On the value of the max-norm of the orthogonal projector onto splines with multiple knots

Simon Foucart

University of Cambridge, Department of Applied Mathematics and Theoretical Physics, Wilberforce Road, Cambridge, CB3 0WA, UK

Abstract

The supremum over all knot sequences of the max-norm of the orthogonal spline projector is studied with respect to the order k of the splines and their smoothness. It is first bounded from below in terms of the max-norm of the orthogonal projector onto a space of incomplete polynomials. Then, for continuous and for differentiable splines, its order of growth is shown to be \sqrt{k} .

Key words: Orthogonal projectors, Splines

1 Introduction

In 2001, Shadrin [10] confirmed de Boor's long standing conjecture [1] that the max-norm of the orthogonal spline projector is bounded independently of the underlying knot sequence. However, the problem was not solved to complete satisfaction as the behavior of the max-norm supremum remains unclear. Shadrin conjectured that its actual value is 2k-1, having shown that it cannot be smaller. Here the integer k represents the order of the splines, meaning that the splines are of degree at most k-1.

In this paper, we study the max-norm of the orthogonal projector onto splines of lower smoothness. For a knot sequence $\Delta = (-1 = t_0 < t_1 < \cdots < t_{N-1} < t_N = 1)$ and for integers k and m satisfying $0 \le m \le k - 1$, we denote by

$$\mathcal{S}_{k,m}(\Delta) := \left\{ s \in \mathcal{C}^{m-1}[-1,1] : s_{\mid (t_{i-1},t_i)} \text{ is a polynomial of order } k, i = 1,...,N \right\}$$

Email address: S.Foucart@damtp.cam.ac.uk (Simon Foucart).

the space of splines of order k satisfying m conditions of smoothness at each breakpoint t_1, \ldots, t_{N-1} . Thus $\mathcal{S}_{k,0}(\Delta)$ is the space of piecewise polynomials, $\mathcal{S}_{k,1}(\Delta)$ is the space of continuous splines, and so on until $\mathcal{S}_{k,k-1}(\Delta)$ which is the usual space of splines with simple knots. The orthogonal projector $P_{\mathcal{S}_{k,m}(\Delta)}$ onto the space $\mathcal{S}_{k,m}(\Delta)$ is the only linear map from $L_2[-1,1]$ into $\mathcal{S}_{k,m}(\Delta)$ satisfying

$$\langle P_{\mathcal{S}_{k,m}(\Delta)}(f), s \rangle = \langle f, s \rangle, \qquad f \in L_2[-1, 1], \quad s \in \mathcal{S}_{k,m}(\Delta),$$

where $\langle \cdot, \cdot \rangle$ is the usual inner product on $L_2[-1, 1]$. We are interested in the norm of this projector when interpreted as a linear map from $L_{\infty}[-1, 1]$ into $L_{\infty}[-1, 1]$. Shadrin established the finiteness of

$$\Lambda_{k,m} := \sup_{\Delta} \left\| P_{\mathcal{S}_{k,m}(\Delta)} \right\|_{\infty}$$

by proving that $\Lambda_{k,k-1} = \max_m \Lambda_{k,m}$ is finite. His proof was based on the bound

$$\|P_{\mathcal{S}_{k,k-1}(\Delta)}\|_{\infty} \leq \|G_{\Delta}^{-1}\|_{\infty}$$

in terms of the ℓ_{∞} -norm of the inverse of the B-spline Gram matrix. But he also remarked that the order of the bound obtained as such cannot be better than $4^k/\sqrt{k}$, the order of $\|G_{\delta}^{-1}\|_{\infty}$ for the Bernstein knot sequence δ . Therefore, in order to get closer to the value 2k-1, it is necessary to propose a new approach.

The approach we exploit in the second part of this paper originates from the known behavior of the quantity $\Lambda_{k,0}$. The orthogonal projector onto $\mathcal{S}_{k,0}(\Delta)$ has a local character, hence is deduced from the orthogonal projector onto the space \mathcal{P}_k of polynomials of order k on the interval [-1,1]. In particular, for any knot sequence Δ , there holds $\|P_{\mathcal{S}_{k,0}(\Delta)}\|_{\infty} = \|P_{\mathcal{P}_k}\|_{\infty}$. Then, according to some properties of the orthogonal projector onto polynomials, see e.g. [5], we have

$$\left\| P_{\mathcal{S}_{k,0}(\Delta)} \right\|_{\infty} = \sup_{\|f\|_{\infty} \le 1} \left| P_{\mathcal{P}_k}(f)(1) \right|, \quad \text{so that} \quad \Lambda_{k,0} \asymp \sqrt{k}.$$
 (1)

We will show that the behavior of $\Lambda_{k,m}$ is not radically changed if we increase the smoothness to m=1 and m=2, thus improving de Boor's estimate [2]

$$\Lambda_{k,1} \leq \left\| G_{\delta}^{-1} \right\|_{\infty} \approx 4^k / \sqrt{k}.$$

Namely, we will prove that

$$\Lambda_{k,m} \le \operatorname{cst} \cdot \sqrt{k}, \qquad m = 1, 2.$$

On the other hand, the order of $\Lambda_{k,m}$ will be shown to be at least \sqrt{k} for m=1,2. This is a consequence of a result which gives some insight into the inequality $\Lambda_{k,k-1} \geq 2k-1$. Indeed, for any m, we will indicate a connection,

extending the one of (1), between $\Lambda_{k,m}$ and the orthogonal projector onto a certain space of incomplete polynomials. To be precise, we introduce the following space of polynomials on [-1,1],

$$\mathcal{P}_{k,m} := \operatorname{span}\left\{ (1 + \bullet)^m, \dots, (1 + \bullet)^{k-1} \right\}, \tag{2}$$

and we denote by $\rho_{k,m}$ the value at the point 1 of the Lebesgue function of the orthogonal projector $P_{\mathcal{P}_{k,m}}$ onto the space $\mathcal{P}_{k,m}$, i.e.

$$\rho_{k,m} := \sup_{\|f\|_{\infty} \le 1} \left| P_{\mathcal{P}_{k,m}}(f)(1) \right|.$$

With this terminology, we prove below the inequality

$$\Lambda_{k,m} \ge \frac{k}{k-m} \, \rho_{k,m}. \tag{3}$$

This lower bound is of order \sqrt{k} for small values of m and of order k for large values of m, which gives some support to the speculative guess $\Lambda_{k,m} \approx k/\sqrt{k-m}$.

2 Bounding $\Lambda_{k,m}$ from below

In this section, we formulate a result which readily implies the lower estimate of (3). Let us introduce the quantity

$$\Upsilon_{k,m,N} := \sup_{\Delta = (-1 = t_0 < \dots < t_N = 1)} \left[\sup_{\|f\|_{\infty} \le 1} \left| P_{\mathcal{S}_{k,m}(\Delta)}(f)(1) \right| \right].$$

We aim to bound $\Upsilon_{k,m,N+1}$ from below in terms of $\Upsilon_{k,m,N}$, following an idea used for m=k-1 in [10] and which appeared first in [8] in the case k=2. Namely, we prove in subsections 2.1 and 2.2 that

$$\Upsilon_{k,m,N+1} \ge \frac{m}{k} \Upsilon_{k,m,N} + \rho_{k,m}. \tag{4}$$

In other words, we have

$$(\Upsilon_{k,m,N+1} - \sigma_{k,m}) \ge \frac{m}{k} (\Upsilon_{k,m,N} - \sigma_{k,m}), \quad \text{where} \quad \sigma_{k,m} := \frac{k}{k-m} \rho_{k,m}.$$

In view of $\Upsilon_{k,m,1} = \rho_{k,0} = \sigma_{k,0}$, we infer

$$\Upsilon_{k,m,N} - \sigma_{k,m} \ge \left(\frac{m}{k}\right)^{N-1} (\sigma_{k,0} - \sigma_{k,m}) \underset{N \to \infty}{\longrightarrow} 0, \quad \text{hence} \quad \sup_{N} \Upsilon_{k,m,N} \ge \sigma_{k,m}.$$

This translates into the following theorem.

Theorem 1 There hold the inequalities

$$\sup_{\Delta=(-1=t_0<\dots< t_N=1)} \left\|P_{\mathcal{S}_{k,m}(\Delta)}\right\|_{\infty} \geq \Upsilon_{k,m,N} \geq \left[\left(\frac{m}{k}\right)^{N-1}\right] \sigma_{k,0} + \left[1-\left(\frac{m}{k}\right)^{N-1}\right] \sigma_{k,m}.$$

In particular, one has

$$\sup_{\Delta} \|P_{\mathcal{S}_{k,m}(\Delta)}\|_{\infty} \geq \sigma_{k,m}.$$

We note that, in the case k = 2, Malyugin [7] established that these inequalities are all equalities.

2.1 Estimating $\Upsilon_{k,m,N+1}$ in terms of $\Upsilon_{k,m,N}$

In order to derive (4), let us fix a knot sequence

$$\Delta = (-1 = t_0 < t_1 < \dots < t_{N-1} < t_N = 1),$$

and let us consider the refined knot sequence

$$\Delta_t := (-1 = t_0 < t_1 < \dots < t_{N-1} < t < t_N = 1).$$

We have the splitting

$$\mathcal{S}_{k,m}(\Delta_t) = \mathcal{S}_{k,m}(\Delta) \oplus \mathcal{T}_{k,m,t}, \quad \text{where } \mathcal{T}_{k,m,t} := \operatorname{span}\left\{ (ullet - t)_+^m, \dots, (ullet - t)_+^{k-1} \right\}.$$

Let P_t , P and Q_t denote the orthogonal projectors onto $\mathcal{S}_{k,m}(\Delta_t)$, $\mathcal{S}_{k,m}(\Delta)$ and $\mathcal{T}_{k,m,t}$ respectively, and let 1 denote the function constantly equal to 1. We are going to establish first that

$$\varepsilon_t := \sup_{\|f\|_{\infty} \le 1} \|P_t(f) - P(f) - Q_t(f) + P(f)(1)Q_t(\mathbf{1})\|_{\infty} \xrightarrow[t \to 1]{} 0.$$
 (5)

The following lemma is a kind of folklore.

Lemma 2 The orthogonal projector P from a Hilbert space H onto a finite-dimensional subspace $V = V_1 \oplus V_2$ can be expressed in terms of the orthogonal projectors P_1 and P_2 onto V_1 and V_2 as

$$P = (I - P_1 P_2)^{-1} P_1 (I - P_2) + (I - P_2 P_1)^{-1} P_2 (I - P_1).$$

PROOF. We remark first that the operator $I - P_1P_2$ is invertible, because $||P_1P_2|| < 1$ for the operator norm subordinated to the Hilbert norm $||\cdot||$.

Indeed, for $v_2 \in V_2$, we have

$$||v_2||^2 = ||P_1v_2||^2 + ||v_2 - P_1v_2||^2 > ||P_1v_2||^2,$$

and due to the finite dimension of V_2 , we derive that $||P_{1|V_2}|| < 1$, hence that $||P_1P_2|| \le ||P_{1|V_2}|| ||P_2|| < 1$. Similar arguments prove that the operator $I - P_2P_1$ is invertible. Then, for $h \in H$, we write $Ph =: v_1 + v_2$ for $v_1 \in V_1$ and $v_2 \in V_2$. We apply P_1 and P_1P_2 to Ph, so that, in view of $P_1P = P_1$ and $P_2P = P_2$, we get

$$P_1h = v_1 + P_1v_2,$$

 $P_1P_2h = P_1P_2v_1 + P_1v_2,$ thus $P_1(I - P_2)h = (I - P_1P_2)v_1.$

We infer that $v_1 = (I - P_1 P_2)^{-1} P_1 (I - P_2) h$. The expression for v_2 is obtained by exchanging the indices.

In our situation, and in view of $(I - Q_t P)^{-1} = I + Q_t (I - PQ_t)^{-1} P$, Lemma 2 reads

$$P_t = (I - PQ_t)^{-1}P(I - Q_t) + (I - Q_tP)^{-1}Q_t(I - P)$$

= $(I - PQ_t)^{-1}(P - PQ_t) + Q_t - Q_tP + Q_t(I - PQ_t)^{-1}PQ_t(I - P)$. (6)

We claim that, for the operator norm subordinated to the max-norm, one has

$$Q_t P - P(\bullet)(1)Q_t(1) \longrightarrow 0, \qquad PQ_t \longrightarrow 0.$$

To justify this claim, we remark first that the orthogonal projector Q_t is obtained from the orthogonal projector $P_{\mathcal{P}_{k,m}}$ onto the space $\mathcal{P}_{k,m}$ introduced in (2) by a linear transformation between the intervals [t, 1] and [-1, 1]. Namely, for $u \in [t, 1]$, we have

$$Q_t(f)(u) = P_{\mathcal{P}_{k,m}}(\widetilde{f})\left(\frac{2u-1-t}{1-t}\right), \qquad \widetilde{f}(x) := f\left(\frac{(1-t)x+1+t}{2}\right).$$

Then, for $s \in \mathcal{S}_{k,m}(\Delta)$, $||s||_{\infty} \leq 1$, we get, as $||s'||_{\infty} \leq C$ for some constant C,

$$||Q_{t}(s) - s(1)Q_{t}(\mathbf{1})||_{\infty} = ||P_{\mathcal{P}_{k,m}}(\tilde{s} - s(1)\mathbf{1})||_{\infty}$$

$$\leq ||P_{\mathcal{P}_{k,m}}||_{\infty} ||s - s(1)\mathbf{1}||_{\infty,[t,1]} \leq ||P_{\mathcal{P}_{k,m}}||_{\infty} C(1 - t).$$

This implies the first part of our claim. Next, fixing an orthonormal basis $(s_i)_{i=1}^L$ of $\mathcal{S}_{k,m}(\Delta)$, a function f vanishing on [-1,t] and such that $||f||_{\infty} \leq 1$ satisfies

$$||Pf||_{\infty} = \left\| \sum_{i=1}^{L} \langle s_i, f \rangle s_i \right\|_{\infty} \le \sum_{i=1}^{L} \int_{t}^{1} |s_i(u)| du \cdot ||s_i||_{\infty} =: \eta_t.$$

The second part of our claim follows from the facts that $\eta_t \to 0$ as $t \to 1$ and that the norm of Q_t is independent of t.

Now, looking at the limit of each term of (6) with respect to the operator norm, we derive (5) in the condensed form

$$P_t - P - Q_t + P(\bullet)(1)Q_t(\mathbf{1}) \xrightarrow[t \to 1]{} 0.$$

From the definition of ε_t , one has in particular

$$\sup_{\|f\|_{\infty} \le 1} |P_t(f)(1) - [1 - Q_t(\mathbf{1})(1)] P(f)(1) - Q_t(f)(1)| \le \varepsilon_t.$$
 (7)

Let us stress that the quantity $[1-Q_t(\mathbf{1})(1)]$ is independent of t, as it is simply $[1-P_{\mathcal{P}_{k,m}}(\mathbf{1})(1)] =: \gamma_{k,m}$. For $f, g \in L_{\infty}[-1, 1]$, $||f||_{\infty} \leq 1$, $||g||_{\infty} \leq 1$, and for $f_t \in L_{\infty}[-1, 1]$ defined by

$$f_t(x) = \begin{cases} f(x) , & x \in [-1, t], \\ g(x) , & x \in [t, 1], \end{cases}$$

we obtain from (7) the inequality

$$|P_t(f_t)(1) - \gamma_{k,m} P(f_t)(1) - Q_t(f_t)(1)| \le \varepsilon_t.$$

We note that $Q_t(f_t) = Q_t(g)$ and that $|P(f_t - f)(1)| \leq \eta_t$ to get

$$\Upsilon_{k,m,N+1} \ge |P_t(f_t)(1)| \ge |\gamma_{k,m}P(f_t)(1) + Q_t(f_t)(1)| - \varepsilon_t \ge |\gamma_{k,m}P(f)(1) + Q_t(g)(1)| - |\gamma_{k,m}| \eta_t - \varepsilon_t.$$

As the functions f and q were arbitrary, we deduce that

$$\Upsilon_{k,m,N+1} \ge |\gamma_{k,m}| \sup_{\|f\|_{\infty} \le 1} |P(f)(1)| + \sup_{\|g\|_{\infty} \le 1} |Q_t(g)(1)| - |\gamma_{k,m}| \, \eta_t - \varepsilon_t.$$

The second supremum is simply the constant $\rho_{k,m}$. In this inequality, we now take first the limit as $t \to 1$ then the supremum over Δ to obtain (4) in the provisional form

$$\Upsilon_{k,m,N+1} \ge |\gamma_{k,m}| \Upsilon_{k,m,N} + \rho_{k,m}.$$

2.2 The orthogonal projector onto $\mathcal{P}_{k,m}$

To complete the proof of Theorem 1, we need the value of $\gamma_{k,m}$, thus the value of $P_{\mathcal{P}_{k,m}}(\mathbf{1})(1)$. For this purpose, we call upon a few important properties of Jacobi polynomials which can all be found in Szegö's monograph [12].

The Jacobi polynomials $P_n^{(\alpha,\beta)}$ are defined by Rodrigues' formula

$$(1-x)^{\alpha}(1+x)^{\beta}P_n^{(\alpha,\beta)}(x) = \frac{(-1)^n}{2^n n!} \frac{d^n}{dx^n} \left[(1-x)^{n+\alpha} (1+x)^{n+\beta} \right]. \tag{8}$$

They are orthogonal on [-1,1] with respect to the weight $(1-x)^{\alpha}(1+x)^{\beta}$, when $\alpha > -1$ and $\beta > -1$ to insure integrability. They obey the symmetry relation $P_n^{(\alpha,\beta)}(x) = (-1)^n P_n^{(\beta,\alpha)}(-x)$ and the differentiation formula

$$\frac{d}{dx}\left[P_n^{(\alpha,\beta)}(x)\right] = \frac{n+\alpha+\beta+1}{2}P_{n-1}^{(\alpha+1,\beta+1)}(x). \tag{9}$$

Their values at the point 1 are

$$P_n^{(\alpha,\beta)}(1) = \binom{n+\alpha}{n} = \frac{(n+\alpha)\cdots(\alpha+1)}{n!}.$$
 (10)

These properties recalled, we can formulate the following lemma, which implies in particular that $\gamma_{k,m} = (-1)^{k-m} m/k$.

Lemma 3 There hold the representation

$$P_{\mathcal{P}_{k,m}}(f)(1) = 2^{-m-1}(k+m) \int_{-1}^{1} (1+x)^m P_{k-1-m}^{(1,2m)}(x) f(x) dx$$

and the equality

$$P_{\mathcal{P}_{k,m}}(\mathbf{1})(1) = 1 - (-1)^{k-m} \frac{m}{k}$$

PROOF. Let us introduce the polynomials $p_i \in \mathcal{P}_{k,m}$ defined by $p_i(x) := (1+x)^m P_i^{(0,2m)}(x)$. The orthogonality conditions

$$h_i^{(0,2m)} \cdot \delta_{i,j} := \int_{-1}^1 (1+x)^{2m} P_i^{(0,2m)}(x) P_j^{(0,2m)}(x) dx = \int_{-1}^1 p_i(x) p_j(x) dx$$

show that system $(p_i)_{i=0}^{k-1-m}$ is an orthogonal basis of $\mathcal{P}_{k,m}$. Therefore the orthogonal projector onto $\mathcal{P}_{k,m}$ admits the representation

$$P_{\mathcal{P}_{k,m}}(f) = \sum_{i=0}^{k-1-m} \frac{\langle p_i, f \rangle}{\|p_i\|_2^2} p_i.$$

For $y \in [-1, 1]$, it reads

$$P_{\mathcal{P}_{k,m}}(f)(y) = \sum_{i=0}^{k-1-m} \frac{1}{h_i^{(0,2m)}} \int_{-1}^1 (1+x)^m P_i^{(0,2m)}(x) f(x) dx \cdot (1+y)^m P_i^{(0,2m)}(y)$$

=:
$$\int_{-1}^1 (1+x)^m (1+y)^m K_{k-1-m}^{(0,2m)}(x,y) f(x) dx.$$

According to [12, p 71], the kernel $K_{k-1-m}^{(0,2m)}(x,1)$ is $2^{-2m-1}(k+m)P_{k-1-m}^{(1,2m)}(x)$, hence the representation mentioned in the lemma. We then have

$$P_{\mathcal{P}_{k,m}}(\mathbf{1})(1) = 2^{-m-1}(k+m) \int_{-1}^{1} (1+x)^{m} P_{k-1-m}^{(1,2m)}(x) dx$$

$$= 2^{-m} \int_{-1}^{1} (1+x)^{m} \frac{d}{dx} \left[P_{k-m}^{(0,2m-1)}(x) \right] dx$$

$$= 2^{-m} \left(\left[(1+x)^{m} P_{k-m}^{(0,2m-1)}(x) \right]_{-1}^{1} - m \int_{-1}^{1} (1+x)^{m-1} P_{k-m}^{(0,2m-1)}(x) dx \right)$$

$$= 1 - 2^{-m} m \int_{-1}^{1} (1+x)^{m-1} P_{k-m}^{(0,2m-1)}(x) dx.$$

The latter integral equals $(-1)^{k-m}2^m/k$, as the following calculation shows

$$\int_{-1}^{1} (1+x)^{m-1} P_{k-m}^{(0,2m-1)}(x) dx$$

$$= \frac{(-1)^{k-m}}{2^{k-m} (k-m)!} \int_{-1}^{1} (1+x)^{-m} \cdot \frac{d^{k-m}}{dx^{k-m}} \left[(1-x)^{k-m} (1+x)^{k+m-1} \right] dx$$

$$= \frac{1}{2^{k-m} (k-m)!} \int_{-1}^{1} \frac{d^{k-m}}{dx^{k-m}} \left[(1+x)^{-m} \right] \cdot (1-x)^{k-m} (1+x)^{k+m-1} dx$$

$$= \frac{1}{2^{k-m} (k-m)!} \frac{(-1)^{k-m} (k-1)!}{(m-1)!} \int_{-1}^{1} (1-x)^{k-m} (1+x)^{m-1} dx$$

$$= \frac{(-1)^{k-m} (k-1)!}{2^{k-m} (k-m)! (m-1)!} \frac{2^k (k-m)! (m-1)!}{k!} = (-1)^{k-m} \frac{2^m}{k}. \quad \Box$$

3 On the constant $\rho_{k,m}$

We now justify that the quantity $\Lambda_{k,m}$ is at least of order \sqrt{k} for small values of m and at least of order k for large values of m. Precisely, the behavior of $\sigma_{k,m}$ is given below.

Proposition 4 The lower bounds $\sigma_{k,m}$ for $\Lambda_{k,m}$ satisfy

$$\begin{split} & \sigma_{k,k-1} &= 2k-1, \\ & \sigma_{k,k-2} \underset{k \to \infty}{\sim} c_{k-2} \, k, \quad c_{k-2} = 4e^{-1} \approx 1.4715, \\ & \sigma_{k,k-3} \underset{k \to \infty}{\sim} c_{k-3} \, k, \quad c_{k-3} \approx 1.2216, \\ & \sigma_{k,m} \underset{k \to \infty}{\sim} c \, \sqrt{k}, \quad c = 2\sqrt{2/\pi} \approx 1.5957, \quad \text{if m is independent of k.} \end{split}$$

This will follow at once when we establish the behavior of the constant $\rho_{k,m}$. According to Lemma 3, this constant can be expressed as

$$\rho_{k,m} = 2^{-m-1}(k+m) \int_{-1}^{1} (1+x)^m \left| P_{k-1-m}^{(1,2m)}(x) \right| dx.$$
 (11)

To the best of our knowledge, whether $\rho_{k,m}$ equals the max-norm of the orthogonal projector onto $\mathcal{P}_{k,m}$ is an open question, although this is known for m=0, is trivial for m=k-1 and can be shown for m=k-2. It also seems that there has been no attempt to evaluate the order of growth of $\rho_{k,m}$ uniformly in m. Nevertheless, for small and large values of m, such evaluations can be carried out.

Lemma 5 One has

$$\rho_{k,k-1} = 2 - 1/k,
\rho_{k,k-2} \xrightarrow{k \to \infty} 8e^{-1} \approx 2.9430,
\rho_{k,k-3} \xrightarrow{k \to \infty} 2 + 8(2 + \sqrt{3})e^{(-3-\sqrt{3})/2} - 8(2 - \sqrt{3})e^{(-3+\sqrt{3})/2} \approx 3.6649.$$

PROOF. The fact that $P_0^{(1,2k-2)}(x) = 1$ clearly yields the value of $\rho_{k,k-1}$. We then compute $P_1^{(1,2k-4)}(x) = \frac{1}{2} \left[(2k-1)(1+x) - 4k + 6 \right]$ and we subsequently obtain

$$\rho_{k,k-2} = \frac{2}{k} + \frac{4(2k-3)}{k} \left(\frac{2k-3}{2k-1}\right)^{k-1} \xrightarrow[k \to \infty]{} 8e^{-1}.$$

Finally, we find that $P_2^{(1,2k-6)}(x)$ equals

$$\frac{1}{4} \left[(k-1)(2k-1)(1+x)^2 - 8(k-1)(k-2)(1+x) + 4(k-2)(2k-5) \right].$$

The roots of this quadratic polynomial are

$$x_1 = \frac{2k - 7 - 2\sqrt{\frac{3(k-2)}{k-1}}}{2k - 1},$$
 $x_2 = \frac{2k - 7 + 2\sqrt{\frac{3(k-2)}{k-1}}}{2k - 1}.$

After some calculations, we obtain the announced limit from the expression

$$\rho_{k,k-3} = \frac{2k-3}{k} + \frac{4(2k-3)}{k} \left[(2-k)(1+x_1) + 2k - 5 \right] \left(\frac{1+x_1}{2} \right)^{k-2} - \frac{4(2k-3)}{k} \left[(2-k)(1+x_2) + 2k - 5 \right] \left(\frac{1+x_2}{2} \right)^{k-2}.$$

As for small values of m, the behavior of $\rho_{k,m}$ follows from a result of Szegö [11, p 84–86], whose first part was sharpened in [6].

Proposition 6 ([11]) If $2\lambda - \alpha + 3/2 > 0$, there is a constant $c_{\lambda,\mu}^{(\alpha,\beta)}$ such that

$$\int_0^1 (1-x)^{\lambda} (1+x)^{\mu} \left| P_n^{(\alpha,\beta)}(x) \right| dx \underset{n \to \infty}{\sim} c_{\lambda,\mu}^{(\alpha,\beta)} n^{-\frac{1}{2}}.$$

If $2\lambda - \alpha + 3/2 < 0$, there is a constant $d_{\lambda,\mu}^{(\alpha,\beta)}$ such that

$$\int_{0}^{1} (1-x)^{\lambda} (1+x)^{\mu} \left| P_{n}^{(\alpha,\beta)}(x) \right| dx \underset{n \to \infty}{\sim} d_{\lambda,\mu}^{(\alpha,\beta)} n^{-2\lambda+\alpha-2}.$$

Only the formula for the constant $c_{\lambda,\mu}^{(\alpha,\beta)}$ is relevant to us, it is

$$c_{\lambda,\mu}^{(\alpha,\beta)} = \frac{2^{\lambda+\mu+2}}{\pi\sqrt{\pi}} \int_0^{\frac{\pi}{2}} (\sin\theta/2)^{2\lambda-\alpha+\frac{1}{2}} (\cos\theta/2)^{2\mu-\beta+\frac{1}{2}} d\theta.$$

Lemma 7 If m is independent of k, one has

$$\rho_{k,m} \underset{k \to \infty}{\sim} \frac{2\sqrt{2}}{\sqrt{\pi}} \sqrt{k}.$$

PROOF. We split the integral appearing in (11) in two and use the symmetry relation to obtain

$$\int_{-1}^{1} (1+x)^m \left| P_{k-1-m}^{(1,2m)}(x) \right| dx$$

$$= \int_{0}^{1} (1-x)^m \left| P_{k-1-m}^{(2m,1)}(x) \right| dx + \int_{0}^{1} (1+x)^m \left| P_{k-1-m}^{(1,2m)}(x) \right| dx$$

$$\underset{k \to \infty}{\sim} \left(c_{m,0}^{(2m,1)} + c_{0,m}^{(1,2m)} \right) k^{-\frac{1}{2}}.$$

Substituting the values of the constants gives

$$\begin{split} c_{m,0}^{(2m,1)} + c_{0,m}^{(1,2m)} \\ &= \frac{2^{m+2}}{\pi\sqrt{\pi}} \left[\int_0^{\frac{\pi}{2}} (\sin\theta/2)^{\frac{1}{2}} (\cos\theta/2)^{-\frac{1}{2}} d\theta + \int_0^{\frac{\pi}{2}} (\sin\theta/2)^{-\frac{1}{2}} (\cos\theta/2)^{\frac{1}{2}} d\theta \right] \\ &= \frac{2^{m+2}}{\pi\sqrt{\pi}} \left[\int_0^{\frac{\pi}{2}} (\sin\theta/2)^{\frac{1}{2}} (\cos\theta/2)^{-\frac{1}{2}} d\theta + \int_{\frac{\pi}{2}}^{\pi} (\cos\eta/2)^{-\frac{1}{2}} (\sin\eta/2)^{\frac{1}{2}} d\eta \right] \\ &= \frac{2^{m+2}}{\pi\sqrt{\pi}} \int_0^{\pi} (\sin\theta/2)^{\frac{1}{2}} (\cos\theta/2)^{-\frac{1}{2}} d\theta. \end{split}$$

For p, q > 0, it is known that

$$\int_0^{\pi} (\sin \theta/2)^{2p-1} (\cos \theta/2)^{2q-1} d\theta = \int_0^1 u^{p-1} (1-u)^{q-1} du = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}.$$

Thus, in view of $\Gamma(z)\Gamma(1-z) = \pi/\sin(\pi z)$, we derive that

$$c_{m,0}^{(2m,1)} + c_{0,m}^{(1,2m)} = \frac{2^{m+2}}{\pi\sqrt{\pi}} \frac{\Gamma\left(\frac{3}{4}\right)\Gamma\left(\frac{1}{4}\right)}{\Gamma(1)} = \frac{2^{m+2}\sqrt{2}}{\sqrt{\pi}},$$

and the conclusion follows.

Some numerical values of the constant $\rho_{k,m}$ are indicated in the table below.

$\rho_{k,m}$	k=1	k=2	k = 3	k=4	k=5	k = 6	k = 7
m=0	1	1.6666	2.1757	2.6042	2.9815	3.3225	3.6360
m=1		1.5	2.1066	2.5693	2.9625	3.3120	3.6305
m=2			1.6666	2.3221	2.8	3.1959	3.5430
m=3				1.75	2.4493	2.9503	3.3586
m=4					1.8	2.5332	3.0560
m=5						1.8333	2.5927
m=6							1.8571

We observe that $\rho_{k,0}$ increases with k, a fact which has been proved in [9]. It also seems that $\rho_{k,m}$ increases with k for any fixed m. On the other hand, when k is fixed, the quantity $\rho_{k,m}$ does not decrease with m, e.g. we have $\rho_{10,0} \approx 4.4607 < \rho_{10,1} \approx 4.4619$. The tentative inequality $\rho_{2k,k} \leq \rho_{2k,0}$ may nevertheless hold and would account for the guess $\sigma_{k,m} \approx k(k-m)^{-1/2}$ rather than the other seemingly natural one, namely $\sigma_{k,m} \approx k^{(k+m)/2k}$. Indeed, we would have $\sigma_{2k,k} = 2k/k \cdot \rho_{2k,k} \leq 2\rho_{2k,0} \leq \operatorname{cst} \cdot \sqrt{k}$, so that the order of $\sigma_{2k,k}$ could not be $k^{3/4}$.

We display at last some numerical values of the lower bound $\sigma_{k,m}$.

$\sigma_{k,m}$	k=1	k=2	k = 3	k=4	k=5	k = 6	k = 7
m=0	1	1.6666	2.1757	2.6042	2.9815	3.3225	3.6360
m=1		3	3.16	3.4258	3.7031	3.9744	4.2356
m=2			5	4.6443	4.6666	4.7938	4.9603
m=3				7	6.1233	5.9006	5.8775
m=4					9	7.5996	7.1308
m=5						11	9.0745
m=6							13

For a fixed k, it seems that $\sigma_{k,m}$ increases with m. However, for a fixed m, it appears that $\sigma_{k,m}$ is not a monotonic function of k. The initial decrease of $\sigma_{k,m}$ could be explained by the facts that $\sigma_{m+1,m} = 2m+1$ and that $\sigma_{2m,m} \simeq \sqrt{m}$, if confirmed.

4 Bounding $\Lambda_{k,m}$ from above: description of the method

We present here the key steps of the arguments we will use to determine an upper bound for $\Lambda_{k,m}$. The idea of orthogonal splitting comes from Shadrin, who suggested it to us in a private communication.

4.1 Orthogonal splitting

The space $S_{k,m}(\Delta)$, of dimension kN - m(N-1), is a subspace of the space $S_{k,0}(\Delta)$, of dimension kN, hence we can consider the orthogonal splitting

$$\mathcal{S}_{k,0}(\Delta) =: \mathcal{S}_{k,m}(\Delta) \stackrel{\perp}{\oplus} \mathcal{R}_{k,m}(\Delta), \quad \text{with } \dim \mathcal{R}_{k,m}(\Delta) = m(N-1).$$

If $P_{\mathcal{S}_{k,0}(\Delta)}$, $P_{\mathcal{S}_{k,m}(\Delta)}$ and $P_{\mathcal{R}_{k,m}(\Delta)}$ represent the orthogonal projectors onto $\mathcal{S}_{k,0}(\Delta)$, $\mathcal{S}_{k,m}(\Delta)$ and $\mathcal{R}_{k,m}(\Delta)$ respectively, we have

$$P_{\mathcal{S}_{k,0}(\Delta)} = P_{\mathcal{S}_{k,m}(\Delta)} + P_{\mathcal{R}_{k,m}(\Delta)}, \text{ thus } \left\| P_{\mathcal{S}_{k,m}(\Delta)} \right\|_{\infty} \le \left\| P_{\mathcal{S}_{k,0}(\Delta)} \right\|_{\infty} + \left\| P_{\mathcal{R}_{k,m}(\Delta)} \right\|_{\infty}.$$

We have already mentioned that $||P_{S_{k,0}(\Delta)}||_{\infty} = \rho_{k,0}$ for any knot sequence Δ , therefore our task is to bound the norm $||P_{\mathcal{R}_{k,m}(\Delta)}||_{\infty}$.

In order to describe the space $\mathcal{R}_{k,m}(\Delta)$, we set

$$\underbrace{(t_0 = \dots = t_0)}_{k} < \underbrace{t_1 = \dots = t_1}_{k-m} < \dots < \underbrace{t_{N-1} = \dots = t_{N-1}}_{k-m} < \underbrace{t_N = \dots = t_N}_{k})$$

$$=: (\tau_1 \le \dots \le \tau_{L+k}),$$

so that $S_{k,m}(\Delta)$ admits the basis of L_1 -normalized B-splines $(M_i)_{i=1}^L$, where $M_i := M_{\tau_i,\dots,\tau_{i+k}}$. Using the Peano representation of divided differences, we have

$$f \in \mathcal{R}_{k,m}(\Delta) \iff f \in \mathcal{S}_{k,0}(\Delta), \int_{-1}^{1} M_i \cdot f = 0, \text{ all } i$$

 $\iff f = F^{(k)}, F \in \mathcal{S}_{2k,k}(\Delta), [\tau_i, \dots, \tau_{i+k}]F = 0, \text{ all } i.$

It is then derived that

$$\mathcal{R}_{k,m}(\Delta) = \begin{cases}
F \equiv 0 & k\text{-fold at } t_0, \\
F^{(k)}, F \in \mathcal{S}_{2k,k}(\Delta), F \equiv 0 & (k-m)\text{-fold at } t_i, i = 1, ..., N-1, \\
F \equiv 0 & k\text{-fold at } t_N
\end{cases}$$

$$= \mathcal{R}_{k,m}^1(\Delta) \oplus \mathcal{R}_{k,m}^2(\Delta) \oplus \cdots \oplus \mathcal{R}_{k,m}^{N-1}(\Delta),$$

where each space $\mathcal{R}_{k,m}^i(\Delta)$, supported on $[t_{i-1}, t_{i+1}]$ and of dimension m, is characterized by

$$f \in \mathcal{R}_{k,m}^{i}(\Delta) \iff f = F^{(k)} \text{ for some } F \in \mathcal{S}_{2k,k}(\Delta), \text{ supp } F = [t_{i-1}, t_{i+1}],$$
and
$$\begin{cases} F \equiv 0 & k\text{-fold at } t_{i-1}, \\ F \equiv 0 & (k-m)\text{-fold at } t_{i}, \\ F \equiv 0 & k\text{-fold at } t_{i+1}. \end{cases}$$

4.2 A Gram matrix

The max-norm of the orthogonal projector onto the space $\mathcal{R}_{k,m}(\Delta)$ will be bounded with the help of a Gram matrix. We reproduce here an idea that has been central to the theme of the orthogonal spline projector for some time.

Lemma 8 Let $(\varphi_i)_{i=1}^{m(N-1)}$ and $(\widehat{\varphi}_j)_{j=1}^{m(N-1)}$ be bases of $\mathcal{R}_{k,m}(\Delta)$ and let $M := [\langle \varphi_i, \widehat{\varphi}_j \rangle]_{i,j=1}^{m(N-1)}$ be the Gram matrix with respect to these bases. If, for some constants κ , γ_1 and γ_{∞} , there hold

(i)
$$\|M^{-1}\|_{\infty} \le \kappa$$
, (ii) $\|\varphi_i\|_1 \le \gamma_1$, (iii) $\|\sum a_j \widehat{\varphi}_j\|_{\infty} \le \gamma_{\infty} \|a\|_{\infty}$,

then the max-norm of the orthogonal projector onto $\mathcal{R}_{k,m}(\Delta)$ satisfies

$$\|P_{\mathcal{R}_{k,m}(\Delta)}\|_{\infty} \leq \kappa \cdot \gamma_1 \cdot \gamma_{\infty}.$$

PROOF. Let P denote the projector $P_{\mathcal{R}_{k,m}(\Delta)}$. For $f \in L_{\infty}[-1,1]$, $||f||_{\infty} = 1$, let us write $P(f) = \sum_{j=1}^{m(N-1)} a_j \widehat{\varphi}_j$, so that $||P(f)||_{\infty} \leq \gamma_{\infty} ||a||_{\infty}$. The equalities

$$b_i := \langle \varphi_i, f \rangle = \langle \varphi_i, P(f) \rangle = \sum_i a_i \langle \varphi_i, \widehat{\varphi}_i \rangle = (Ma)_i$$

mean that $a = M^{-1}b$. Since $|b_i| \leq ||\varphi_i||_1$, we infer that $||a||_{\infty} \leq ||M^{-1}||_{\infty} \cdot ||b||_{\infty} \leq \kappa \cdot \gamma_1$. Hence we have $||P(f)||_{\infty} \leq \kappa \cdot \gamma_1 \cdot \gamma_{\infty}$, which completes the proof, as the function f was arbitrary. \square

Let us remark that the entries of the Gram matrix will be easily calculated by applying the following formula, obtained by integration by parts. One has, for $r_i := R_i^{(k)} \in \mathcal{R}_{k,m}^i(\Delta)$,

$$\langle r_i, s \rangle = \sum_{l=0}^{m-1} (-1)^l R_i^{(k-1-l)}(t_i) \left[s^{(l)}(t_i^-) - s^{(l)}(t_i^+) \right], \qquad s \in \mathcal{S}_{k,0}(\Delta). \tag{12}$$

4.3 Bounding the norm of the inverse of some matrices

If we combine bases of the spaces $\mathcal{R}_{k,m}^i(\Delta)$ to obtain L_1 and L_{∞} -normalized bases of $\mathcal{R}_{k,m}(\Delta)$, with respect to which we form the Gram matrix, we observe that the latter is block-tridiagonal, as a result of the disjointness of the supports of $\mathcal{R}_{k,m}^i(\Delta)$ and $\mathcal{R}_{k,m}^j(\Delta)$ when |i-j|>1. However, we may permute the elements of the bases to obtain the Gram matrix in the form considered in the following lemma and to bound the ℓ_{∞} -norm of its inverse accordingly. Let us recall that a square matrix A is said to be of bandwidth d if $A_{i,j}=0$ as soon as |i-j|>d.

Lemma 9 Let B and C be two matrices such that BC and CB are of bandwidth d. If $\zeta := \max(\|BC\|_1, \|CB\|_1) < 1$, then, with $\xi := \max(\|B\|_\infty, \|C\|_\infty)$, the matrix

$$N := \begin{bmatrix} I & B \\ C & I \end{bmatrix} \text{ has an inverse satisfying } \|N^{-1}\|_{\infty} \le (1+\xi) \frac{1+(2d-1)\zeta}{(1-\zeta)^2}.$$

PROOF. First of all, let A be a matrix of bandwidth d satisfying $||A||_1 < 1$. For indices i and j, let $q := \left\lceil \frac{|i-j|}{d} \right\rceil$ represent the smallest integer not smaller than $\frac{|i-j|}{d}$. We borrow from Demko [3] the estimate

$$\left| (I - A)_{i,j}^{-1} \right| \le \frac{\left\| A \right\|_1^q}{1 - \left\| A \right\|_1}.$$

Indeed, for any integer p the matrix A^p is of bandwidth pd and, as |i-j| > (q-1)d, we get

$$\left| (I - A)_{i,j}^{-1} \right| = \left| \sum_{p=0}^{\infty} A_{i,j}^p \right| = \left| \sum_{p=q}^{\infty} A_{i,j}^p \right| \le \sum_{p=q}^{\infty} |A_{i,j}^p| \le \sum_{p=q}^{\infty} |A^p|_1 \le \sum_{p=q}^{\infty} |A\|_1^p,$$

hence the announced inequality. It then follows that

$$\|(I-A)^{-1}\|_{\infty} = \max_{i} \sum_{j} |(I-A)_{i,j}^{-1}|$$

$$\leq \frac{1}{1-\|A\|_{1}} \left[1 + 2d \sum_{q=1}^{\infty} \|A\|_{1}^{q} \right] = \frac{1 + (2d-1)\|A\|_{1}}{(1-\|A\|_{1})^{2}}.$$
 (13)

We now observe that

$$\begin{bmatrix} I & B \\ C & I \end{bmatrix}^{-1} = \begin{bmatrix} (I - BC)^{-1} & -B(I - CB)^{-1} \\ -C(I - BC)^{-1} & (I - CB)^{-1} \end{bmatrix}.$$

The estimate of (13) for A = BC and A = CB implies the conclusion. \Box

5 Bounding $\Lambda_{k,m}$ from above: the case of continuous splines

We consider here the case m = 1, $k \ge 2$. We have already established that the order of growth of $\Lambda_{k,1} = \sup_{\Delta} \|P_{\mathcal{S}_{k,1}(\Delta)}\|_{\infty}$ is at least \sqrt{k} and we prove in this section that it is in fact \sqrt{k} . We exploit the method we have just described to obtain the following theorem.

Theorem 10 For any knot sequence Δ ,

$$\|P_{\mathcal{R}_{k,1}(\Delta)}\|_{\infty} \le \frac{2k(k+1)}{(k-1)^2} \, \sigma_{k,0} \,, \qquad \|P_{\mathcal{S}_{k,1}(\Delta)}\|_{\infty} \le \frac{3k^2+1}{(k-1)^2} \, \sigma_{k,0} \,.$$

First of all, we note that the space $\mathcal{R}_{k,1}^i(\Delta)$ is spanned by a single function f_i supported on $[t_{i-1}, t_{i+1}]$. The latter must be the k-th derivative of a piecewise polynomial F_i of order 2k that vanishes k-fold at t_{i-1} and at t_{i+1} , (k-1)-fold at t_i and whose (k-1)-st derivative is continuous at t_i . It is constructed from the following polynomial of order 2k,

$$F(x) := \frac{(-1)^{k-1}}{2^{k-1} k!} (1-x)^{k-1} (1+x)^k,$$

which vanishes k-fold at -1 and (k-1)-fold at 1. The notations

$$h_i := t_i - t_{i-1}, \qquad \delta_i := \frac{1}{h_i}, \qquad i = 1, ..., N,$$

are to be used in the rest of the paper. We define the function F_i by

$$F_{i}(x) = \begin{cases} \left(\frac{h_{i}}{2}\right)^{k-1} F\left(\frac{2x - t_{i-1} - t_{i}}{h_{i}}\right) &, x \in (t_{i-1}, t_{i}), \\ \left(\frac{-h_{i+1}}{2}\right)^{k-1} F\left(\frac{t_{i} + t_{i+1} - 2x}{h_{i+1}}\right) &, x \in (t_{i}, t_{i+1}), \\ 0 &, x \notin (t_{i-1}, t_{i+1}). \end{cases}$$

We renormalize the function $f_i := F_i^{(k)}$ by setting $\hat{f}_i := \frac{1}{4(\delta_i + \delta_{i+1})} f_i$, where

$$f_i(x) = \begin{cases} 2\delta_i F^{(k)} \left(\frac{2x - t_{i-1} - t_i}{h_i} \right) &, x \in (t_{i-1}, t_i), \\ -2\delta_{i+1} F^{(k)} \left(\frac{t_i + t_{i+1} - 2x}{h_{i+1}} \right) &, x \in (t_i, t_{i+1}), \\ 0 &, x \notin (t_{i-1}, t_{i+1}). \end{cases}$$

At this point, let us recall the connection [12, p 64] between the Jacobi polynomials $P_n^{(-l,\beta)}$ and $P_{n-l}^{(l,\beta)}$,

$$\binom{n}{l} P_n^{(-l,\beta)}(x) = \binom{n+\beta}{l} \left(\frac{x-1}{2}\right)^l P_{n-l}^{(l,\beta)}(x), \qquad l = 1, ..., n,$$
 (14)

which accounts for the following expression for $F^{(k)}$,

$$F^{(k)}(x) \stackrel{=}{=} -2(1-x)^{-1}P_k^{(-1,0)}(x) \stackrel{=}{=} P_{k-1}^{(1,0)}(x).$$

We are now going to establish that the bases $(f_i)_{i=1}^{N-1}$ and $(\widehat{f}_j)_{j=1}^{N-1}$ of $\mathcal{R}_{k,1}(\Delta)$ satisfy the three conditions of Lemma 8.

5.1 Condition (i)

First we determine the inner products $\langle f_i, \hat{f}_j \rangle$, non-zero only for $|i-j| \leq 1$. This requires the values of the successive derivatives of F_i at t_{i-1} , at t_i and at t_{i+1} , which are derived from the values of the successive derivatives of F at -1 and at 1. These are obtained from (9) and (10), namely they are

$$F^{(k-1)}(1) = \frac{2}{k},$$

$$F^{(k)}(-1) = (-1)^{k-1}, F^{(k)}(1) = k,$$

$$F^{(k+1)}(-1) = (-1)^k \frac{k^2 - 1}{2}, F^{(k+1)}(1) = \frac{k(k^2 - 1)}{4}.$$

Equation (12) for $r_i = f_i$ reads

$$\langle f_i, s \rangle = F_i^{(k-1)}(t_i) \left[s(t_i^-) - s(t_i^+) \right] = \frac{2}{k} \left[s(t_i^-) - s(t_i^+) \right], \quad s \in \mathcal{S}_{k,0}(\Delta).$$

We compute the differences

$$f_i(t_i^-) - f_i(t_i^+) = 2\delta_i F^{(k)}(1) + 2\delta_{i+1} F^{(k)}(1) = 2k(\delta_i + \delta_{i+1}),$$

$$f_i(t_{i-1}^-) - f_i(t_{i-1}^+) = 0 - 2\delta_i F^{(k)}(-1) = 2(-1)^k \delta_i.$$

As a result, we obtain

$$\langle f_i, \widehat{f}_i \rangle = 1, \quad \langle f_{i-1}, \widehat{f}_i \rangle = \frac{(-1)^k}{k} \frac{\delta_i}{\delta_i + \delta_{i+1}}, \quad \text{then } \langle f_{i+1}, \widehat{f}_i \rangle = \frac{(-1)^k}{k} \frac{\delta_{i+1}}{\delta_i + \delta_{i+1}}.$$

The Gram matrix with respect to the bases $(f_i)_{i=1}^{N-1}$ and $(\hat{f}_j)_{j=1}^{N-1}$ therefore has the form

$$M = \begin{cases} \hat{f}_1 & \hat{f}_2 & \hat{f}_3 & \hat{f}_4 & \dots \\ f_1 & \frac{(-1)^k}{k} \alpha_2 & 0 & 0 & \dots \\ \frac{f_2}{k} & \frac{(-1)^k}{k} \beta_1 & 1 & \frac{(-1)^k}{k} \alpha_3 & 0 & \dots \\ 0 & \frac{(-1)^k}{k} \beta_2 & 1 & \ddots & \dots \\ f_4 & 0 & 0 & \frac{(-1)^k}{k} \beta_3 & 1 & \dots \\ \vdots & \vdots & \vdots & 0 & \ddots & \ddots \end{bmatrix}$$

where $\alpha_i := \frac{\delta_i}{\delta_i + \delta_{i+1}} \ge 0$ and $\beta_i := \frac{\delta_{i+1}}{\delta_i + \delta_{i+1}} \ge 0$ satisfy $\alpha_i + \beta_i = 1$. To bound the ℓ_{∞} -norm of the inverse of this matrix, we could use (13) directly. However, a result of Kershaw [4] about scaled transposes of such matrices provide estimates for the entries of M^{-1} which, when summed, yield the more accurate bound

$$\|M^{-1}\|_{\infty} \le \frac{k^2}{(k-1)^2}.$$

5.2 Condition (ii)

From the expression for f_i , we get $||f_i||_1 = 2||F^{(k)}||_1 = 2||P^{(1,0)}_{k-1}||_1$. Therefore, according to (11), we have

$$||f_i||_1 = \frac{4}{k}\sigma_{k,0}.$$

5.3 Condition (iii)

Let us start by establishing the following lemma.

Lemma 11 For any $\eta, \nu \in \mathbb{R}$, one has

$$\max_{x \in [-1,1]} \left| \eta P_{k-l}^{(l,0)}(x) + \nu P_{k-l}^{(l,0)}(-x) \right| = \max_{x \in \{-1,1\}} \left| \eta P_{k-l}^{(l,0)}(x) + \nu P_{k-l}^{(l,0)}(-x) \right|.$$

PROOF. Without loss of generality, we can assume that $\eta \geq |\nu|$. First of all, the identity

$$P_{k-l}^{(l,0)}(x) = \sum_{j=0}^{l} {l \choose j} \left(\frac{1+x}{2}\right)^{j} P_{k-l-j}^{(j,j)}(x)$$

is easily derived using (8), (9) and (14). Indeed, we have

$$\begin{split} P_{k-l}^{(l,0)}(x) &= 2^l (-1)^l (1-x)^{-l} P_k^{(-l,0)}(x) \\ &= \frac{(k-l)!}{k!} \frac{(-1)^{k-l}}{2^{k-l} (k-l)!} \frac{d^k}{dx^k} \left[(1+x)^l \cdot (1-x)^{k-l} (1+x)^{k-l} \right] \\ &= \frac{(k-l)!}{k!} \sum_{j=0}^l \binom{k}{j} \frac{d^j}{dx^j} \left[(1+x)^l \right] \cdot \frac{d^{l-j}}{dx^{l-j}} \left[P_{k-l}^{(0,0)}(x) \right] \\ &= \sum_{j=0}^l \frac{(k-l)!}{k!} \frac{k!}{(k-j)!} \frac{l!}{(l-j)!} \frac{(k-j)!}{(k-l)!} \left(\frac{1+x}{2} \right)^{l-j} P_{k-2l+j}^{(l-j,l-j)}(x) \\ &= \sum_{j=0}^l \binom{l}{j} \left(\frac{1+x}{2} \right)^j P_{k-l-j}^{(j,j)}(x). \end{split}$$

This identity and the symmetry relation yield

$$\eta P_{k-l}^{(l,0)}(x) + \nu P_{k-l}^{(l,0)}(-x) \\
= \sum_{j=0}^{l} {l \choose j} \left[\eta \left(\frac{1+x}{2} \right)^j + (-1)^{k-l-j} \nu \left(\frac{1-x}{2} \right)^j \right] P_{k-l-j}^{(j,j)}(x).$$

Every term in the previous sum is maximized in absolute value at x=1. Indeed, according to [12, Theorem 7.32.1], there holds $\left|P_{k-l-j}^{(j,j)}(x)\right| \leq P_{k-l-j}^{(j,j)}(1)$. Besides, for $j \geq 1$, we have

$$\left| \eta \left(\frac{1+x}{2} \right)^j + (-1)^{k-l-j} \nu \left(\frac{1-x}{2} \right)^j \right| \le \eta \left[\left(\frac{1+x}{2} \right)^j + \left(\frac{1-x}{2} \right)^j \right] \le \eta,$$

and for j=0, we have $\left|\eta+(-1)^{k-l}\nu\right|=\eta+(-1)^{k-l}\nu$. These facts imply that

$$\left| \eta P_{k-l}^{(l,0)}(x) + \nu P_{k-l}^{(l,0)}(-x) \right| \le \eta P_{k-l}^{(l,0)}(1) + \nu P_{k-l}^{(l,0)}(-1).$$

Let us now bound the max-norm of $r := \sum a_j \widehat{f}_j$ in terms of $||a||_{\infty}$. This max-norm is achieved on $[t_l, t_{l+1}]$, say, and since $r_{|[t_l, t_{l+1}]} = a_l \widehat{f}_l + a_{l+1} \widehat{f}_{l+1}$, Lemma 11 guarantees that this max-norm is achieved at one of the endpoints of $[t_l, t_{l+1}]$, say at t_l . Thus we have

$$||r||_{\infty} \le \left[\left| \widehat{f}_{l}(t_{l}^{+}) \right| + \left| \widehat{f}_{l+1}(t_{l}^{+}) \right| \right] ||a||_{\infty} \le \left[\frac{1}{2} \left| F^{(k)}(1) \right| + \frac{1}{2} \left| F^{(k)}(-1) \right| \right] ||a||_{\infty},$$

that is

$$\left\| \sum a_j \widehat{f}_j \right\|_{\infty} \le \frac{k+1}{2} \|a\|_{\infty}.$$

5.4 Conclusion

The estimates obtained from conditions (i), (ii) and (iii) yield

$$\left\| P_{\mathcal{R}_{k,1}(\Delta)} \right\|_{\infty} \le \frac{k^2}{(k-1)^2} \cdot \frac{4}{k} \sigma_{k,0} \cdot \frac{k+1}{2} = \frac{2k(k+1)}{(k-1)^2} \sigma_{k,0}. \tag{15}$$

To conclude, we derive the bound

$$\left\| P_{\mathcal{S}_{k,1}(\Delta)} \right\|_{\infty} \le \left\| P_{\mathcal{S}_{k,0}(\Delta)} \right\|_{\infty} + \left\| P_{\mathcal{R}_{k,1}(\Delta)} \right\|_{\infty} \le \sigma_{k,0} + \frac{2k(k+1)}{(k-1)^2} \sigma_{k,0} = \frac{3k^2 + 1}{(k-1)^2} \sigma_{k,0}.$$

This upper bound is much better than the bound $||G_{\delta}^{-1}||_{\infty}$, already mentioned in the introduction, which was given by de Boor in [2], at least asymptotically. In fact, this becomes true as soon as k=4, as the following table shows. The values of $||G_{\delta}^{-1}||_{\infty}$ are taken from [10].

k	2	3	4	5	6	7	8
$\frac{3k^2+1}{(k-1)^2} \sigma_{k,0}$	21.666	15.230	14.178	14.162	14.486	14.948	15.470
$\ G_{\delta}^{-1}\ _{\infty}$	3	13	41.666	171	583.8	2 364.2	8 373.857

Let us finally note that the estimate of (15) is fairly precise in the sense that it is possible to obtain $\sup_{\Delta} \|P_{\mathcal{R}_{k,1}(\Delta)}\|_{\infty} \geq 2\sigma_{k,0}$ simply by considering $P_{\mathcal{R}_{k,1}(\Delta)}(\bullet)(t_1^-)$ when $N=2, t_1 \to 0$. This implies

$$\sup_{\Delta} \left\| P_{\mathcal{S}_{k,1}(\Delta)} \right\|_{\infty} \ge \sup_{\Delta} \left\| P_{\mathcal{R}_{k,1}(\Delta)} \right\|_{\infty} - \left\| P_{\mathcal{S}_{k,0}(\Delta)} \right\|_{\infty} \ge \sigma_{k,0}.$$

If, as we believe, the lower bound $\sigma_{k,m}$ is the actual value of $\Lambda_{k,m}$, the previous inequality reads $\sigma_{k,1} \geq \sigma_{k,0}$. This is in accordance with the expected monotonicity of $\sigma_{k,m}$ and can be proved as follow. First, we readily check that

$$\mathcal{P}_{k,m} = \mathcal{P}_{k,m+1} \stackrel{\perp}{\oplus} \operatorname{span} \left[(1 + \bullet)^m P_{k-1-m}^{(0,2m+1)} \right].$$

From the representations of the Lebesgue functions at the point 1 of the orthogonal projectors onto these spaces, we obtain, for some constant C, the identity

$$2^{-m-1}(k+m)(1+x)^{m}P_{k-1-m}^{(1,2m)}(x) = 2^{-m-2}(k+m+1)(1+x)^{m+1}P_{k-2-m}^{(1,2m+2)}(x) + C(1+x)^{m}P_{k-1-m}^{(0,2m+1)}(x).$$

The value of the constant C is $2^{-m-1}(2m+1)$, as seen from the choice x=1. With m=0, we get

$$\frac{k}{2}P_{k-1}^{(1,0)}(x) = \frac{k+1}{4}(1+x)P_{k-2}^{(1,2)}(x) + \frac{1}{2}P_{k-1}^{(0,1)}(x).$$

The inequality $\sigma_{k,0} \leq \sigma_{k,1}$ is then deduced from

$$\sigma_{k,0} = \rho_{k,0} = \frac{k}{2} \int_{-1}^{1} |P_{k-1}^{(1,0)}(x)| dx$$

$$\leq \frac{k+1}{4} \int_{-1}^{1} (1+x) |P_{k-2}^{(1,2)}(x)| dx + \frac{1}{2} \int_{-1}^{1} |P_{k-1}^{(0,1)}(x)| dx$$

$$= \rho_{k,1} + \frac{1}{k} \rho_{k,0} = \frac{k-1}{k} \sigma_{k,1} + \frac{1}{k} \sigma_{k,0}.$$

6 Bounding $\Lambda_{k,m}$ from above: the case of differentiable splines

We consider here the case $m=2, k\geq 3$, for which the order of growth of $\Lambda_{k,2}=\sup_{\Delta}\|P_{\mathcal{S}_{k,2}(\Delta)}\|_{\infty}$ is also shown to be \sqrt{k} . This section is dedicated to the proof of the following proposition, where the notation $u_n\lesssim v_n$ for two sequences (u_n) and (v_n) means that there exists a sequence (w_n) such that $u_n\leq w_n, n\in\mathbb{N}$, and $w_n\underset{n\to\infty}{\sim}v_n$.

Proposition 12 For any knot sequence Δ ,

$$\|P_{\mathcal{R}_{k,2}(\Delta)}\|_{\infty} \lesssim \frac{36\sqrt{2}}{\sqrt{\pi}}\sqrt{k}, \qquad \|P_{\mathcal{S}_{k,2}(\Delta)}\|_{\infty} \lesssim \frac{38\sqrt{2}}{\sqrt{\pi}}\sqrt{k}.$$

The function f_i previously defined is an element of the 2-dimensional space $\mathcal{R}_{k,2}^i(\Delta)$. In this space, we consider an element g_i orthogonal to f_i . It must be the k-th derivative of a piecewise polynomial G_i of order 2k supported on $[t_{i-1}, t_{i+1}]$. The function G_i must vanish k-fold at t_{i-1} and at t_{i+1} , (k-2)-fold at t_i and its (k-2)-nd and (k-1)-st derivatives must be continuous at t_i . It is then guaranteed that $g_i = G_i^{(k)}$ belongs to $\mathcal{R}_{k,2}^i(\Delta)$. To be orthogonal to f_i , the function g_i must further be continuous at t_i . Let us introduce the

polynomial G of order 2k,

$$G(x) := \frac{(-1)^k}{2^{k-2}k!} (1-x)^{k-2} (1+x)^k,$$

which vanishes k-fold at -1 and (k-2)-fold at 1. Let us remark that

$$G^{(k)}(x) \stackrel{=}{=} 4(1-x)^{-2} P_k^{(-2,0)}(x) \stackrel{=}{=} P_{k-2}^{(2,0)}(x).$$

We now define the auxiliary function H_i by

$$H_{i}(x) := \begin{cases} \left(\delta_{i+1} + \frac{k-1}{k+1}\delta_{i}\right) \left(\frac{h_{i}}{2}\right)^{k-1} F\left(\frac{2x - t_{i-1} - t_{i}}{h_{i}}\right) \\ -\frac{1}{k+1} \left(\frac{h_{i}}{2}\right)^{k-2} G\left(\frac{2x - t_{i-1} - t_{i}}{h_{i}}\right) &, x \in (t_{i-1}, t_{i}), \\ -\left(\delta_{i} + \frac{k-1}{k+1}\delta_{i+1}\right) \left(\frac{-h_{i+1}}{2}\right)^{k-1} F\left(\frac{t_{i} + t_{i+1} - 2x}{h_{i+1}}\right) \\ -\frac{1}{k+1} \left(\frac{-h_{i+1}}{2}\right)^{k-2} G\left(\frac{t_{i} + t_{i+1} - 2x}{h_{i+1}}\right) &, x \in (t_{i}, t_{i+1}), \\ 0 &, x \notin (t_{i-1}, t_{i+1}), \end{cases}$$

and we set, for some positive constants λ and μ to be chosen later,

$$G_i := \frac{\lambda}{\delta_i + \delta_{i+1}} H_i, \qquad g_i := G_i^{(k)} \quad \text{and} \quad \widehat{g}_i := \frac{\mu}{\delta_i + \delta_{i+1}} g_i.$$

First of all, we have to verify that g_i defined in this way is indeed an element of $\mathcal{R}_{k,2}^i(\Delta)$ orthogonal to f_i , i.e. we have to establish the continuity at t_i of the (k-2)-nd, (k-1)-st and k-th derivatives of G_i , or equivalently of H_i . The values of the successive derivatives of G at -1 and at 1, obtained from (9) and (10), are needed. They are

$$G^{(k-2)}(1) = \frac{4}{k(k-1)},$$

$$G^{(k)}(-1) = (-1)^k,$$

$$G^{(k-1)}(-1) = (-1)^{k-1} \frac{(k-2)(k+1)}{2},$$

$$G^{(k)}(1) = \frac{k(k-1)}{2},$$

$$G^{(k+1)}(1) = \frac{k(k-2)(k^2-1)}{12}.$$

As $F^{(k-2)}(1) = 0$, the continuity of $H_i^{(k-2)}$ at t_i is readily checked. We have

$$H_i^{(k-2)}(t_i^-) = H_i^{(k-2)}(t_i^+) = -\frac{1}{k+1}G^{(k-2)}(1) = -\frac{4}{k(k^2-1)}.$$

As for the continuity of $H_i^{(k-1)}$ at t_i , it follows from

$$H_i^{(k-1)}(t_i^-) = \left(\delta_{i+1} + \frac{k-1}{k+1}\delta_i\right) \cdot \frac{2}{k} - \frac{1}{k+1} \cdot 2\delta_i \cdot 2 = \frac{2}{k}(\delta_{i+1} - \delta_i),$$

$$H_i^{(k-1)}(t_i^+) = -\left(\delta_i + \frac{k-1}{k+1}\delta_{i+1}\right) \cdot \frac{2}{k} - \frac{1}{k+1} \cdot (-2\delta_{i+1}) \cdot 2 = \frac{2}{k}(\delta_{i+1} - \delta_i).$$

Finally, the continuity of $H_i^{(k)}$ at t_i is a consequence of

$$H_i^{(k)}(t_i^-) = \left(\delta_{i+1} + \frac{k-1}{k+1}\delta_i\right) \cdot 2\delta_i \cdot k - \frac{1}{k+1} \cdot 4\delta_i^2 \cdot \frac{k(k-1)}{2} = 2k\delta_i\delta_{i+1},$$

$$H_i^{(k)}(t_i^+) = -\left(\delta_i + \frac{k-1}{k+1}\delta_{i+1}\right) \cdot (-2\delta_{i+1}) \cdot k - \frac{1}{k+1} \cdot 4\delta_{i+1}^2 \cdot \frac{k(k-1)}{2}$$

$$= 2k\delta_i\delta_{i+1}.$$

This justifies the definition of g_i . We are now going to establish that the bases $(f_i, g_i)_{i=1}^{N-1}$ and $(\hat{f}_i, \hat{g}_i)_{i=1}^{N-1}$ of $\mathcal{R}_{k,2}(\Delta)$ satisfy the three conditions of Lemma 8.

6.1 Condition (i)

First we determine the entries of the Gram matrix. The values of $H_i^{(k+1)}(t_i^-)$ and $H_i^{(k+1)}(t_i^+)$ are required, they are

$$\begin{split} H_i^{(k+1)}(t_i^-) &= \left(\delta_{i+1} + \frac{k-1}{k+1}\delta_i\right) \cdot 4\delta_i^2 \cdot \frac{k(k^2-1)}{4} \\ &- \frac{1}{k+1} \cdot 8\delta_i^3 \cdot \frac{k(k-2)(k^2-1)}{12} = \frac{k(k^2-1)}{3} [\delta_i^3 + 3\delta_i^2 \delta_{i+1}], \\ H_i^{(k+1)}(t_i^+) &= -\left(\delta_i + \frac{k-1}{k+1}\delta_{i+1}\right) \cdot 4\delta_{i+1}^2 \cdot \frac{k(k^2-1)}{4} \\ &- \frac{1}{k+1} \cdot (-8\delta_{i+1}^3) \cdot \frac{k(k-2)(k^2-1)}{12} = -\frac{k(k^2-1)}{3} [\delta_{i+1}^3 + 3\delta_i \delta_{i+1}^2]. \end{split}$$

Equation (12) yields, in view of the continuity of $H_i^{(k)}$ at t_i ,

$$\langle g_i, \hat{g}_i \rangle = \frac{\lambda^2 \mu}{(\delta_i + \delta_{i+1})^3} \cdot \left(-H_i^{(k-2)}(t_i) \right) \cdot \left[H_i^{(k+1)}(t_i^-) - H_i^{(k+1)}(t_i^+) \right]$$
$$= \frac{\lambda^2 \mu}{(\delta_i + \delta_{i+1})^3} \cdot \frac{4}{k(k^2 - 1)} \cdot \frac{k(k^2 - 1)}{3} (\delta_i + \delta_{i+1})^3 = \frac{4\lambda^2 \mu}{3}.$$

We impose from now on $4\lambda^2\mu = 3$, so that $\langle g_i, \hat{g}_i \rangle = 1$. Consequently, after a reordering of the bases, the Gram matrix has the form

The matrices B and C are respectively lower and upper bidiagonal by blocks of size 2×2 . Their entries are given in Lemma 13 below and their ℓ_1 -norms satisfy $\max(\|B\|_1, \|C\|_1) = \max_i \max(\Phi_i, \Psi_i)$, where

$$\begin{split} &\Phi_i := |\langle f_{i-1}, \widehat{f_i} \rangle| + |\langle g_{i-1}, \widehat{f_i} \rangle| + |\langle f_{i+1}, \widehat{f_i} \rangle| + |\langle g_{i+1}, \widehat{f_i} \rangle|, \\ &\Psi_i := |\langle f_{i-1}, \widehat{g}_i \rangle| + |\langle g_{i-1}, \widehat{g}_i \rangle| + |\langle f_{i+1}, \widehat{g}_i \rangle| + |\langle g_{i+1}, \widehat{g}_i \rangle|. \end{split}$$

Lemma 13 With
$$\alpha_i = \frac{\delta_i}{\delta_i + \delta_{i+1}}$$
 and $\beta_i = \frac{\delta_{i+1}}{\delta_i + \delta_{i+1}}$, one has

$$\langle f_{i-1}, \widehat{f_i} \rangle = \frac{(-1)^k}{k} \alpha_i, \qquad \langle f_{i+1}, \widehat{f_i} \rangle = \frac{(-1)^k}{k} \beta_i,$$

$$\langle g_{i-1}, \widehat{f_i} \rangle = \lambda \frac{(-1)^{k-1}}{k} \alpha_i, \qquad \langle g_{i+1}, \widehat{f_i} \rangle = \lambda \frac{(-1)^k}{k} \beta_i,$$

$$\langle f_{i-1}, \widehat{g_i} \rangle = \frac{3}{\lambda} \frac{(-1)^k}{k} \alpha_i, \qquad \langle f_{i+1}, \widehat{g_i} \rangle = \frac{3}{\lambda} \frac{(-1)^{k-1}}{k} \beta_i,$$

$$|\langle g_{i-1}, \widehat{g_i} \rangle| \leq \frac{3}{k} \alpha_i, \qquad |\langle g_{i+1}, \widehat{g_i} \rangle| \leq \frac{3}{k} \beta_i.$$

PROOF. 1) The inner products $\langle f_{i-1}, \hat{f}_i \rangle$ and $\langle f_{i+1}, \hat{f}_i \rangle$ have been computed in the previous section.

2) We now calculate

$$\begin{split} \langle f_i, g_{i-1} \rangle &= \frac{\lambda}{\delta_{i-1} + \delta_i} \cdot \frac{2}{k} \cdot \left[H_{i-1}^{(k)}(t_i^-) - H_{i-1}^{(k)}(t_i^+) \right] = \frac{\lambda}{\delta_{i-1} + \delta_i} \cdot \frac{2}{k} \cdot \\ & \left[-\left(\delta_{i-1} + \frac{k-1}{k+1} \delta_i \right) \cdot (-2\delta_i) \cdot (-1)^{k-1} - \frac{1}{k+1} \cdot 4\delta_i^2 \cdot (-1)^k \right] \\ &= 4\lambda \frac{(-1)^{k-1}}{k} \delta_i, \\ \langle f_i, g_{i+1} \rangle &= \frac{\lambda}{\delta_{i+1} + \delta_{i+2}} \cdot \frac{2}{k} \left[H_{i+1}^{(k)}(t_i^-) - H_{i+1}^{(k)}(t_i^+) \right] = \frac{\lambda}{\delta_{i+1} + \delta_{i+2}} \cdot \frac{2}{k} \cdot \\ & \left[-\left(\delta_{i+2} + \frac{k-1}{k+1} \delta_{i+1} \right) \cdot 2\delta_{i+1} \cdot (-1)^{k-1} + \frac{1}{k+1} \cdot 4\delta_{i+1}^2 \cdot (-1)^k \right] \\ &= 4\lambda \frac{(-1)^k}{k} \delta_{i+1}. \end{split}$$

The values of the inner products $\langle g_{i-1}, \hat{f}_i \rangle$, $\langle g_{i+1}, \hat{f}_i \rangle$, $\langle f_{i+1}, \hat{g}_i \rangle$ and $\langle f_{i-1}, \hat{g}_i \rangle$ are easily deduced, keeping in mind that $4\lambda^2 \mu = 3$.

3) As for the inner products $\langle g_{i-1}, \widehat{g}_i \rangle$ and $\langle g_{i+1}, \widehat{g}_i \rangle$, we determine first the value of $H_{i-1}^{(k+1)}(t_i^-)$. We have

$$\begin{split} H_{i-1}^{(k+1)}(t_i^-) &= -\left(\delta_{i-1} + \frac{k-1}{k+1}\delta_i\right) \cdot 4\delta_i^2 \cdot (-1)^k \frac{k^2 - 1}{2} \\ &- \frac{1}{k+1} \cdot (-8\delta_i^3) \cdot (-1)^{k-1} \frac{(k-2)(k+1)}{2} \\ &= 2(-1)^{k-1} (k^2 - 1)(\delta_{i-1} + \delta_i)\delta_i^2 + 4(-1)^k \delta_i^3. \end{split}$$

Let us note that the value of $H_{i-1}^{(k)}(t_i^-)$ has just been determined in stage 2) when we computed $\langle f_i, g_{i-1} \rangle$. Then, according to (12), we obtain

$$\langle g_{i}, g_{i-1} \rangle = \frac{\lambda^{2}}{(\delta_{i-1} + \delta_{i})(\delta_{i} + \delta_{i+1})} \cdot \left\{ H_{i}^{(k-1)}(t_{i}) \cdot \left[H_{i-1}^{(k)}(t_{i}^{-}) - H_{i-1}^{(k)}(t_{i}^{+}) \right] - H_{i}^{(k-1)}(t_{i}) \cdot \left[H_{i-1}^{(k-1)}(t_{i}^{-}) - H_{i-1}^{(k-1)}(t_{i}^{+}) \right] \right\}$$

$$= \frac{\lambda^{2}}{(\delta_{i-1} + \delta_{i})(\delta_{i} + \delta_{i+1})} \cdot \left\{ \frac{2}{k} (\delta_{i+1} - \delta_{i}) \cdot 2(-1)^{k-1} \delta_{i} (\delta_{i-1} + \delta_{i}) + \frac{4}{k(k^{2} - 1)} \cdot \left(2(-1)^{k-1}(k^{2} - 1)(\delta_{i-1} + \delta_{i})\delta_{i}^{2} + 4(-1)^{k} \delta_{i}^{3} \right) \right\}$$

$$= \frac{\lambda^{2}}{(\delta_{i-1} + \delta_{i})(\delta_{i} + \delta_{i+1})} \cdot \frac{4(-1)^{k-1}}{k} \cdot \left[(\delta_{i-1} + \delta_{i})(\delta_{i} + \delta_{i+1})\delta_{i} - \frac{4}{k^{2} - 1} \delta_{i}^{3} \right]$$

$$= 4\lambda^{2} \frac{(-1)^{k-1}}{k} \left[1 - \frac{4\beta_{i-1}\alpha_{i}}{k^{2} - 1} \right] \delta_{i}.$$

Remembering that $4\lambda^2\mu = 3$, it now follows that

$$\langle g_{i-1}, \widehat{g}_i \rangle = 3 \frac{(-1)^{k-1}}{k} \left[1 - \frac{4\beta_{i-1}\alpha_i}{k^2 - 1} \right] \alpha_i$$

and that $\langle g_{i+1}, \widehat{g}_i \rangle = 3 \frac{(-1)^{k-1}}{k} \left[1 - \frac{4\beta_i \alpha_{i+1}}{k^2 - 1} \right] \beta_i$.

To complete the proof, we just have to remark that the two expressions in square brackets are not greater than 1 in absolute value. \Box

We infer from Lemma 13 that $\Phi_i \leq \frac{1+\lambda}{k}$ and $\Psi_i \leq \frac{\frac{3}{\lambda}+3}{k}$, so that

$$\max(\|B\|_1, \|C\|_1) \le \frac{1}{k} \max(1 + \lambda, \frac{3}{\lambda} + 3).$$

The latter is minimized for $1 + \lambda = 3/\lambda + 3$, i.e. for $\lambda = 3$. In view of Lemma 9, the ℓ_{∞} -norm of M^{-1} can be bounded provided that k > 4. Precisely, since BC and CB are of bandwidth 3 and since $\max(\|B\|_{\infty}, \|C\|_{\infty}) \leq \frac{12}{k}$, we have

$$||M^{-1}||_{\infty} \le \frac{k(k+12)(k^2+80)}{(k^2-16)^2}.$$
 (16)

6.2 Condition (ii)

From the expression of H_i , we obtain

$$\begin{split} \|g_i\|_1 &= \frac{3}{\delta_i + \delta_{i+1}} \left\| \left(\delta_{i+1} + \frac{k-1}{k+1} \delta_i \right) F^{(k)} - \frac{2\delta_i}{k+1} G^{(k)} \right\|_1 \\ &+ \frac{3}{\delta_i + \delta_{i+1}} \left\| - \left(\delta_i + \frac{k-1}{k+1} \delta_{i+1} \right) F^{(k)} + \frac{2\delta_{i+1}}{k+1} G^{(k)} \right\|_1 \\ &= 3 \left\| F^{(k)} - \frac{2\alpha_i}{k+1} \left(F^{(k)} + G^{(k)} \right) \right\|_1 + 3 \left\| F^{(k)} - \frac{2(1-\alpha_i)}{k+1} \left(F^{(k)} + G^{(k)} \right) \right\|_1 \\ &\leq 3 \left\| F^{(k)} \right\|_1 + 3 \left\| F^{(k)} - \frac{2}{k+1} \left(F^{(k)} + G^{(k)} \right) \right\|_1, \end{split}$$

the last inequality holding due to the convexity with respect to $\alpha_i \in [0, 1]$ of the function involved. We remark that, according to Proposition 6, the quantity $\|G^{(k)}\|_1 = \|P_{k-2}^{(2,0)}\|_1$ tends to a constant as k tends to infinity. This accounts for the rough estimate

$$\|g_i\|_1 \le \frac{6k}{k+1} \|F^{(k)}\|_1 + \frac{6}{k+1} \|G^{(k)}\|_1 = \frac{12}{k+1} \sigma_{k,0} + \frac{6}{k+1} \|G^{(k)}\|_1 \lesssim \frac{24\sqrt{2}}{\sqrt{\pi}\sqrt{k}}.$$

The same estimate holds for $||f_i||_1$, as can be inferred from subsection 5.2.

6.3 Condition (iii)

Let us now consider the max-norm of $r := \sum a_j \hat{f}_j + \sum b_j \hat{g}_j$, which we want to bound in terms of $\max_j(|a_j|, |b_j|)$. The function r achieves its max-norm on $[t_l, t_{l+1}]$, say, where the form of r(x), $x \in (t_l, t_{l+1})$, is

$$\eta P_{k-1}^{(1,0)}(u) + \nu P_{k-1}^{(1,0)}(-u) + \eta' P_{k-2}^{(2,0)}(u) + \nu' P_{k-2}^{(2,0)}(-u), \quad u := \frac{2x - t_l - t_{l+1}}{h_{l+1}}.$$

Such a function of u does not necessarily achieve its max-norm at $u=\pm 1$, e.g. $\eta=\nu=2$ and $\eta'=\nu'=-1$ provides a counter-example when k=5. However, the separate contributions $C_1(u)=\eta P_{k-1}^{(1,0)}(u)+\nu P_{k-1}^{(1,0)}(-u)$ and $C_2(u)=\eta' P_{k-2}^{(2,0)}(u)+\nu' P_{k-2}^{(2,0)}(-u)$ do. The first contribution is

$$C_{1}(u) = \frac{-a_{l}\delta_{l+1}}{2(\delta_{l} + \delta_{l+1})}F^{(k)}(-u) + \frac{a_{l+1}\delta_{l+1}}{2(\delta_{l+1} + \delta_{l+2})}F^{(k)}(u) + \frac{b_{l}\left(\delta_{l} + \frac{k-1}{k+1}\delta_{l+1}\right)\delta_{l+1}}{2(\delta_{l} + \delta_{l+1})^{2}}F^{(k)}(-u) + \frac{b_{l+1}\left(\delta_{l+2} + \frac{k-1}{k+1}\delta_{l+1}\right)\delta_{l+1}}{2(\delta_{l+1} + \delta_{l+2})^{2}}F^{(k)}(u).$$

The max-norm of C_1 is achieved at 1, say, and we have

$$|C_{1}(u)| \leq |C_{1}(1)| \leq \left[\frac{\delta_{l+1}}{2(\delta_{l} + \delta_{l+1})} + \frac{\delta_{l+1}}{2(\delta_{l+1} + \delta_{l+2})}k\right] + \frac{\left(\delta_{l} + \frac{k-1}{k+1}\delta_{l+1}\right)\delta_{l+1}}{2(\delta_{l} + \delta_{l+1})^{2}} + \frac{\left(\delta_{l+2} + \frac{k-1}{k+1}\delta_{l+1}\right)\delta_{l+1}}{2(\delta_{l+1} + \delta_{l+2})^{2}}k\right] \max_{j}(|a_{j}|, |b_{j}|) = \left[\frac{\left(\delta_{l} + \frac{k}{k+1}\delta_{l+1}\right)\delta_{l+1}}{(\delta_{l} + \delta_{l+1})^{2}} + \frac{\left(\delta_{l+2} + \frac{k}{k+1}\delta_{l+1}\right)\delta_{l+1}}{(\delta_{l+1} + \delta_{l+2})^{2}}k\right] \max_{j}(|a_{j}|, |b_{j}|).$$

We use the fact that, for $t \ge 0$, one has $[t + k/(k+1)]/(t+1)^2 \le k/(k+1)$ with $t = \delta_l/\delta_{l+1}$ and $t = \delta_{l+2}/\delta_{l+1}$ to obtain $|C_1(u)| \le k \max_j(|a_j|, |b_j|)$.

As for the second contribution, we get

$$|C_2(u)| = \left| -\frac{b_l \, \delta_{l+1}^2}{(k+1)(\delta_l + \delta_{l+1})^2} G^{(k)}(-u) - \frac{b_{l+1} \, \delta_{l+1}^2}{(k+1)(\delta_{l+1} + \delta_{l+2})^2} G^{(k)}(u) \right|$$

$$\leq \frac{1}{k+1} \left(1 + \frac{k(k-1)}{2} \right) \max_j(|a_j|, |b_j|) = \frac{k^2 - k + 2}{2(k+1)} \max_j(|a_j|, |b_j|).$$

Putting these two contributions together, we deduce that

$$\left\| \sum a_j \hat{f}_j + \sum b_j \hat{g}_j \right\|_{\infty} \le \frac{3k^2 + k + 2}{2(k+1)} \max_j(|a_j|, |b_j|) \underset{k \to \infty}{\sim} \frac{3k}{2} \max_j(|a_j|, |b_j|).$$

6.4 Conclusion

The estimates obtained from conditions (i), (ii) and (iii) yield

$$\|P_{\mathcal{R}_{k,2}(\Delta)}\|_{\infty} \lesssim 1 \cdot \frac{24\sqrt{2}}{\sqrt{\pi}\sqrt{k}} \cdot \frac{3k}{2} = \frac{36\sqrt{2}}{\sqrt{\pi}}\sqrt{k}, \text{ thus } \|P_{\mathcal{S}_{k,2}(\Delta)}\|_{\infty} \lesssim \frac{38\sqrt{2}}{\sqrt{\pi}}\sqrt{k}.$$

In contrast with the case of continuous splines, the numerical values of our upper bound are unsatisfactory, e.g. we obtain roughly 1574 for k = 6. When k is small, this is partly due to the poor estimate of (16). One way to improve it would be to consider bases of $\mathcal{R}_{k,2}(\Delta)$ better suited to the evaluation of the inverse of the Gram matrix, providing in particular a bound also valid for k = 3 and k = 4.

Let us finally remark that if we consider $P_{\mathcal{R}_{k,2}(\Delta)}(\bullet)(t_1^-)$ in the case $N=2, t_1 \to 0$, we can again show that $\sup_{\Delta} \|P_{\mathcal{R}_{k,2}(\Delta)}\|_{\infty} \geq 2\sigma_{k,0}$, hence that $\sup_{\Delta} \|P_{\mathcal{S}_{k,2}(\Delta)}\|_{\infty} \geq \sigma_{k,0}$. If the lower bound $\sigma_{k,m}$ is indeed the value of $\Lambda_{k,m}$, this reads $\sigma_{k,2} \geq \sigma_{k,0}$, in accordance with the expected monotonicity of $\sigma_{k,m}$.

Acknowledgements

I thank A. Shadrin who instigated this work and took an active part in valuable discussions.

References

- [1] C. de Boor. The quasi-interpolant as a tool in elementary polynomial spline theory in: Approximation Theory (Austin, TX, 1973), Academic Press, New York, 1973, 269–276.
- [2] C. de Boor. A bound on the L_{∞} -norm of L_2 -approximation by splines in terms of a global mesh ratio. Mathematics of Computation, Vol. 30, No.136, (1976), 765–771.
- [3] S. Demko. Inverses of band matrices and local convergence of spline projections. SIAM J. Numer. Anal., Vol 14, No. 4 (1977), 616–619.
- [4] D. Kershaw. Inequalities on the elements of the inverse of a certain tridiagonal matrix. Mathematics of Computation, Vol. 24, No.109, (1970), 155–158.
- [5] W. Light. *Jacobi projections* in: Approximation theory and applications (Zvi Ziegler, ed.), Academic Press, New York, 1981, 187–200.

- [6] L. Lorch. The Lebesgue constants for Jacobi Series, I. Proceedings of the American Mathematical Society, Vol. 10, No.5, (1959), 756–761.
- [7] A. A. Malyugin. Sharp estimates of norm in C of orthogonal projection onto subspaces of polygons. Mathematical Notes, 33 (1983), 355–361.
- [8] K. I. Oskolkov. The upper bound of the norms of orthogonal projections onto subspaces of polygonals in: Approximation Theory (Warsaw, 1975), Banach Center Publ., 4, PWN, Warsaw, 1979, 177–183.
- [9] C. K. Qu, R. Wong. Szegö's conjecture on Lebesgue constants for Legendre series. Pacific J. Math., 135 (1988), 157–188.
- [10] A. Shadrin. The L_{∞} -norm of the L_2 -spline projector is bounded independently of the knot sequence: A proof of de Boor's conjecture. Acta Math., 187 (2001), 59–137.
- [11] G. Szegö. Asymptotische Entwicklungen der Jacobischen Polynome. Schriften der Königsberger Gelehrten Gesellschaft, naturwissenschaftliche Klasse, vol 10 (1933), 35–112.
- [12] G. Szegö. Orthogonal polynomials. American Mathematical Society, Colloquium publications, vol XXIII, 1959.