 0}(\Delta)
$$

We compute the differences

$$
\begin{aligned}
f_{i}\left(t_{i}^{-}\right)-f_{i}\left(t_{i}^{+}\right) & =2 \delta_{i} F^{(k)}(1)+2 \delta_{i+1} F^{(k)}(1)
\end{aligned}=2 k\left(\delta_{i}+\delta_{i+1}\right), ~ 子-2 \delta_{i} F^{(k)}(-1)=2(-1)^{k} \delta_{i} .
$$

As a result, we obtain
$\left\langle f_{i}, \widehat{f}_{i}\right\rangle=1, \quad\left\langle f_{i-1}, \widehat{f}_{i}\right\rangle=\frac{(-1)^{k}}{k} \frac{\delta_{i}}{\delta_{i}+\delta_{i+1}}, \quad$ then $\left\langle f_{i+1}, \widehat{f}_{i}\right\rangle=\frac{(-1)^{k}}{k} \frac{\delta_{i+1}}{\delta_{i}+\delta_{i+1}}$.
The Gram matrix with respect to the bases $\left(f_{i}\right)_{i=1}^{N-1}$ and $\left(\widehat{f}_{j}\right)_{j=1}^{N-1}$ therefore has the form

$$
\left.M=\begin{array}{c}
\widehat{f}_{1} \\
f_{1} \\
f_{2} \\
f_{3} \\
f_{3} \\
f_{4} \\
\\
\vdots \\
\frac{(-1)^{k}}{k} \beta_{1} \\
0
\end{array} \begin{array}{ccccc}
\frac{(-1)^{k}}{k} \alpha_{2} & 0 & \widehat{f}_{4} & \cdots & \cdots \\
0 & \frac{(-1)^{k}}{k} \alpha_{3} & 0 & \cdots \\
0 & 0 & 1 & \ddots & \\
\vdots & \vdots & 0 & \ddots & \ddots
\end{array}\right]
$$

where $\alpha_{i}:=\frac{\delta_{i}}{\delta_{i}+\delta_{i+1}} \geq 0$ and $\beta_{i}:=\frac{\delta_{i+1}}{\delta_{i}+\delta_{i+1}} \geq 0$ satisfy $\alpha_{i}+\beta_{i}=1$. To bound the ℓ_{∞}-norm of the inverse of this matrix, we could use (13) directly. However, a result of Kershaw [4] about scaled transposes of such matrices provide estimates for the entries of M^{-1} which, when summed, yield the more accurate bound

$$
\left\|M^{-1}\right\|_{\infty} \leq \frac{k^{2}}{(k-1)^{2}}
$$

5.2 Condition (ii)

From the expression for f_{i}, we get $\left\|f_{i}\right\|_{1}=2\left\|F^{(k)}\right\|_{1}=2\left\|P_{k-1}^{(1,0)}\right\|_{1}$. Therefore, according to (11), we have

$$
\left\|f_{i}\right\|_{1}=\frac{4}{k} \sigma_{k, 0} .
$$

5.3 Condition (iii)

Let us start by establishing the following lemma.
Lemma 11 For any $\eta, \nu \in \mathbb{R}$, one has

$$
\max _{x \in[-1,1]}\left|\eta P_{k-l}^{(l, 0)}(x)+\nu P_{k-l}^{(l, 0)}(-x)\right|=\max _{x \in\{-1,1\}}\left|\eta P_{k-l}^{(l, 0)}(x)+\nu P_{k-l}^{(l, 0)}(-x)\right| .
$$

PROOF. Without loss of generality, we can assume that $\eta \geq|\nu|$. First of all, the identity

$$
P_{k-l}^{(l, 0)}(x)=\sum_{j=0}^{l}\binom{l}{j}\left(\frac{1+x}{2}\right)^{j} P_{k-l-j}^{(j, j)}(x)
$$

is easily derived using (8), (9) and (14). Indeed, we have

$$
\begin{aligned}
P_{k-l}^{(l, 0)}(x) & =2^{l}(-1)^{l}(1-x)^{-l} P_{k}^{(-l, 0)}(x) \\
& =\frac{(k-l)!}{k!} \frac{(-1)^{k-l}}{2^{k-l}(k-l)!} \frac{d^{k}}{d x^{k}}\left[(1+x)^{l} \cdot(1-x)^{k-l}(1+x)^{k-l}\right] \\
& =\frac{(k-l)!}{k!} \sum_{j=0}^{l}\binom{k}{j} \frac{d^{j}}{d x^{j}}\left[(1+x)^{l}\right] \cdot \frac{d^{l-j}}{d x^{l-j}}\left[P_{k-l}^{(0,0)}(x)\right] \\
& =\sum_{j=0}^{l} \frac{(k-l)!}{k!} \frac{k!}{(k-j)!j!} \frac{l!}{(l-j)!} \frac{(k-j)!}{(k-l)!}\left(\frac{1+x}{2}\right)^{l-j} P_{k-2 l+j}^{(l-j, l-j)}(x) \\
& =\sum_{j=0}^{l}\binom{l}{j}\left(\frac{1+x}{2}\right)^{j} P_{k-l-j}^{(j, j)}(x) .
\end{aligned}
$$

This identity and the symmetry relation yield

$$
\begin{aligned}
& \eta P_{k-l}^{(l, 0)}(x)+\nu P_{k-l}^{(l, 0)}(-x) \\
&=\sum_{j=0}^{l}\binom{l}{j}\left[\eta\left(\frac{1+x}{2}\right)^{j}+(-1)^{k-l-j} \nu\left(\frac{1-x}{2}\right)^{j}\right] P_{k-l-j}^{(j, j)}(x) .
\end{aligned}
$$

Every term in the previous sum is maximized in absolute value at $x=1$. Indeed, according to [12, Theorem 7.32.1], there holds $\left|P_{k-l-j}^{(j, j)}(x)\right| \leq P_{k-l-j}^{(j, j)}(1)$. Besides, for $j \geq 1$, we have

$$
\left|\eta\left(\frac{1+x}{2}\right)^{j}+(-1)^{k-l-j} \nu\left(\frac{1-x}{2}\right)^{j}\right| \leq \eta\left[\left(\frac{1+x}{2}\right)^{j}+\left(\frac{1-x}{2}\right)^{j}\right] \leq \eta
$$

and for $j=0$, we have $\left|\eta+(-1)^{k-l} \nu\right|=\eta+(-1)^{k-l} \nu$. These facts imply that

$$
\left|\eta P_{k-l}^{(l, 0)}(x)+\nu P_{k-l}^{(l, 0)}(-x)\right| \leq \eta P_{k-l}^{(l, 0)}(1)+\nu P_{k-l}^{(l, 0)}(-1) .
$$

Let us now bound the max-norm of $r:=\sum a_{j} \widehat{f}_{j}$ in terms of $\|a\|_{\infty}$. This maxnorm is achieved on $\left[t_{l}, t_{l+1}\right]$, say, and since $r_{\left[\mid t_{l}, t_{l+1}\right]}=a_{l} \widehat{f}_{l}+a_{l+1} \widehat{f}_{l+1}$, Lemma 11 guarantees that this max-norm is achieved at one of the endpoints of $\left[t_{l}, t_{l+1}\right]$, say at t_{l}. Thus we have

$$
\|r\|_{\infty} \leq\left[\left|\widehat{f}_{l}\left(t_{l}^{+}\right)\right|+\left|\widehat{f}_{l+1}\left(t_{l}^{+}\right)\right|\right]\|a\|_{\infty} \leq\left[\frac{1}{2}\left|F^{(k)}(1)\right|+\frac{1}{2}\left|F^{(k)}(-1)\right|\right]\|a\|_{\infty},
$$

that is

$$
\left\|\sum a_{j} \widehat{f}_{j}\right\|_{\infty} \leq \frac{k+1}{2}\|a\|_{\infty}
$$

5.4 Conclusion

The estimates obtained from conditions (i), (ii) and (iii) yield

$$
\begin{equation*}
\left\|P_{\mathcal{R}_{k, 1}(\Delta)}\right\|_{\infty} \leq \frac{k^{2}}{(k-1)^{2}} \cdot \frac{4}{k} \sigma_{k, 0} \cdot \frac{k+1}{2}=\frac{2 k(k+1)}{(k-1)^{2}} \sigma_{k, 0} . \tag{15}
\end{equation*}
$$

To conclude, we derive the bound

$$
\left\|P_{\mathcal{S}_{k, 1}(\Delta)}\right\|_{\infty} \leq\left\|P_{\mathcal{S}_{k, 0}(\Delta)}\right\|_{\infty}+\left\|P_{\mathcal{R}_{k, 1}(\Delta)}\right\|_{\infty} \leq \sigma_{k, 0}+\frac{2 k(k+1)}{(k-1)^{2}} \sigma_{k, 0}=\frac{3 k^{2}+1}{(k-1)^{2}} \sigma_{k, 0} .
$$

This upper bound is much better than the bound $\left\|G_{\delta}^{-1}\right\|_{\infty}$, already mentioned in the introduction, which was given by de Boor in [2], at least asymptotically. In fact, this becomes true as soon as $k=4$, as the following table shows. The values of $\left\|G_{\delta}^{-1}\right\|_{\infty}$ are taken from [10].

k	2	3	4	5	6	7	8		
$\frac{3 k^{2}+1}{(k-1)^{2}} \sigma_{k, 0}$	21.666	15.230	14.178	14.162	14.486	14.948	15.470		
$\left\\|G_{\delta}^{-1}\right\\|_{\infty}$	3	13	41.666	171	583.8	2364.2	8373.857		

Let us finally note that the estimate of (15) is fairly precise in the sense that it is possible to obtain $\sup _{\Delta}\left\|P_{\mathcal{R}_{k, 1}(\Delta)}\right\|_{\infty} \geq 2 \sigma_{k, 0}$ simply by considering $P_{\mathcal{R}_{k, 1}(\Delta)}(\bullet)\left(t_{1}^{-}\right)$when $N=2, t_{1} \rightarrow 0$. This implies

$$
\sup _{\Delta}\left\|P_{\mathcal{S}_{k, 1}(\Delta)}\right\|_{\infty} \geq \sup _{\Delta}\left\|P_{\mathcal{R}_{k, 1}(\Delta)}\right\|_{\infty}-\left\|P_{\mathcal{S}_{k, 0}(\Delta)}\right\|_{\infty} \geq \sigma_{k, 0}
$$

If, as we believe, the lower bound $\sigma_{k, m}$ is the actual value of $\Lambda_{k, m}$, the previous inequality reads $\sigma_{k, 1} \geq \sigma_{k, 0}$. This is in accordance with the expected monotonicity of $\sigma_{k, m}$ and can be proved as follow. First, we readily check that

$$
\mathcal{P}_{k, m}=\mathcal{P}_{k, m+1} \stackrel{\perp}{\oplus} \operatorname{span}\left[(1+\bullet)^{m} P_{k-1-m}^{(0,2 m+1)}\right] .
$$

From the representations of the Lebesgue functions at the point 1 of the orthogonal projectors onto these spaces, we obtain, for some constant C, the identity

$$
\begin{aligned}
2^{-m-1}(k+m)(1+x)^{m} P_{k-1-m}^{(1,2 m)}(x) & =2^{-m-2}(k+m+1)(1+x)^{m+1} P_{k-2-m}^{(1,2 m+2)}(x) \\
& +C(1+x)^{m} P_{k-1-m}^{(0,2 m+1)}(x) .
\end{aligned}
$$

The value of the constant C is $2^{-m-1}(2 m+1)$, as seen from the choice $x=1$. With $m=0$, we get

$$
\frac{k}{2} P_{k-1}^{(1,0)}(x)=\frac{k+1}{4}(1+x) P_{k-2}^{(1,2)}(x)+\frac{1}{2} P_{k-1}^{(0,1)}(x) .
$$

The inequality $\sigma_{k, 0} \leq \sigma_{k, 1}$ is then deduced from

$$
\begin{aligned}
\sigma_{k, 0} & =\rho_{k, 0}=\frac{k}{2} \int_{-1}^{1}\left|P_{k-1}^{(1,0)}(x)\right| d x \\
& \leq \frac{k+1}{4} \int_{-1}^{1}(1+x)\left|P_{k-2}^{(1,2)}(x)\right| d x+\frac{1}{2} \int_{-1}^{1}\left|P_{k-1}^{(0,1)}(x)\right| d x \\
& =\rho_{k, 1}+\frac{1}{k} \rho_{k, 0}=\frac{k-1}{k} \sigma_{k, 1}+\frac{1}{k} \sigma_{k, 0} .
\end{aligned}
$$

6 Bounding $\Lambda_{k, m}$ from above: the case of differentiable splines

We consider here the case $m=2, k \geq 3$, for which the order of growth of $\Lambda_{k, 2}=\sup _{\Delta}\left\|P_{\mathcal{S}_{k, 2}(\Delta)}\right\|_{\infty}$ is also shown to be \sqrt{k}. This section is dedicated to the proof of the following proposition, where the notation $u_{n} \lesssim v_{n}$ for two sequences $\left(u_{n}\right)$ and $\left(v_{n}\right)$ means that there exists a sequence $\left(w_{n}\right)$ such that $u_{n} \leq w_{n}, n \in \mathbb{N}$, and $w_{n} \underset{n \rightarrow \infty}{\sim} v_{n}$.

Proposition 12 For any knot sequence Δ,

$$
\left\|P_{\mathcal{R}_{k, 2}(\Delta)}\right\|_{\infty} \lesssim \frac{36 \sqrt{2}}{\sqrt{\pi}} \sqrt{k}, \quad \quad\left\|P_{\mathcal{S}_{k, 2}(\Delta)}\right\|_{\infty} \lesssim \frac{38 \sqrt{2}}{\sqrt{\pi}} \sqrt{k}
$$

The function f_{i} previously defined is an element of the 2-dimensional space $\mathcal{R}_{k, 2}^{i}(\Delta)$. In this space, we consider an element g_{i} orthogonal to f_{i}. It must be the k-th derivative of a piecewise polynomial G_{i} of order $2 k$ supported on $\left[t_{i-1}, t_{i+1}\right]$. The function G_{i} must vanish k-fold at t_{i-1} and at $t_{i+1},(k-2)$-fold at t_{i} and its $(k-2)$-nd and $(k-1)$-st derivatives must be continuous at t_{i}. It is then guaranteed that $g_{i}=G_{i}^{(k)}$ belongs to $\mathcal{R}_{k, 2}^{i}(\Delta)$. To be orthogonal to f_{i}, the function g_{i} must further be continuous at t_{i}. Let us introduce the
polynomial G of order $2 k$,

$$
G(x):=\frac{(-1)^{k}}{2^{k-2} k!}(1-x)^{k-2}(1+x)^{k}
$$

which vanishes k-fold at -1 and $(k-2)$-fold at 1 . Let us remark that

$$
G^{(k)}(x) \underset{(8)}{=} 4(1-x)^{-2} P_{k}^{(-2,0)}(x) \underset{(14)}{=} P_{k-2}^{(2,0)}(x) .
$$

We now define the auxiliary function H_{i} by

$$
H_{i}(x):=\left\{\begin{array}{cc}
\left(\delta_{i+1}+\frac{k-1}{k+1} \delta_{i}\right)\left(\frac{h_{i}}{2}\right)^{k-1} F\left(\frac{2 x-t_{i-1}-t_{i}}{h_{i}}\right) & \\
-\frac{1}{k+1}\left(\frac{h_{i}}{2}\right)^{k-2} G\left(\frac{2 x-t_{i-1}-t_{i}}{h_{i}}\right) & , x \in\left(t_{i-1}, t_{i}\right), \\
-\left(\delta_{i}+\frac{k-1}{k+1} \delta_{i+1}\right)\left(\frac{-h_{i+1}}{2}\right)^{k-1} F\left(\frac{t_{i}+t_{i+1}-2 x}{h_{i+1}}\right) & \\
-\frac{1}{k+1}\left(\frac{-h_{i+1}}{2}\right)^{k-2} G\left(\frac{t_{i}+t_{i+1}-2 x}{h_{i+1}}\right) & , x \in\left(t_{i}, t_{i+1}\right), \\
0 & , x \notin\left(t_{i-1}, t_{i+1}\right),
\end{array}\right.
$$

and we set, for some positive constants λ and μ to be chosen later,

$$
G_{i}:=\frac{\lambda}{\delta_{i}+\delta_{i+1}} H_{i}, \quad g_{i}:=G_{i}^{(k)} \quad \text { and } \quad \widehat{g}_{i}:=\frac{\mu}{\delta_{i}+\delta_{i+1}} g_{i} .
$$

First of all, we have to verify that g_{i} defined in this way is indeed an element of $\mathcal{R}_{k, 2}^{i}(\Delta)$ orthogonal to f_{i}, i.e. we have to establish the continuity at t_{i} of the $(k-2)$-nd, $(k-1)$-st and k-th derivatives of G_{i}, or equivalently of H_{i}. The values of the successive derivatives of G at -1 and at 1 , obtained from (9) and (10), are needed. They are

$$
\begin{array}{ll}
G^{(k-2)}(1)=\frac{4}{k(k-1)}, \\
G^{(k)}(-1)=(-1)^{k}, & G^{(k-1)}(1)=2, \\
G^{(k+1)}(-1)=(-1)^{k-1} \frac{(k-2)(k+1)}{2}, & G^{(k)}(1)=\frac{k(k-1)}{2}, \\
G^{(k+1)}(1)=\frac{k(k-2)\left(k^{2}-1\right)}{12} .
\end{array}
$$

As $F^{(k-2)}(1)=0$, the continuity of $H_{i}^{(k-2)}$ at t_{i} is readily checked. We have

$$
H_{i}^{(k-2)}\left(t_{i}^{-}\right)=H_{i}^{(k-2)}\left(t_{i}^{+}\right)=-\frac{1}{k+1} G^{(k-2)}(1)=-\frac{4}{k\left(k^{2}-1\right)} .
$$

As for the continuity of $H_{i}^{(k-1)}$ at t_{i}, it follows from

$$
\begin{aligned}
& H_{i}^{(k-1)}\left(t_{i}^{-}\right)=\left(\delta_{i+1}+\frac{k-1}{k+1} \delta_{i}\right) \cdot \frac{2}{k}-\frac{1}{k+1} \cdot 2 \delta_{i} \cdot 2=\frac{2}{k}\left(\delta_{i+1}-\delta_{i}\right), \\
& H_{i}^{(k-1)}\left(t_{i}^{+}\right)=-\left(\delta_{i}+\frac{k-1}{k+1} \delta_{i+1}\right) \cdot \frac{2}{k}-\frac{1}{k+1} \cdot\left(-2 \delta_{i+1}\right) \cdot 2=\frac{2}{k}\left(\delta_{i+1}-\delta_{i}\right) .
\end{aligned}
$$

Finally, the continuity of $H_{i}^{(k)}$ at t_{i} is a consequence of

$$
\begin{aligned}
H_{i}^{(k)}\left(t_{i}^{-}\right) & =\left(\delta_{i+1}+\frac{k-1}{k+1} \delta_{i}\right) \cdot 2 \delta_{i} \cdot k-\frac{1}{k+1} \cdot 4 \delta_{i}^{2} \cdot \frac{k(k-1)}{2}=2 k \delta_{i} \delta_{i+1} \\
H_{i}^{(k)}\left(t_{i}^{+}\right) & =-\left(\delta_{i}+\frac{k-1}{k+1} \delta_{i+1}\right) \cdot\left(-2 \delta_{i+1}\right) \cdot k-\frac{1}{k+1} \cdot 4 \delta_{i+1}^{2} \cdot \frac{k(k-1)}{2} \\
& =2 k \delta_{i} \delta_{i+1}
\end{aligned}
$$

This justifies the definition of g_{i}. We are now going to establish that the bases $\left(f_{i}, g_{i}\right)_{i=1}^{N-1}$ and $\left(\widehat{f}_{i}, \widehat{g}_{i}\right)_{i=1}^{N-1}$ of $\mathcal{R}_{k, 2}(\Delta)$ satisfy the three conditions of Lemma 8.

6.1 Condition (i)

First we determine the entries of the Gram matrix. The values of $H_{i}^{(k+1)}\left(t_{i}^{-}\right)$ and $H_{i}^{(k+1)}\left(t_{i}^{+}\right)$are required, they are

$$
\begin{aligned}
H_{i}^{(k+1)}\left(t_{i}^{-}\right) & =\left(\delta_{i+1}+\frac{k-1}{k+1} \delta_{i}\right) \cdot 4 \delta_{i}^{2} \cdot \frac{k\left(k^{2}-1\right)}{4} \\
- & \frac{1}{k+1} \cdot 8 \delta_{i}^{3} \cdot \frac{k(k-2)\left(k^{2}-1\right)}{12}=\frac{k\left(k^{2}-1\right)}{3}\left[\delta_{i}^{3}+3 \delta_{i}^{2} \delta_{i+1}\right], \\
H_{i}^{(k+1)}\left(t_{i}^{+}\right) & =-\left(\delta_{i}+\frac{k-1}{k+1} \delta_{i+1}\right) \cdot 4 \delta_{i+1}^{2} \cdot \frac{k\left(k^{2}-1\right)}{4} \\
& -\frac{1}{k+1} \cdot\left(-8 \delta_{i+1}^{3}\right) \cdot \frac{k(k-2)\left(k^{2}-1\right)}{12}=-\frac{k\left(k^{2}-1\right)}{3}\left[\delta_{i+1}^{3}+3 \delta_{i} \delta_{i+1}^{2}\right] .
\end{aligned}
$$

Equation (12) yields, in view of the continuity of $H_{i}^{(k)}$ at t_{i},

$$
\begin{aligned}
\left\langle g_{i}, \widehat{g}_{i}\right\rangle & =\frac{\lambda^{2} \mu}{\left(\delta_{i}+\delta_{i+1}\right)^{3}} \cdot\left(-H_{i}^{(k-2)}\left(t_{i}\right)\right) \cdot\left[H_{i}^{(k+1)}\left(t_{i}^{-}\right)-H_{i}^{(k+1)}\left(t_{i}^{+}\right)\right] \\
& =\frac{\lambda^{2} \mu}{\left(\delta_{i}+\delta_{i+1}\right)^{3}} \cdot \frac{4}{k\left(k^{2}-1\right)} \cdot \frac{k\left(k^{2}-1\right)}{3}\left(\delta_{i}+\delta_{i+1}\right)^{3}=\frac{4 \lambda^{2} \mu}{3}
\end{aligned}
$$

We impose from now on $4 \lambda^{2} \mu=3$, so that $\left\langle g_{i}, \widehat{g}_{i}\right\rangle=1$. Consequently, after a reordering of the bases, the Gram matrix has the form

The matrices B and C are respectively lower and upper bidiagonal by blocks of size 2×2. Their entries are given in Lemma 13 below and their ℓ_{1}-norms satisfy $\max \left(\|B\|_{1},\|C\|_{1}\right)=\max _{i} \max \left(\Phi_{i}, \Psi_{i}\right)$, where

$$
\begin{aligned}
\Phi_{i} & :=\left|\left\langle f_{i-1}, \widehat{f}_{i}\right\rangle\right|+\left|\left\langle g_{i-1}, \widehat{f_{i}}\right\rangle\right|+\left|\left\langle f_{i+1}, \widehat{f}_{i}\right\rangle\right|+\left|\left\langle g_{i+1}, \widehat{f_{i}}\right\rangle\right|, \\
\Psi_{i} & :=\left|\left\langle f_{i-1}, \widehat{g}_{i}\right\rangle\right|+\left|\left\langle g_{i-1}, \widehat{g}_{i}\right\rangle\right|+\left|\left\langle f_{i+1}, \widehat{g}_{i}\right\rangle\right|+\left|\left\langle g_{i+1}, \widehat{g}_{i}\right\rangle\right| .
\end{aligned}
$$

Lemma 13 With $\alpha_{i}=\frac{\delta_{i}}{\delta_{i}+\delta_{i+1}}$ and $\beta_{i}=\frac{\delta_{i+1}}{\delta_{i}+\delta_{i+1}}$, one has

$$
\begin{array}{rlrl}
\left\langle f_{i-1}, \widehat{f}_{i}\right\rangle & =\frac{(-1)^{k}}{k} \alpha_{i}, & \left\langle f_{i+1}, \widehat{f}_{i}\right\rangle & =\frac{(-1)^{k}}{k} \beta_{i}, \\
\left\langle g_{i-1}, \widehat{f}_{i}\right\rangle & =\lambda \frac{(-1)^{k-1}}{k} \alpha_{i}, & \left\langle g_{i+1}, \widehat{f}_{i}\right\rangle & =\lambda \frac{(-1)^{k}}{k} \beta_{i}, \\
\left\langle f_{i-1}, \widehat{g}_{i}\right\rangle & =\frac{3}{\lambda} \frac{(-1)^{k}}{k} \alpha_{i}, & \left\langle f_{i+1}, \widehat{g}_{i}\right\rangle & =\frac{3}{\lambda} \frac{(-1)^{k-1}}{k} \beta_{i}, \\
\left|\left\langle g_{i-1}, \widehat{g}_{i}\right\rangle\right| \leq \frac{3}{k} \alpha_{i}, & \left|\left\langle g_{i+1}, \widehat{g}_{i}\right\rangle\right| \leq \frac{3}{k} \beta_{i} .
\end{array}
$$

PROOF. 1) The inner products $\left\langle f_{i-1}, \widehat{f_{i}}\right\rangle$ and $\left\langle f_{i+1}, \widehat{f}_{i}\right\rangle$ have been computed in the previous section.
2) We now calculate

$$
\begin{aligned}
\left\langle f_{i}, g_{i-1}\right\rangle= & \frac{\lambda}{\delta_{i-1}+\delta_{i}} \cdot \frac{2}{k} \cdot\left[H_{i-1}^{(k)}\left(t_{i}^{-}\right)-H_{i-1}^{(k)}\left(t_{i}^{+}\right)\right]=\frac{\lambda}{\delta_{i-1}+\delta_{i}} \cdot \frac{2}{k} . \\
& {\left[-\left(\delta_{i-1}+\frac{k-1}{k+1} \delta_{i}\right) \cdot\left(-2 \delta_{i}\right) \cdot(-1)^{k-1}-\frac{1}{k+1} \cdot 4 \delta_{i}^{2} \cdot(-1)^{k}\right] } \\
= & 4 \lambda \frac{(-1)^{k-1}}{k} \delta_{i}, \\
\left\langle f_{i}, g_{i+1}\right\rangle= & \frac{\lambda}{\delta_{i+1}+\delta_{i+2}} \cdot \frac{2}{k}\left[H_{i+1}^{(k)}\left(t_{i}^{-}\right)-H_{i+1}^{(k)}\left(t_{i}^{+}\right)\right]=\frac{\lambda}{\delta_{i+1}+\delta_{i+2}} \cdot \frac{2}{k} . \\
& {\left[-\left(\delta_{i+2}+\frac{k-1}{k+1} \delta_{i+1}\right) \cdot 2 \delta_{i+1} \cdot(-1)^{k-1}+\frac{1}{k+1} \cdot 4 \delta_{i+1}^{2} \cdot(-1)^{k}\right] } \\
= & 4 \lambda \frac{(-1)^{k}}{k} \delta_{i+1} .
\end{aligned}
$$

The values of the inner products $\left\langle g_{i-1}, \widehat{f}_{i}\right\rangle,\left\langle g_{i+1}, \widehat{f}_{i}\right\rangle,\left\langle f_{i+1}, \widehat{g}_{i}\right\rangle$ and $\left\langle f_{i-1}, \widehat{g}_{i}\right\rangle$ are easily deduced, keeping in mind that $4 \lambda^{2} \mu=3$.
3) As for the inner products $\left\langle g_{i-1}, \widehat{g}_{i}\right\rangle$ and $\left\langle g_{i+1}, \widehat{g}_{i}\right\rangle$, we determine first the value of $H_{i-1}^{(k+1)}\left(t_{i}^{-}\right)$. We have

$$
\begin{aligned}
H_{i-1}^{(k+1)}\left(t_{i}^{-}\right)= & -\left(\delta_{i-1}+\frac{k-1}{k+1} \delta_{i}\right) \cdot 4 \delta_{i}^{2} \cdot(-1)^{k} \frac{k^{2}-1}{2} \\
& \quad-\frac{1}{k+1} \cdot\left(-8 \delta_{i}^{3}\right) \cdot(-1)^{k-1} \frac{(k-2)(k+1)}{2} \\
= & 2(-1)^{k-1}\left(k^{2}-1\right)\left(\delta_{i-1}+\delta_{i}\right) \delta_{i}^{2}+4(-1)^{k} \delta_{i}^{3} .
\end{aligned}
$$

Let us note that the value of $H_{i-1}^{(k)}\left(t_{i}^{-}\right)$has just been determined in stage 2) when we computed $\left\langle f_{i}, g_{i-1}\right\rangle$. Then, according to (12), we obtain

$$
\begin{aligned}
&\left\langle g_{i}, g_{i-1}\right\rangle=\frac{\lambda^{2}}{\left(\delta_{i-1}+\delta_{i}\right)\left(\delta_{i}+\delta_{i+1}\right)} \cdot\left\{H_{i}^{(k-1)}\left(t_{i}\right) \cdot\left[H_{i-1}^{(k)}\left(t_{i}^{-}\right)-H_{i-1}^{(k)}\left(t_{i}^{+}\right)\right]\right. \\
&\left.-H_{i}^{(k-2)}\left(t_{i}\right) \cdot\left[H_{i-1}^{(k+1)}\left(t_{i}^{-}\right)-H_{i-1}^{(k+1)}\left(t_{i}^{+}\right)\right]\right\} \\
&=\frac{\lambda^{2}}{\left(\delta_{i-1}+\delta_{i}\right)\left(\delta_{i}+\delta_{i+1}\right)} \cdot\left\{\frac{2}{k}\left(\delta_{i+1}-\delta_{i}\right) \cdot 2(-1)^{k-1} \delta_{i}\left(\delta_{i-1}+\delta_{i}\right)\right. \\
&\left.+\frac{4}{k\left(k^{2}-1\right)} \cdot\left(2(-1)^{k-1}\left(k^{2}-1\right)\left(\delta_{i-1}+\delta_{i}\right) \delta_{i}^{2}+4(-1)^{k} \delta_{i}^{3}\right)\right\} \\
&= \frac{\lambda^{2}}{\left(\delta_{i-1}+\delta_{i}\right)\left(\delta_{i}+\delta_{i+1}\right)} \cdot \frac{4(-1)^{k-1}}{k} \cdot\left[\left(\delta_{i-1}+\delta_{i}\right)\left(\delta_{i}+\delta_{i+1}\right) \delta_{i}-\frac{4}{k^{2}-1} \delta_{i}^{3}\right] \\
&= 4 \lambda^{2} \frac{(-1)^{k-1}}{k}\left[1-\frac{4 \beta_{i-1} \alpha_{i}}{k^{2}-1}\right] \delta_{i} .
\end{aligned}
$$

Remembering that $4 \lambda^{2} \mu=3$, it now follows that

$$
\begin{aligned}
&\left\langle g_{i-1}, \widehat{g}_{i}\right\rangle=3 \frac{(-1)^{k-1}}{k}\left[1-\frac{4 \beta_{i-1} \alpha_{i}}{k^{2}-1}\right] \alpha_{i} \\
& \quad \text { and that }\left\langle g_{i+1}, \widehat{g}_{i}\right\rangle=3 \frac{(-1)^{k-1}}{k}\left[1-\frac{4 \beta_{i} \alpha_{i+1}}{k^{2}-1}\right] \beta_{i} .
\end{aligned}
$$

To complete the proof, we just have to remark that the two expressions in square brackets are not greater than 1 in absolute value.

We infer from Lemma 13 that $\Phi_{i} \leq \frac{1+\lambda}{k}$ and $\Psi_{i} \leq \frac{\frac{3}{\lambda}+3}{k}$, so that

$$
\max \left(\|B\|_{1},\|C\|_{1}\right) \leq \frac{1}{k} \max \left(1+\lambda, \frac{3}{\lambda}+3\right) .
$$

The latter is minimized for $1+\lambda=3 / \lambda+3$, i.e. for $\lambda=3$. In view of Lemma 9 , the ℓ_{∞}-norm of M^{-1} can be bounded provided that $k>4$. Precisely, since $B C$ and $C B$ are of bandwidth 3 and since $\max \left(\|B\|_{\infty},\|C\|_{\infty}\right) \leq \frac{12}{k}$, we have

$$
\begin{equation*}
\left\|M^{-1}\right\|_{\infty} \leq \frac{k(k+12)\left(k^{2}+80\right)}{\left(k^{2}-16\right)^{2}} . \tag{16}
\end{equation*}
$$

6.2 Condition (ii)

From the expression of H_{i}, we obtain

$$
\begin{aligned}
\left\|g_{i}\right\|_{1} & =\frac{3}{\delta_{i}+\delta_{i+1}}\left\|\left(\delta_{i+1}+\frac{k-1}{k+1} \delta_{i}\right) F^{(k)}-\frac{2 \delta_{i}}{k+1} G^{(k)}\right\|_{1} \\
& +\frac{3}{\delta_{i}+\delta_{i+1}}\left\|-\left(\delta_{i}+\frac{k-1}{k+1} \delta_{i+1}\right) F^{(k)}+\frac{2 \delta_{i+1}}{k+1} G^{(k)}\right\|_{1} \\
& =3\left\|F^{(k)}-\frac{2 \alpha_{i}}{k+1}\left(F^{(k)}+G^{(k)}\right)\right\|_{1}+3\left\|F^{(k)}-\frac{2\left(1-\alpha_{i}\right)}{k+1}\left(F^{(k)}+G^{(k)}\right)\right\|_{1} \\
& \leq 3\left\|F^{(k)}\right\|_{1}+3\left\|F^{(k)}-\frac{2}{k+1}\left(F^{(k)}+G^{(k)}\right)\right\|_{1}
\end{aligned}
$$

the last inequality holding due to the convexity with respect to $\alpha_{i} \in[0,1]$ of the function involved. We remark that, according to Proposition 6, the quantity $\left\|G^{(k)}\right\|_{1}=\left\|P_{k-2}^{(2,0)}\right\|_{1}$ tends to a constant as k tends to infinity. This accounts for the rough estimate

$$
\left\|g_{i}\right\|_{1} \leq \frac{6 k}{k+1}\left\|F^{(k)}\right\|_{1}+\frac{6}{k+1}\left\|G^{(k)}\right\|_{1}=\frac{12}{k+1} \sigma_{k, 0}+\frac{6}{k+1}\left\|G^{(k)}\right\|_{1} \lesssim \frac{24 \sqrt{2}}{\sqrt{\pi} \sqrt{k}} .
$$

The same estimate holds for $\left\|f_{i}\right\|_{1}$, as can be inferred from subsection 5.2.

6.3 Condition (iii)

Let us now consider the max-norm of $r:=\sum a_{j} \widehat{f}_{j}+\sum b_{j} \widehat{g}_{j}$, which we want to bound in terms of $\max _{j}\left(\left|a_{j}\right|,\left|b_{j}\right|\right)$. The function r achieves its max-norm on $\left[t_{l}, t_{l+1}\right]$, say, where the form of $r(x), x \in\left(t_{l}, t_{l+1}\right)$, is

$$
\eta P_{k-1}^{(1,0)}(u)+\nu P_{k-1}^{(1,0)}(-u)+\eta^{\prime} P_{k-2}^{(2,0)}(u)+\nu^{\prime} P_{k-2}^{(2,0)}(-u), \quad u:=\frac{2 x-t_{l}-t_{l+1}}{h_{l+1}}
$$

Such a function of u does not necessarily achieve its max-norm at $u= \pm 1$, e.g. $\eta=\nu=2$ and $\eta^{\prime}=\nu^{\prime}=-1$ provides a counter-example when $k=5$. However, the separate contributions $C_{1}(u)=\eta P_{k-1}^{(1,0)}(u)+\nu P_{k-1}^{(1,0)}(-u)$ and $C_{2}(u)=\eta^{\prime} P_{k-2}^{(2,0)}(u)+\nu^{\prime} P_{k-2}^{(2,0)}(-u)$ do. The first contribution is

$$
\begin{aligned}
C_{1}(u) & =\frac{-a_{l} \delta_{l+1}}{2\left(\delta_{l}+\delta_{l+1}\right)} F^{(k)}(-u)+\frac{a_{l+1} \delta_{l+1}}{2\left(\delta_{l+1}+\delta_{l+2}\right)} F^{(k)}(u) \\
& +\frac{b_{l}\left(\delta_{l}+\frac{k-1}{k+1} \delta_{l+1}\right) \delta_{l+1}}{2\left(\delta_{l}+\delta_{l+1}\right)^{2}} F^{(k)}(-u)+\frac{b_{l+1}\left(\delta_{l+2}+\frac{k-1}{k+1} \delta_{l+1}\right) \delta_{l+1}}{2\left(\delta_{l+1}+\delta_{l+2}\right)^{2}} F^{(k)}(u) .
\end{aligned}
$$

The max-norm of C_{1} is achieved at 1 , say, and we have

$$
\begin{aligned}
&\left|C_{1}(u)\right| \leq\left|C_{1}(1)\right| \leq\left[\frac{\delta_{l+1}}{2\left(\delta_{l}+\delta_{l+1}\right)}+\frac{\delta_{l+1}}{2\left(\delta_{l+1}+\delta_{l+2}\right)} k\right. \\
&\left.+\frac{\left(\delta_{l}+\frac{k-1}{k+1} \delta_{l+1}\right) \delta_{l+1}}{2\left(\delta_{l}+\delta_{l+1}\right)^{2}}+\frac{\left(\delta_{l+2}+\frac{k-1}{k+1} \delta_{l+1}\right) \delta_{l+1}}{2\left(\delta_{l+1}+\delta_{l+2}\right)^{2}} k\right] \max _{j}\left(\left|a_{j}\right|,\left|b_{j}\right|\right) \\
&=\left[\frac{\left(\delta_{l}+\frac{k}{k+1} \delta_{l+1}\right) \delta_{l+1}}{\left(\delta_{l}+\delta_{l+1}\right)^{2}}+\frac{\left(\delta_{l+2}+\frac{k}{k+1} \delta_{l+1}\right) \delta_{l+1}}{\left(\delta_{l+1}+\delta_{l+2}\right)^{2}} k\right] \max _{j}\left(\left|a_{j}\right|,\left|b_{j}\right|\right) .
\end{aligned}
$$

We use the fact that, for $t \geq 0$, one has $[t+k /(k+1)] /(t+1)^{2} \leq k /(k+1)$ with $t=\delta_{l} / \delta_{l+1}$ and $t=\delta_{l+2} / \delta_{l+1}$ to obtain $\left|C_{1}(u)\right| \leq k \max _{j}\left(\left|a_{j}\right|,\left|b_{j}\right|\right)$.

As for the second contribution, we get

$$
\begin{aligned}
\left|C_{2}(u)\right| & =\left|-\frac{b_{l} \delta_{l+1}^{2}}{(k+1)\left(\delta_{l}+\delta_{l+1}\right)^{2}} G^{(k)}(-u)-\frac{b_{l+1} \delta_{l+1}^{2}}{(k+1)\left(\delta_{l+1}+\delta_{l+2}\right)^{2}} G^{(k)}(u)\right| \\
& \leq \frac{1}{k+1}\left(1+\frac{k(k-1)}{2}\right) \max _{j}\left(\left|a_{j}\right|,\left|b_{j}\right|\right)=\frac{k^{2}-k+2}{2(k+1)} \max _{j}\left(\left|a_{j}\right|,\left|b_{j}\right|\right) .
\end{aligned}
$$

Putting these two contributions together, we deduce that

$$
\left\|\sum a_{j} \widehat{f}_{j}+\sum b_{j} \widehat{g}_{j}\right\|_{\infty} \leq \frac{3 k^{2}+k+2}{2(k+1)} \max _{j}\left(\left|a_{j}\right|,\left|b_{j}\right|\right) \underset{k \rightarrow \infty}{\sim} \frac{3 k}{2} \max _{j}\left(\left|a_{j}\right|,\left|b_{j}\right|\right) .
$$

6.4 Conclusion

The estimates obtained from conditions (i), (ii) and (iii) yield

$$
\left\|P_{\mathcal{R}_{k, 2}(\Delta)}\right\|_{\infty} \lesssim 1 \cdot \frac{24 \sqrt{2}}{\sqrt{\pi} \sqrt{k}} \cdot \frac{3 k}{2}=\frac{36 \sqrt{2}}{\sqrt{\pi}} \sqrt{k}, \quad \text { thus }\left\|P_{\mathcal{S}_{k, 2}(\Delta)}\right\|_{\infty} \lesssim \frac{38 \sqrt{2}}{\sqrt{\pi}} \sqrt{k}
$$

In contrast with the case of continuous splines, the numerical values of our upper bound are unsatisfactory, e.g. we obtain roughly 1574 for $k=6$. When k is small, this is partly due to the poor estimate of (16). One way to improve it would be to consider bases of $\mathcal{R}_{k, 2}(\Delta)$ better suited to the evaluation of the inverse of the Gram matrix, providing in particular a bound also valid for $k=3$ and $k=4$.

Let us finally remark that if we consider $P_{\mathcal{R}_{k, 2}(\Delta)}(\bullet)\left(t_{1}^{-}\right)$in the case $N=$ $2, t_{1} \rightarrow 0$, we can again show that $\sup _{\Delta}\left\|P_{\mathcal{R}_{k, 2}(\Delta)}\right\|_{\infty} \geq 2 \sigma_{k, 0}$, hence that $\sup _{\Delta}\left\|P_{\mathcal{S}_{k, 2}(\Delta)}\right\|_{\infty} \geq \sigma_{k, 0}$. If the lower bound $\sigma_{k, m}$ is indeed the value of $\Lambda_{k, m}$, this reads $\sigma_{k, 2} \geq \sigma_{k, 0}$, in accordance with the expected monotonicity of $\sigma_{k, m}$.

Acknowledgements

I thank A. Shadrin who instigated this work and took an active part in valuable discussions.

References

[1] C. de Boor. The quasi-interpolant as a tool in elementary polynomial spline theory in: Approximation Theory (Austin, TX, 1973), Academic Press, New York, 1973, 269-276.
[2] C. de Boor. A bound on the L_{∞}-norm of L_{2}-approximation by splines in terms of a global mesh ratio. Mathematics of Computation, Vol. 30, No.136, (1976), 765-771.
[3] S. Demko. Inverses of band matrices and local convergence of spline projections. SIAM J. Numer. Anal., Vol 14, No. 4 (1977), 616-619.
[4] D. Kershaw. Inequalities on the elements of the inverse of a certain tridiagonal matrix. Mathematics of Computation, Vol. 24, No.109, (1970), 155-158.
[5] W. Light. Jacobi projections in: Approximation theory and applications (Zvi Ziegler, ed.), Academic Press, New York, 1981, 187-200.
[6] L. Lorch. The Lebesgue constants for Jacobi Series, I. Proceedings of the American Mathematical Society, Vol. 10, No.5, (1959), 756-761.
[7] A. A. Malyugin. Sharp estimates of norm in C of orthogonal projection onto subspaces of polygons. Mathematical Notes, 33 (1983), 355-361.
[8] K. I. Oskolkov. The upper bound of the norms of orthogonal projections onto subspaces of polygonals in: Approximation Theory (Warsaw, 1975), Banach Center Publ., 4, PWN, Warsaw, 1979, 177-183.
[9] C. K. Qu, R. Wong. Szegö's conjecture on Lebesgue constants for Legendre series. Pacific J. Math., 135 (1988), 157-188.
[10] A. Shadrin. The L_{∞}-norm of the L_{2}-spline projector is bounded independently of the knot sequence: A proof of de Boor's conjecture. Acta Math., 187 (2001), 59-137.
[11] G. Szegö. Asymptotische Entwicklungen der Jacobischen Polynome. Schriften der Königsberger Gelehrten Gesellschaft, naturwissenschaftliche Klasse, vol 10 (1933), 35-112.
[12] G.
Szegö. Orthogonal polynomials. American Mathematical Society, Colloquium publications, vol XXIII, 1959.

