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Abstract

A novel algorithm for the recovery of low-rank matrices acquired via compressive linear

measurements is proposed and analyzed. The algorithm, a variation on the iterative hard

thresholding algorithm for low-rank recovery, is designed to succeed in situations where the

standard rank-restricted isometry property fails, e.g. in case of subexponential unstructured

measurements or of subgaussian rank-one measurements. The stability and robustness of the

algorithm are established based on distinctive matrix-analytic ingredients and its performance

is substantiated numerically.
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1 Introduction

This article is concerned with the recovery of matrices X ∈ RN1×N2 of rank r � N := min{N1, N2}
from compressive linear measurements

(1) y = A(X) ∈ Rm

with a numberm of measurements scaling like rmax{N1, N2} instead ofN1N2. It is known that such

a low-rank recovery task can be successfully accomplished when the linear map A : RN1×N2 → Rm

satisfies a rank-restricted isometry property [2], e.g. by performing nuclear norm minimization [11],

i.e., by outputting a solution of

(2) minimize
Z∈RN1×N2

‖Z‖∗ :=
N∑
k=1

σk(Z) subject to A(Z) = y,

or by executing an iterative hard thresholding scheme [8, 10], i.e., by outputting the limit of the

sequence (Xn)n≥0 defined by X0 = 0 and

(3) Xn+1 = Hr(Xn + µA∗(y −AXn)).

∗S. F. partially supported by NSF grants DMS-1622134 and DMS-1664803.
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Above, and in the rest of the article,

• σ1(Z) ≥ · · · ≥ σN (Z) denote the singular values of a matrix Z ∈ RN1×N2 ;

• the linear map A∗ : Rm → RN1×N2 stands for the adjoint of A , defined by the property that

〈A∗(u),Z〉F = 〈u,A(Z)〉 for all u ∈ Rm and all Z ∈ RN1×N2 ;

• Hr represents the operator of best approximation by matrices of rank at most r, so that

Hr(Z) =
∑r

`=1 σ`(Z)u`v
∗
` if Z =

∑N
`=1 σ`(Z)u`v

∗
` is the singular value decomposition of Z.

Our focus, however, is put on measurement maps that do not necessarily satisfy the standard rank-

restricted isometry property, but rather a modified rank-restricted isometry property featuring the

`1-norm as an inner norm. Precisely, we consider measurement maps A : RN1×N2 → Rm with

universally bounded rank-restricted isometry ratio

(4) γr :=
βr
αr
≥ 1,

where αr, βr denote the optimal constants α, β > 0 such that

(5) α‖Z‖F ≤ ‖A(Z)‖1 ≤ β‖Z‖F for all Z ∈ RN1×N2 with rank(Z) ≤ r.

For instance, it was shown in [1]1 that γr ≤ 3 holds with high probability in the case of measurements

obtained by rank-one projections of the form2

(6) A(Z)i = a∗iZbi, i = 1, . . . ,m,

for some independent standard Gaussian vectors a1, . . . ,am ∈ RN1 and b1, . . . ,bm ∈ RN2 , provided

m & rmax{N1, N2}. Moreover, we will briefly justify in Section 5 that, in the case of measurements

given by

(7) A(Z)i =
∑
k,`

Ai,(k,`)Zk,`, i = 1, . . . ,m,

for some independent identically distributed mean-zero subexponential random variables Ai,(k,`)
with variance 1/m, say, there are constants c, C > 0 depending on the subexponential distribution

such that γr ≤ c holds with high probability as soon as m ≥ Crmax{N1, N2}.

The article [1] also showed that, under the modified rank-restricted isometry property (5), recovery

of rank-r matrices X ∈ RN1×N2 from y = A(X) ∈ Rm can be achieved by the nuclear norm

minimization (2). Here, we highlight the question:

Under the modified rank-restricted isometry property, is it possible to achieve low-rank recovery by

an iterative hard thresholding algorithm akin to (3)?

1Similar statements also appear in [3] and [4] in the cases r = 1 and r = 2, respectively.
2These are called rank-one projections because a∗iZbi is the Frobenius inner product 〈Z,aib

∗
i 〉F = tr(bia

∗
iZ) of

the matrix Z with the rank-one matrix aib
∗
i .
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We shall answer this question in the affirmative. The argument resembles the one developed in [6]

in the context of sparse recovery, but some subtle matrix-analytic refinements are necessary.

The iterative hard threshoding scheme we propose consists in outputting the limit of the sequence

(Xn)n≥0 defined by X0 = 0 and

(8) Xn+1 = Hs(Xn + µnHt(A∗sgn(y −AXn))),

with parameters s, t, and µn to be given explicitly later. If Ht did not appear, the scheme (8)

would intuitively be interpreted as a (sub)gradient descent steps for the function Z 7→ ‖y−AZ‖1,
followed by some singular value thresholding. The appearance of Ht is the main adjustment distin-

guishing the scheme (8) from the iterative hard thresholding scheme proposed in [6] (it also leads

to an altered stepsize µn). For the more classical iterative hard thresholding scheme, a similar

adjustment was already exploited in [9], where the roles of Hs and Ht were to provide ‘tail’ and

‘head’ approximations, respectively. This is not what justifies the appearance of Ht here.3

Let us now state our most representative result. To reiterate, it provides our newly proposed

algorithm with theoretical guarantees for the success of recovery of low-rank matrices acquired via

rank-one projections. Other iterative thresholding algorithms do not possess such guarantees, since

their analysis exploits the standard rank-restricted isometry property and hence does not apply to

rank-one projections. We also emphasize that the result is valid beyond rank-one projections, since

it only relies on the modified rank-restricted isometry property (5).

Theorem 1. Let A : RN1×N2 → Rm be a measurement map satisfying the modified rank-restricted

isometry property (5) of order c0r with ratio γc0r ≤ γ. Then any matrix X ∈ RN1×N2 of rank

at most r acquired by y = A(X) can be exactly recovered as the limit of the sequence (Xn)n≥0
produced by (8) with parameters s = c1r , t = c2r, and µn = ‖y−AXn‖1/‖Ht(A∗sgn(y−AXn)‖2F .

The constants c0, c1, c2 > 0 depend only on γ.

Theorem 1 is a simplified version of our main result (Theorem 5), which covers the more realistic

situation where the matrices X ∈ RN1×N2 to be recovered are not exactly low-rank and where the

measurements are not perfectly accurate, i.e., y = AX + e with a nonzero vector e ∈ Rm. The full

result will be stated and proved in Section 3. In preparation, we collect in Section 2 the matrix-

analytic tools that are essential to our argument. In Section 4, we present some modest numerical

3 In fact, the experiments performed in Section 4 suggest that Ht is not necessary, but we were unable to prove

the recovery of X using the algorithm ‘without Ht’. In the vector case, one avoids Ht by relying on the observation

that Hs(z) = Hs(zT ) if the index set T contains the support of Hs(z). In the matrix case, one would seemingly

require the counterpart statement that Hs(Z) = Hs(PT (Z)), PT denoting the orthogonal projection onto a space T
containing the space span{u1v

∗
1 , . . . ,usv

∗
s} obtained from the singular value decomposition

∑N
`=1 σ`(Z)u`v

∗
` of Z.

Such a statement is unfortunately invalid — take e.g. Z =

[
3 0

0 3c

]
with |c| < 1, so that H1(Z) =

[
3 0

0 0

]
, and take

T = span

{[
1 0

0 0

]
,

[
1 1

1 1

]}
, so that PT (Z) =

[
3 c

c c

]
and H1(PT (Z)) 6=

[
3 0

0 0

]
(otherwise rank

([
0 c

c c

])
= 1).
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experiments demonstrating some strong points of our iterative hard thresholding algorithm. In

Section 5, we close the article with a sketched justification of the modified rank-restricted isometry

property for subexponential measurement maps.

2 Matrix-analytic ingredients

The proof of Theorem 1 and of its generalization (Theorem 5) is based on the two technical side

results given as Propositions 2 and 3 below. The first side result provides a (loose4) quantitative

confirmation to the intuitive fact that ‖X−Hs(Z)‖F approaches ‖X−Z‖F as s grows. The (tight)

vector version of this assertion, due to [12], was already harnessed by [6] in the context of sparse

recovery when the standard restricted isometry property is absent.

Proposition 2. Given matrices X,Z ∈ RN1×N2 and integers r ≤ s with s+ 2r ≤ min{N1, N2}, if

rank(X) ≤ r, then

(9) ‖X−Hs(Z)‖F ≤ η
(s
r

)
‖X− Z‖F , where η(κ) := 1 +

√
8

κ+ 1
−→
κ→∞

1.

The second side result says that, under the modified rank-restricted isometry property (5), a low-

rank matrix X is well approximated by forming A∗ applied to the sign vector of A(X) and then

truncating its singular value decomposition. A closely connected result can found in [7, Lemma 3]5.

Proposition 3. Given a matrix X ∈ RN1×N2 , integers r ≤ s with s + r ≤ min{N1, N2}, and a

vector e ∈ Rm, if rank(X) ≤ r and if the modified rank-restricted isometry property (5) holds with

ratio γs+r = βs+r/αs+r, then

(10) ‖X− µHs(A∗sgn(AX + e))‖F ≤
(

1− 1

2γ2s+r
+ τ

√
r

s+ r

)
‖X‖F +

6τ2

βs+r
‖e‖1,

provided the stepsize µ satisfies, for some τ ≥ 1,

(11) µ =
‖AX + e‖1

ν
with

β2s+r
τ
≤ ν ≤ β2s+r and ν ≥ ‖Hs(A∗sgn(AX + e))‖2F .

Propositions 2 and 3 both rely on a purely matrix-analytic observation stated below.

Lemma 4. Given matrices A,B ∈ RN1×N2 and integers i, j, k with i ≤ k and k+j ≤ min{N1, N2},
if rank(A) ≤ j, then

(12) |〈A,B−Hk(B)〉F | ≤

√
j

k + j − i
‖A‖F ‖Hk+j(B)−Hi(B)‖F .

4The expression of η(κ) in (9) is certainly not optimal, but it suffices for our purpose.
5[7, Lemma 3] is not directly exploitable due to the obstruction described in footnote 3.
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Proof. We apply Von Neumman’s trace inequality, take into account the facts that σ`(A) = 0 for

` > j and that σ`(B−Hk(B)) = σk+`(B), and finally use Cauchy–Schwarz inequality to write

|〈A,B−Hk(B)〉F | ≤
∑
`≥1

σ`(A)σ`(B−Hk(B))(13)

=

j∑
`=1

σ`(A)σk+`(B)

≤

[
j∑
`=1

σ`(A)2

]1/2 [ j∑
`=1

σk+`(B)2

]1/2
.

For λ1 ≥ λ2 ≥ · · · ≥ λN , N := min{N1, N2}, it is easy to verify that

(14)

j∑
`=1

λk+` ≤
j

k + j − i

k+j−i∑
`=1

λi+`.

By applying this inequality with λh = σh(B)2 and substituting into (13), we obtain

|〈A,B−Hk(B)〉F | ≤ ‖A‖F

[
j

k + j − i

k+j−i∑
`=1

σi+`(B)2

]1/2
(15)

=

√
j

k + j − i
‖A‖F ‖Hk+j(B)−Hi(B)‖F ,

which is the announced result.

We are now in a position to fully justify Propositions 2 and 3.

Proof of Proposition 2. We start by noticing that

‖X−Hs(Z)‖2F = 〈X−Hs(Z),X− Z〉F + 〈X−Hs(Z),Z−Hs(Z)〉F(16)

≤ 1

2
‖X−Hs(Z)‖2F +

1

2
‖X− Z‖2F + 〈X−Hs(Z),Z−Hs(Z)〉F .

Thus, after rearranging the terms, we have

‖X−Hs(Z)‖2F ≤ ‖X− Z‖2F + 2〈X−Hs(Z),Z−Hs(Z)〉F(17)

= ‖X− Z‖2F + 2〈X−Hr(Z),Z−Hs(Z)〉F ,

where the last equality followed from the fact that 〈H`(Z),Z −Hs(Z)〉F = 0 whenever ` ≤ s. We

apply Lemma 4 with A = X−Hr(Z), B = Z, i = r, j = 2r, and k = s. This allows us to write

〈X−Hr(Z),Z−Hs(Z)〉F ≤
√

2r

s+ r
‖X−Hr(Z)‖F ‖Hs+2r(Z)−Hr(Z)‖F(18)

≤
√

2r

s+ r
‖X−Hr(Z)‖F ‖Z−Hr(Z)‖F .
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In view of ‖Z−Hr(Z)‖F ≤ ‖Z−X‖F (recall that Hr(Z) is a best approximant of rank at most r

to Z) and of ‖X−Hr(Z)‖F ≤ ‖Z−Hr(Z)‖F + ‖Z−X‖F ≤ 2‖Z−X‖F , we now arrive at

(19) 〈X−Hr(Z),Z−Hs(Z)〉F ≤ 2

√
2r

s+ r
‖Z−X‖2F .

Substituting (19) into (17) leads to

(20) ‖X−Hs(Z)‖2F ≤

(
1 + 4

√
2r

s+ r

)
‖Z−X‖2F ≤

(
1 + 2

√
2r

s+ r

)2

‖X− Z‖2F ,

which yields the desired result after taking the square root on both sides.

Proof of Proposition 3. For convenience, we denote w := sgn(AX+e) throughout the proof. Before

addressing the bound (10) on ‖X − µHs(A∗w)‖F , we remark that ‖Hs(A∗w)‖2F ≤ β2s+r, so that

(11) does not feature a vacuous requirement. In fact, a stronger inequality holds, namely

(21) ‖Hs+r(A∗w)‖F ≤ βs+r.

This follows from the observation that

‖Hs+r(A∗w)‖2F = 〈Hs+r(A∗w), Hs+r(A∗w)〉F = 〈A∗w, Hs+r(A∗w)〉F(22)

= 〈w,A(Hs+r(A∗w))〉 ≤ ‖A(Hs+r(A∗w))‖1
≤ βs+r‖Hs+r(A∗w)‖F .

Turning now to ‖X− µHs(A∗w)‖F , we expand its square to obtain

‖X− µHs(A∗w)‖2F = ‖X‖2F − 2µ〈X, Hs(A∗w)〉F + µ2‖Hs(A∗w)‖2F(23)

≤ ‖X‖2F − 2µ〈X, Hs(A∗w)〉F + µ2ν.

To deal with the inner product appearing on the right-hand side of (23), we write

(24) 〈X, Hs(A∗w)〉F = 〈X,A∗w〉F − 〈X,A∗w −Hs(A∗w)〉F ,

while noticing that

(25) 〈X,A∗w〉F = 〈AX, sgn(AX + e)〉 = ‖AX + e‖1 − 〈e, sgn(AX + e)〉 ≥ ‖AX + e‖1 − ‖e‖1

and that Lemma 4 applied with A = X, B = A∗w, i = 0, j = r, and k = s yields

(26) |〈X,A∗w −Hs(A∗w)〉F | ≤
√

r

s+ r
‖X‖F ‖Hs+r(A∗w)‖F .

Taking (21) into account and making use of (25) and (26) in (24), we derive

(27) 〈X, Hs(A∗w)〉F ≥ ‖AX + e‖1 −
[
‖e‖1 + βs+r

√
r

s+ r
‖X‖F

]
.
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Substituting (27) into (23) and using (11) now gives

‖X− µHs(A∗w)‖2F ≤ ‖X‖2F − 2µ‖AX + e‖1 + µ2ν + 2µ

[
‖e‖1 + βs+r

√
r

s+ r
‖X‖F

]
(28)

= ‖X‖2F −
‖AX + e‖21

ν
+ 2µ

[
‖e‖1 + βs+r

√
r

s+ r
‖X‖F

]
≤ ‖X‖2F −

‖AX + e‖21
β2s+r

+
2τ‖AX + e‖1

β2s+r

[
‖e‖1 + βs+r

√
r

s+ r
‖X‖F

]
.

In view of the inequalities ‖AX + e‖21 ≥ |‖AX‖1 − ‖e‖1|2 = ‖AX‖21 − 2‖AX‖1‖e‖1 + ‖e‖21 and

‖AX + e‖1 ≤ ‖AX‖1 + ‖e‖1, we arrive at

(29)

‖X− µHs(A∗w)‖2F ≤ a+ b‖e‖1 + c‖e‖21,



a := ‖X‖2F −
‖AX‖21
β2s+r

+
2τ

βs+r

√
r

s+ r
‖AX‖1‖X‖F ,

b :=
2(1 + τ)‖AX‖1

β2s+r
+

2τ

βs+r

√
r

s+ r
‖X‖F ,

c :=
2τ − 1

β2s+r
.

The bounds ‖AX‖1 ≥ αs+r‖X‖F and ‖AX‖1 ≤ βs+r‖X‖F imply that

(30)


a ≤

(
1− 1

γ2s+r
+ 2τ

√
r

s+ r

)
‖X‖2F ≤

(
1− 1

2γ2s+r
+ τ

√
r

s+ r

)2

‖X‖2F ,

b ≤ 2

βs+r

(
1 + τ + τ

√
r

s+ r

)
‖X‖F ≤

2τ

βs+r

(
1 + τ + τ

√
r

s+ r

)
‖X‖F .

Since we also have

(31) c ≤ τ2

β2s+r
≤

τ2
(

1 + τ + τ

√
r

s+ r

)2

β2s+r

(
1− 1

2γ2s+r
+ τ

√
r

s+ r

)2 ,

we deduce that ‖X− µHs(A∗w)‖2F is bounded above by

(32)


(

1− 1

2γ2s+r
+ τ

√
r

s+ r

)
‖X‖F +

τ

(
1 + τ + τ

√
r

s+ r

)
βs+r

(
1− 1

2γ2s+r
+ τ

√
r

s+ r

)‖e‖1

2

.

It remains to take the square root on both sides to obtain the desired result, after noticing that

1 + τ + τ
√
r/(s+ r) ≤ 3τ and 1− 1/(2γ2s+r) + τ

√
r/(s+ r) ≥ 1− 1/(2γ2s+r) ≥ 1/2.
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3 Stability and robustness of the reconstruction

This section is devoted to the proof of Theorem 1 — in fact, of the more general theorem stated

below, which incorporates low-rank defect and measurement error.

Theorem 5. Let A : RN1×N2 → Rm be a measurement map satisfying the modified rank-restricted

isometry property (5) of order γt+s+r ≤ γ, where

(33) s = 100γ4r and t = 800γ12s.

For all X ∈ RN1×N2 and all e ∈ Rm, the iterative hard thresholding algorithm (8) applied to

y = AX + e with stepsize

(34) µn =
‖y −AXn‖1

max

{
‖Ht(A∗sgn(y −AXn))‖2F ,

1

4γ2
‖A(Ht(A∗sgn(y −AXn)))‖21
‖Ht(A∗sgn(y −AXn))‖2F

} ,
produces a sequence (Xn)n≥0 whose cluster points X] approximate Hr(X) with error

(35) ‖Hr(X)−X]‖F ≤ d‖A(X−Hr(X)) + e‖1,

where the constant d depends only on γ and βt+s+r.

A number of comments are on order before giving the full justification of Theorem 5.

The parameters s and t. The constants involved in (33) are admittedly huge. They have been

chosen to look nice and to make the theory work, but they do not reflect reality. In practice, the

numerical experiments carried our in Section 4 suggest that they can be taken much smaller.

The idealized situation. Theorem 1 is truly a special case of Theorem 5 where one assumes that

rank(X) ≤ r and e = 0. Not only does (35) guarantees exact recovery in this case, but the stepsize

(34) indeed reduces to µn = ‖y −AXn‖1/‖Ht(A∗sgn(y −AXn))‖2F when rank(X) ≤ r and e = 0.

This is valid because, on the one hand,

(36)
1

4γ2
‖A(Ht(A∗sgn(y −AXn)))‖21
‖Ht(A∗sgn(y −AXn))‖2F

≤ 1

4γ2
β2t ≤

1

4γ2
β2t+s+r ≤

α2
t+s+r

4
,

and, on the other hand, ‖Ht(A∗sgn(y −AXn))‖2F ≥ ‖Hs+r(A∗sgn(y −AXn))‖2F ≥ α2
t+s+r, since

αt+s+r‖X−Xn‖F ≤ ‖A(X−Xn)‖1 = 〈A(X−Xn), sgn(A(X−Xn))〉(37)

= 〈X−Xn,A∗sgn(y −AXn)〉 ≤
s+r∑
`=1

σ`(X−Xn)σ`(A∗sgn(y −AXn))

≤ ‖X−Xn‖F ‖Hs+r(A∗sgn(y −AXn))‖F .

8
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The stepsize. The selection made in (34) is certainly not the only possible one. For instance,

choosing µn = ‖y−AXn‖1/β2t+s+r would also work. We favored the option (34) because it does not

necessitate an estimation of βt+s+r, because it seems to perform better in practice, and because it

is close to optimal in the sense that the choice µn = ‖y−AXn‖1/‖Ht(A∗sgn(y−AXn))‖2F , made

in the idealized situation, almost minimizes the expression (23) when taking (27) into account.

Let us also remark that there is some leeway around an admissible µn, namely replacing it by

µ′n = (1 + δn)µn for a suitably small relative variation δn does not compromise the end result, as it

only creates a minor change in the proof (specifically, in (57)). The reader is invited to fill in the

details.

Number of iterations. The proof of Theorem 5 actually provides error estimates throughout the

iterations. For instance, in the idealized situation where rank(X) ≤ r and e = 0, it reveals that

there is a constant ρ < 1 such that

(38) ‖X−Xn‖F ≤ ρn‖X‖F for all n ≥ 0.

Thus, for a prescribed accuracy ε, we have ‖X − Xn‖F ≤ ε in only n = dln(‖X‖F /ε)/ ln(1/ρ)e
iterations.

A stopping criterion. Although Theorem 5 states a recovery guarantee for cluster points of the

sequence (Xn)n≥0, one can stop the iterative process as soon as the maximum in (34) is achieved

by the second term defining it (provided this occurs). Precisely, if

(39) ‖A(Ht(A∗sgn(y −AXn)))‖1 ≥ 2γ‖Ht(A∗sgn(y −AXn))‖2F ,

then the conclusion that

(40) ‖Hr(X)−Xn‖F ≤ d‖e′‖1, e′ := A(X−Hr(X)) + e

is already acquired. Indeed, the condition (39) imposes that

(41) 2γ‖Ht(A∗sgn(y −AXn))‖2F ≤ βt+s+r‖Ht(A∗sgn(y −AXn))‖F ,

i.e., that

(42) ‖Ht(A∗sgn(y −AXn))‖F ≤
βt+s+r

2γ
.

We then derive (as in (37)) that

〈Hr(X)−Xn,A∗sgn(y −AXn)〉 ≤ ‖Hr(X)−Xn‖F ‖Hs+r(A∗sgn(y −AXn))‖F(43)

≤ βt+s+r
2γ

‖Hr(X)−Xn‖F .

9
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Moreover, keeping on mind that y = A(Hr(X)) + e′, we notice that

〈Hr(X)−Xn,A∗sgn(y −AXn)〉 = 〈A(Hr(X)−Xn), sgn(y −AXn)〉(44)

= 〈y −AXn − e′, sgn(y −AXn)〉 ≥ ‖y −AXn‖1 − ‖e′‖1
≥ ‖A(Hr(X)−Xn)‖1 − 2‖e′‖1 ≥ αt+s+r‖Hr(X)−Xn‖F − 2‖e′‖1

≥ βt+s+r
γ
‖Hr(X)−Xn‖F − 2‖e′‖1.

Combining (43) and (44) yields

(45) ‖Hr(X)−Xn‖1 ≤
4γ

βt+s+r
‖e′‖1.

Form of the error estimate. In the realistic situation where X is not exactly low-rank and

measurement error occurs, one customarily sees recovery guarantees of the type

(46) ‖X−X]‖F ≤
C√
r

min
rank(Z)≤r

‖X− Z‖∗ +D‖e‖1.

Our iterative hard thresholding algorithm (with parameter r replaced by 2r) also allows for such an

estimate, which is derived using the sort-and-split technique. We omit the details, as the argument

is quite classical and can be found in full in [6] for the vector case.

The norm on the measurement error. The appearance of ‖e‖1 in (46) might seem surprising,

as one usually encounters ‖e‖2 when the measurement maps satisfies the standard rank-restricted

isometry property. But there is no discrepancy here, as this is just a matter of normalization.

Indeed, for a measurement map G : RN1×N2 → Rm generated as in (7) with independent standard

normal random variables Gi,(k,`), let us suppose that inaccurate measurements are given by y =

GX + u. On the one hand, the normalized version of G that satisfies the standard rank-restricted

isometry property is A = G/
√
m, in which case the measurements take the form y/

√
m = AX + e

with e = u/
√
m, so that ‖e‖2 = ‖u‖2/

√
m appears in the error estimate. On the other hand, the

normalized version of G that satisfies the modified rank-restricted isometry property is A = G/m,

in which case the measurements take the form y/m = AX + e with e = u/m, so that ‖e‖1 =

‖u‖1/m appears in the error estimate. The latter is in fact better than the former, by virtue of

‖u‖1 ≤
√
m‖u‖2 for u ∈ Rm.

Proof of Theorem 5. Without loss of generality, we can assume that X has rank at most r and aim

at proving that

(47) ‖X−X]‖F ≤ d‖e‖1.

Indeed, we can in general interpret the measurements y = AX + e made on X as measurements

y = A(Hr(X)) + e′, e′ := A(X − Hr(X)) + e, made on the matrix Hr(X) which has rank is at

10
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most r. The exact low-rank result would then yield

(48) ‖Hr(X)−X]‖F ≤ d‖e′‖1 = d‖A(X−Hr(X)) + e‖1,

as desired. So we assume from now on that rank(X) ≤ r. We are going to establish the existence

of ρ < 1 such that, for all n ≥ 0,

(49) ‖X−Xn+1‖F ≤ ρ‖X−Xn‖F + d′‖e‖1,

which immediately implies that, for all n ≥ 0,

(50) ‖X−Xn‖F ≤ ρn‖X‖F + d‖e‖1, d :=
d′

1− ρ
.

In particular, (47) is obtained from (50) by letting n → ∞. It remains to prove (49) for a given

integer n ≥ 0. Since Xn+1 = Hs(Xn + µnHt(A∗sgn(y −AXn))), Proposition 2 implies

(51) ‖X−Xn+1‖F ≤ ρ′‖X− (Xn + µnHt(A∗sgn(y −AXn)))‖F , ρ′ := 1 +

√
8r

s+ r
> 1.

Next, we notice that the stepsize µn takes the form

(52) µn =
‖A(X−Xn) + e‖1

νn
,

where the denominator

(53) νn := max

{
‖Ht(A∗sgn(A(X−Xn) + e))‖2F ,

1

4γ2
‖A(Ht(A∗sgn(A(X−Xn) + e)))‖21
‖Ht(A∗sgn(A(X−Xn) + e))‖2F

}
clearly satisfies

(54) νn ≥ ‖Ht(A∗sgn(A(X−Xn) + e))‖2F ,

as well as

(55)
β2t+s+r

4γ4
≤ νn ≤ β2t+s+r.

The latter inequalities follow from ‖Ht(A∗sgn(A(X−Xn) + e))‖2F ≤ β2t ≤ β2t+s+r (obtained in the

same way as (21)) and from

(56)
1

4γ2
‖A(Ht(A∗sgn(A(X−Xn) + e)))‖21
‖Ht(A∗sgn(A(X−Xn) + e))‖2F


≤ 1

4γ2
β2t+s+r ≤ β2t+s+r,

≥ 1

4γ2
α2
t+s+r ≥

β2t+s+r
4γ4

.

Therefore, according to Proposition 3, we obtain

‖X− (Xn + µnHt(A∗sgn(y −AXn)))‖F = ‖(X−Xn)− µnHt(A∗sgn(A(X−Xn) + e)))‖F(57)

≤ ρ′′‖X−Xn‖F +
96γ8

βt+s+r
‖e‖1, ρ′′ := 1− 1

2γ2
+ 4γ4

√
s+ r

t+ s+ r
< 1,

11
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with 4γ4
√

(s+ r)/(t+ s+ r) < 1/(2γ2) being justified by our choice of s and t. In fact, our choice

of s and t guarantees that

ρ := ρ′ρ′′ ≤

(
1 +

√
8r

s

)(
1− 1

2γ2
+ 4γ4

√
2s

t

)
≤ 1− 1

2γ2
+ 4γ4

√
2s

t
+

√
8r

s
(58)

≤ 1− 1

2γ2
+

1

5γ2
+

√
2

5γ2
= 1− 3− 2

√
2

10γ2
< 1.

Combining (51) and (57), we finally derive that

(59) ‖X−Xn+1‖F ≤ ρ‖X−Xn‖F + d′‖e‖1, d′ :=
96ρ′γ8

βt+s+r
.

This establishes (49) and completes the proof.

4 Numerical validation

The perspective adopted in this article is mostly theoretical, with a declared goal consisting in

uncovering iterative thresholding algorithms that provide alternatives to nuclear norm minimization

when the standard rank-restricted isometry property does not hold. The modest experiments

carried out with our proposed algorithm are encouraging, although we shall refrain from making

too optimistic claims about its performance. In what follows, we only focus on measurements

obtained by Gaussian rank-one projections of type (6). Note that in this case our algorithm starts

with X0 = 0 and iterates the scheme

(60) Xn+1 = Hs

(
Xn + µnHt

(
m∑
i=1

sgn(yi − a∗iXnbi)bia
∗
i

))
.

All the experiments performed below can be reproduced by downloading the matlab file linked to

this article from the first author’s webpage.

Influence of s and t. In order to derive theoretical guarantees about the success of the algorithm,

the parameters s and t appearing in (60) can be chosen according to (33). This of course does not

mean that other choices are unsuitable. Figure 1 reports on the effect of varying these parameters.

We observe that successful recoveries occur more frequently when s = r, which makes intuitive

sense since the rank-s matrix Xn is supposed to approximate the rank-r matrix X. We also

observe that successful recoveries occur more frequently when t increases. The largest value t can

take is N = min{N1, N2}, in which case the hard thresholding operator does not do anything. The

default value of the parameters are therefore s = r and t = N , meaning that Ht is absent and that

one singular value decomposition is saved per iteration.

12
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Figure 1: Influence of s and t on the success of algorithm (60).

Performance. We now compare the low-rank recovery capability of the algorithm (60) with two

other algorithms, namely with nuclear norm minimization (NNM) and with the normalized iterative

hard thresholding (NIHT) algorithm proposed in [13]. In fact, we test two versions of our modified

iterative hard thresholding (MIHT) algorithm: one with the default parameters as discussed above,

and one with parameters s = r and t = 2r — this is another natural choice, as Ht(A∗sgn(y−AXn))

is supposed to approximate the rank-2r matrix X−Xn. Judging from Figure 2, NNM is seemingly

(and surprisingly) outperformed by our default MIHT algorithm. The comparison with NIHT is

less straightforward. With few measurements available, NIHT does best, but when the number

of measurements is large enough for the recoveries by NNM and MIHT to be certain, recovery

by NIHT does not occur consistently. We interpret this phenomenon as a reflection of the theory.

Indeed, Gaussian rank-one projections of type (6) do not obey the standard rank-restricted isometry

property, which would have guaranteed the success of NIHT (see [13]), but they obey the modified

rank-restricted isometry property (5), which does guarantee the success of NNM (see [1]) and of

MIHT (this article).

Speed. The next experiment compares the four algorithms previously considered in terms of

execution time and number of iterations (when applicable). Figure 3 shows, as expected, that

iterative algorithms are much faster than nuclear norm minimization: in this experiment (which

only takes successful recoveries into account), the execution time is Θ(Nω) with ω ≈ 4 for NNM,

ω ≈ 1 for NIHT, and ω ≈ 2.4 for MIHT. The execution times for the two versions of MIHT

essentially differ by a factor of two, due to the fact that the default version performs only one

singular value decomposition per iteration instead of two. The number of iterations is roughly

similar for the two versions. It is much lower for NIHT, which explains its superiority in terms of

overall execution time.
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Figure 2: Frequency of successful recoveries as a function of the number of Gaussian rank-one

measurements for nuclear norm minimization, normalized iterative hard thresholding, and modified

iterative hard thresholding with default parameters and with parameters s = r and t = 2r.

Robustness. The final experiment is designed to examine the effect on the recovery of errors

e ∈ Rm in the measurements y = A(X) + e made on low-rank matrices X. In particular, we

wish to certify the statement (35) that the recovery error, measured in Frobenius norm, is at most

proportional to the measurement error, measured in `1-norm. The results displayed in Figure 4

confirm the validity of this statement for our algorithm (60) with default parameters and with

parameters s = r and t = 2r, as well as for the normalized iterative hard thresholding algorithm.

5 Explanation of the modified rank-restricted isometry property

In this appendix, we point out that the modified rank-restricted isometry property (5) is not only

valid for rank-one Gaussian measurements, as already established in [1], but also for subexponential

measurements of type (7). The justification essentially follows the arguments put forward in [5].

First, fixing a matrix Z ∈ RN1×N2 , viewed as its vectorization z = vec(Z) ∈ RN1N2 , [5, Theorem 3.1]

guarantees a concentration inequality of the form

(61) Pr (|‖A(Z)‖1 − �Z�| > ε � Z�) ≤ 2 exp(−κε2m).

The constant κ depends on the subexponential distribution, and so does the slanted norm, although

it is comparable to the Frobenius norm in the sense that (see [5, Proposition 2.3])

(62) c‖Z‖F ≤ �Z� ≤ C‖Z‖F for all Z ∈ RN1×N2

for some constants c, C > 0 depending on the subexponential distribution. The next step (see

the proof of [5, Theorem 4.1]) is a covering argument showing that (61) extends to a uniform
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Figure 3: Execution time and number of iterations as a function of the dimension N = N1 = N2.

concentration inequality of the form

(63) Pr
(∣∣‖A(Z)‖1−�Z�

∣∣ > δ�Z� for some Z with rank(Z) ≤ r
)
≤ 2 exp(−κδ̄2m+ ln(Nr(δ̄))),

where Nr(δ̄), δ̄ := δ/3, denotes the size of a δ̄-net for the set of rank-r matrices with slanted norm

at most 1. We now recall the key observation from [2] that the set of rank-r matrices in RN1×N2

with norm at most 1 has a covering number Nr(δ̄) ≤ (c1/δ̄)
c2rNmax , Nmax := max{N1, N2}, which is

valid for the Frobenius norm and, in view of (62), for the slated norm, too. This implies a modified

rank-restricted isometry property of the form

(64) (1− δ) � Z� ≤ ‖A(Z)‖1 ≤ (1 + δ) � Z � whenever rank(Z) ≤ r,

which occurs with failure probability at most

(65) 2 exp(−κδ̄2m+ ln(c1/δ̄)c2rNmax) ≤ 2 exp(−κδ̄2m/2) ≤ 2 exp(−κ′δ2m),

provided ln(c1/δ̄)c2rNmax ≤ κ′δ̄2m/2, i.e., m ≥ C(δ)rNmax. Finally, (64) turns into (5) by virtue

of (62).
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