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Abstract. In this paper, we distinguish three groups of definition of chaos:

• the Devaney’s type of chaos: we will introduce three definitions which are
equivalent on Baire Hausdorff spaces with countable base, before noting a

defect in Devaney’s definition, leading us to give a new definition of chaos.

We will also examine how the functor “Stone-Čech compactification”
preserves and reflects chaos.

• the entropy type of chaos: we will extend the definition of entropy of a

map to the case of completely regular Hausdorff spaces, using the Stone-
Čech compactification again.

• the Li and Yorke’s type of chaos.

A complete study of the relations between these three types will be held on
intervals, introducing some other definitions of chaos.

Finally, we are going to give a non-trivial example of chaotic map.

In this paper, X is a topological space, most of the time Hausdorff and perfect,
but those conditions will be stated when needed, and f is a continuous map from X
into itself, the continuity of f being a essential hypothesis. When X is an interval,
it will be denoted I.

1. Basic definitions

If (X, d) is a metric space, f has sensitive dependence on initial conditions if:
∃δ > 0 : ∀x ∈ X,∀ε > 0,∃n ≥ 0,∃y ∈ X, 0 < d(x, y) < ε : d(fn(x), fn(y)) > δ.
If A is a subset of X, the backward, respectively forward, orbit of A (under f) is
defined by: O−f (A) :=

⋃
n≥0 f−n(A), respectively O+

f (A) :=
⋃

n≥0 fn(A). When A

is a singleton {x}, we write O+
f (x) instead of O+

f ({x}).
We say that f is topologically transitive if for every non-empty open U , O−f (U)
(which is open) is dense in X. Equivalently, for all non-empty open U and V ,
∃n ≥ 0 such that: fn(V ) ∩ U 6= ∅. Equivalently, for every non-empty open V ,
O+

f (V ) (not necessarily open) is dense in X.
The ω-limit set of a point x ∈ X by f is the set of limits of all convergent subse-
quences of the sequence (fn(x))n≥0, ie ωf (x) :=

⋂
N≥0 cl(O+

f (fN (x)))

Notations. Ω := {x ∈ X : ωf (x) = X} and for N ≥ 0, ∆N := {x ∈ X :
cl(O+

f (fN (x))) = X}.

Lemma 1.1. Ω =
⋂

n≥0 ∆n ⊆ · · · ⊆ ∆N ⊆ · · · ⊆ ∆2 ⊆ ∆1 ⊆ ∆0 and if X is
perfect and Hausdorff, Ω = · · · = ∆N = · · · = ∆2 = ∆1 = ∆0
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Proof. (x ∈ Ω ⇔ x ∈
⋂

n≥0 ∆n) and (x ∈ ∆n+1 ⇒ x ∈ ∆n) are obvious, keeping
in mind that ωf (x) :=

⋂
N≥0 cl(O+

f (fN (x))) and that O+
f (fn+1(x)) ⊆ O+

f (fn(x)).
X is perfect means that for every y ∈ X and every U ∈ Ny (U a neighbourhood
of y), U \ {y} is non-empty. Now if X is perfect Hausdorff, let us pick x ∈ ∆0.
For y ∈ X, U ∈ Ny and N ≥ 0, V := U \ {x, f(x), ..., fN−1(x)} is an open set
(since X is Hausdorff) which can not be empty, otherwise U would be finite: U =:
{x1, x2, ..., xn}, then V := U\{x2, ..., xn} = {x1} would be open, impossible because
X is perfect. So by the density of O+

f (x), O+
f (x) ∩ V 6= ∅, ie ∃n ≥ N : fn(x) ∈ U ,

true for all y, U . Then: ∀N ≥ 0, cl(O+
f (fN (x))) = X. Hence ωf (x) = X, ie

x ∈ Ω. �

Requiring X to be perfect is not restrictive, since anyway if we want a map to
have sensitive dependence on initials conditions, X has to be perfect. But if X is
not, Ω can be stricly included in ∆0, as shown by the following example: X :=
{1/2n, n ≥ 0} ∪ {0}, with the absolute value as metric, and f : x ∈ X 7→ x/2 ∈ X.
1 ∈ ∆0, but ωf (1) = {0} 6= X. We see as well that f is not topologically transitive
(no open visits an area to its left), hence (∆0 6= ∅)6⇒(f is topologically transitive),
unlike what can be often found in the literature. However, the following is true:

Lemma 1.2. (x ∈ Ω) ⇒ (f is topologically transitive and x ∈ ∆0), and if X is
Hausdorff: (x ∈ Ω) ⇔ (f is topologically transitive and x ∈ ∆0).

Proof. ⇒ We already know (Ω ⊆ ∆0), and let us consider a non-empty open U :
there exists n ≥ 0 such that fn(x) ∈ U , then X = cl(O+

f (fn(x))) ⊆ cl(O+
f (U)), so

f is topologically transitive.
⇐ Let x ∈ ∆0. Let us assume that cl(O+

f (f(x))) 6= X, so that there exists a
non-empty open U such that U ∩ O+

f (f(x)) = ∅. But U ∩ O+
f (x) 6= ∅, since

x ∈ ∆0, thus x ∈ U . If U \ {x} was non-empty (it is open since X is Hausdorff),
(U \ {x}) ∩ O+

f (x) 6= ∅, contradicting U ∩ O+
f (f(x)) = ∅. Thus, {x} = U is open.

V := X \ {x} is also open, and non empty (the case #X = 1 can be easily proved
apart). Then, by the topological transitivity of f : ∃n ≥ 0,∃y ∈ V : fn(y) = x
(necessarily n ≥ 1). The open f−n({x}) is non-empty, so again by topological
transitivity: ∃m ≥ 0 : fm(x) ∈ f−n({x}), which is fn+m(x) = x. x is periodic,
then O+

f (f(x)) = O+
f (x), which is not. Consequently, x ∈ ∆1, and inductively

x ∈ ∆2, ..., x ∈ ∆n, ... so that x ∈ Ω. �

2. Devaney’s type of chaos

2.1. Three common definitions of chaos. Let us state what we understand by
Devaney’s chaos (written D-chaos):

Definition 2.1. Assuming that X is a metric space, we say that f is D-chaotic,
respectively D’-chaotic, if:

(D1) ∀U non-empty open, cl(O−f (U)) = X (D’1) ∆0 6= ∅
(f is topologically transitive) (f has a dense orbit)

(D2) cl(Perf ) = X (D’2) = (D2)
(the periodic points are dense in X)

(D3) f has sensitive dependence on initial conditions (D’3) = (D3)

It would have been equivalent to define the D or D’-chaos by replacing every cl
encountered in these definitions by der, where der(A) is the set of accumulation
points of A ⊆ X, since X is perfect, because of (D3).
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Let us remind that in [2], Banks, Brooks, Cairns, Davis and Stacey have shown
that if the set of periodic points of f , denoted Perf , is dense in X and if f is
topologically transitive, then f has sensitive dependence on initial conditions, pro-
vided that X is infinite (equivalently, provided that X is (metric) perfect, but it
is easier to check that X is infinite than perfect). This not only tells us that the
most intuitive hypothesis of Devaney’s definition of chaos is redundant, but also
that the Devaney’s chaos is in fact a topological notion, since the metric structure
of X was only required by the sensitive dependence on initial conditions. Hence,
we introduce the following definitions:

Definition 2.2. f is B-chaotic, respectively B’-chaotic, if:
(B1) ∀U non-empty open, cl(O−f (U)) = X (B’1)∆0 6= ∅

(B2) cl(Perf ) = X (B’2) = (B2)
(B3) #X = +∞ (B’3) = (B3)

It is now clear that if X is a metric space: (f is D-chaotic)⇐⇒(f is B-chaotic),
and by the following lemma, we have as well: (f is D’-chaotic)⇐⇒(f is B’-chaotic).

Lemma 2.3. If X is Hausdorff, (cl(Perf ) = X, ∆0 6= ∅) ⇒ (f is topologically
transitive), and so if f is B’-chaotic, it is B-chaotic.

Proof. Let U, V be non-empty open of X, and let us take x ∈ ∆0. ∃n ≥ 0 : fn(x) ∈
V . X being Hausdorff, W := U \ {x, ..., fn(x)} is open.
First case: W 6= ∅, so O+

f (x) ∩W 6= ∅, implying that fn(x) ∈ V ∩ O−f (U).
Second case: U ⊆ {x, ..., fn(x)}. U ∩ Perf 6= ∅, so ∃k ∈ {1, ..., n} : fk(x) ∈ Perf .
Hence, O+

f (x) is finite, then closed, so X = O+
f (x) is finite, and therefore Perf is

finite, then closed, so X = Perf , and finally x ∈ Perf . Denoting q its period, for
l such that k + lq > n, fk+lq(x) = fk(x) ∈ U , so: fn(x) ∈ V ∩ f−(k+lq−n)(U) ⊆
V ∩ O−f (U).
In each case, V ∩ O−f (U) 6= ∅, hence cl(O−f (U)) = X, which means that f is
topologically transitive. �

Let us now remark that if, for some n ≥ 1, fn is B-chaotic, or B’-chaotic, so is
f (note that Perfn = Perf ). Besides, if f is a homeomorphism, f is B-chaotic if
and only if f−1 is, thus if X is a metric space and if f is B-chaotic, both f and f−1

have sensitive dependence on initial conditions.
Let us remind that if X is Hausdorff, (Ω 6= ∅)⇔(B1+B’1), and since we also

have (B2+B’1)⇒(B1), we see that if X is Hausdorff, f is B’-chaotic if and only
if (Ω 6= ∅), (B2) and (B3) are true. This could be another form of definition of
chaos, that can even be strengthened, noticing that (Ω 6= ∅)⇒(cl(Ω) = X). Indeed,
for x ∈ Ω, for all N ≥ 0 and n ≥ 0, cl(O+

f (fN+n(x))) = X, then for all n ≥ 0,
fn(x) ∈ Ω, ie O+

f (x) ⊆ Ω, which proves that Ω is dense in X. Hence:

Definition 2.4. f is B”-chaotic if:
(B”1) cl(Ω) = X
(B”2) cl(Perf ) = X
(B”3) #X = +∞

Let us note that, for some n ≥ 1, if fn is B”-chaotic, so is f , as it is rather easy
to see that Ωfn ⊆ Ωf .

Theorem 2.5. In general, (B”-chaos) ⇒ (B’chaos) and (B”-chaos) ⇒ (B’chaos).
If moreover X is Hausdorff, (B”-chaos) ⇔ (B’-chaos) ⇒ (B-chaos). If at last X is a
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Baire space with countable base for the topology, (B1) ⇒ (B’1), thus (B-chaos) ⇒
(B’-chaos). Finally, if X is a Baire Hausdorff space with countable base, (B”-chaos)
⇔ (B’-chaos) ⇔ (B-chaos).

Proof. Everything has already been done, but the implication (B1)⇒(B’1). Let
then X be a Baire space with a countable base {Ui 6= ∅, i ≥ 0}, and let us assume
that f is topologically transitive, so: ∀i ≥ 0, cl(O−f (Ui) = X, and since O−f (Ui) is
open, Y :=

⋂
i≥0O

−
f (Ui) is dense in X, because X is a Baire space. Let us pick

y ∈ Y , and let V be a non empty open, there exists j ≥ 0 such that Uj ⊆ V , but
y ∈ O−f (Uj) ⊆ O−f (V ) , meaning that O+

f (y) ∩ V 6= ∅. Hence, y ∈ ∆0. So ∆0 ⊇ Y
is dense in X. �

2.2. A new definition of chaos. As already stated in [8], the Devaney’s definition
of chaos contains a defect in itself, namely a map making each point periodic can
be B-chaotic!

Proposition 2.6. If X is Hausdorff and Perf is dense in X, f̃ denoting the restric-
tion of f to Perf , (f : X −→ X is B-chaotic) ⇔ (f̃ : Perf −→ Perf is B-chaotic).
In particular, if X is Hausdorff and f is B-chaotic, so is f̃ .

Proof. ⇒ Perf can not be finite, otherwise, since X is Hausdorff, Perf would be
closed, then X = cl(Perf ) = Perf would be finite, which is not. Perf̃ = Perf is
obviously dense in Perf . Finally, if Ũ is a non-empty open of Perf , there exists
U non-empty open of X such that Ũ = U ∩ Perf . Then, as one easily checks,
O−

f̃
(Ũ) = O−f (U) ∩ Perf . For Ṽ non-empty open of Perf , Ṽ = V ∩ Perf for

some V non-empty open of X. V ∩ O−f (U) 6= ∅, but this is an open of X, so
V ∩ O−f ∩ Perf 6= ∅, which is: Ṽ ∩ O−

f̃
(Ũ) 6= ∅, ie O−

f̃
(Ũ) is dense in Perf .

⇐ X, containing the infinite set Perf , is infinite. Now, let U be a non-empty
open of X, Ũ := U ∩ Perf is a non-empty open of Perf . For V non-empty open
of X, Ṽ := V ∩ Perf is a non-empty open of Perf , then: O−

f̃
(Ũ) ∩ Ṽ 6= ∅, ie

O−f (U) ∩ V ∩ Perf 6= ∅, consequently: O−f (U) ∩ V 6= ∅, showing that O−f (U) is
dense in X. �

To prevent such a phenomenon to happen, we propose the following definition
of chaos :

Definition 2.7. f is F-chaotic if:
(F1)=(B1) ∀U non-empty open, cl(O−f (U)) = X

(F2)=(B2) cl(Perf ) = X
(F3) cl(X \ Perf ) = X
Equivalently, f is F-chaotic if for every U non-empty open of X, Perf ∩ O−f (U)
and (X \ Perf ) ∩ O−f (U) are dense in X.

Here as well, if for some n ≥ 1, fn is F-chaotic, so is f and if f is a homeomor-
phism, f is F-chaotic if and only if f−1 is.

Theorem 2.8. If X is a Hausdorff space: (B’-chaos) ⇒ (F-chaos ) ⇒ (B-chaos),
hence if X is a Baire Hausdorff space with a coutable base for the topology: (B”-
chaos) ⇔ (B’-chaos) ⇔ (F-chaos) ⇔ (B-chaos).
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Proof. X being Hausdorff, let us assume that f is B’-chaotic. If there exists x ∈
∆0 ∩ Perf , O+

f (x) would be finite, then closed, so X = cl(O+
f (x)) would be finite,

contradicting (B’3). Consequently, X\Perf ⊇ ∆0 is dense in X, and f is F-chaotic.
Now, if X is Hausdorff and f is F-chaotic, we have to show that #X = +∞. But
if X was finite, Perf and X \ Perf , which are dense in X, would be finite, then
closed, so X = Perf and X = X \ Perf , which is of course impossible (provided
that X 6= ∅). �

2.3. Basic properties of the Stone-Čech compactification.

Proposition 2.9. Let X be a completely regular Hausdorff space. The Stone-Čech
compactification βX of X is a compact Hausdorff space such that X is homeomor-
phic to a dense subset of βX, via a homoemorphism δ. If X is itself compact,
βX = δ(X). Furthermore, if X and Y are two completely regular Hausdorff spaces
and if h is a continuous map from X to Y , there is a unique continuous map βh
from βX to βY such that, for all x ∈ X, (βh ◦ δ)(x) = (δ ◦ h)(x).

Let us remark that if X is compact Hausdorff (hence completely regular), f and
βf are topologically conjugate, then f is chaotic if and only if βf is, with respect
to every previous meaning of the word chaotic (indeed, it is rather easy to see
that the B”-chaos, B’-chaos, F-chaos and B-chaos are preserved under topological
conjugacy). What about the general case? Let us first state, without proof, the
following lemma, before giving a general result.

Lemma 2.10. δ(X) is open in βX if and only if X is locally compact.

Lemma 2.11. If X is a completely regular Hausdorff space, for A ⊆ βX, if A∩δ(X)
is dense in δ(X), then A is dense in βX; the converse being true if X is locally
compact.

Proof. Let V be a non-empty open of βX, Ṽ := V ∩ δ(X) is a non-empty open
of δ(X), so Ṽ ∩ A ∩ δ(X) 6= ∅, then V ∩ A 6= ∅, and A is dense in βX. Now, if
X is locally compact, ie if δ(X) is open in βX, and if A is dense in βX, let Ṽ
be a non-empty open of δ(X). There exists V non-empty open of βX such that
Ṽ = V ∩ δ(X). Ṽ is then an open of βX, so Ṽ ∩ A 6= ∅, ie Ṽ ∩ A ∩ δ(X) 6= ∅,
showing that A ∩ δ(X) is dense in δ(X). �

Theorem 2.12. If X is a completely regular Hausdorff space, (f is B-chaotic) ⇒
(βf is B-chaotic), (f is F-chaotic) ⇒ (βf is F-chaotic) and (f is B’-chaotic) ⇒
(βf is B’-chaotic). If X is moreover locally compact, the converses are true: (f
is B-chaotic) ⇔ (βf is B-chaotic), (f is F-chaotic) ⇔ (βf is F-chaotic) and (f is
B’-chaotic) ⇔ (βf is B’-chaotic).

Proof. βf(δ(X)) ⊆ δ(X), because for all x ∈ X, (βf ◦ δ)(x) = (δ ◦ f)(x). We then
denote β̃f the restriction of βf to δ(X): f and β̃f are topologically conjugate,
consequently, f is B-chaotic, or F-chaotic, or B’-chaotic, if and only if β̃f is.
Showing that δ(X) is infinite if and only if βX is does not present any difficulties.
Assuming that β̃f is B-chaotic, for U non-empty open of βX, Ũ := U ∩ δ(X) is a
non-empty open of δ(X), so O−fβf

(Ũ) = O−βf (U)∩δ(X) is dense in δ(X), then, by the

previous lemma, O−βf (U) is dense in βX. Furthermore, since Perfβf
= Perβf∩δ(X),

Perβf is dense in βX. This proves that βf is B-chaotic. Now, if X is moreover
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locally compact, and if βf is B-chaotic, again by lemma 2.11, Perfβf
is dense

in δ(X), and for Ũ non-empty open of δ(X), Ũ = U ∩ δ(X) for some U non-
empty open of βX, so O−fβf

(Ũ) is dense in δ(X). Hence β̃f is B-chaotic. Since
Perfβf

= Perβf ∩ δ(X), we have: δ(X) \ Perfβf
= (βX \ Perβf ) ∩ δ(X), and the

result for the F-chaos follows from the previous lemma with A = βX \ Perβf .
Now, if β̃f is B’-chaotic, it has a dense orbit, ie there is a x ∈ X such that
O+fβf

(δ(x)) = O+
βf (δ(x))∩ δ(X) is dense in δ(X), then O+

βf (δ(x)) is dense in βX, ie
βf has a dense orbit. With what has just been done, we can conclude that βf is
B’-chaotic. Supposing that X is locally compact, let us assume conversly that βf
is B’-chaotic. Since βX is Hausdorff, Ωβf is dense in βX, so Ωβf ∩ δ(X) is dense
in δ(X), then ∆βf

0 ∩ δ(X) is dense in δ(X). In particular, it is non-empty, ie there
exists x ∈ X such that O+

βf (δ(x)) is dense in βX, so O+
βf (δ(x))∩δ(X) = O+fβf

(δ(x))

is dense in δ(X), and ∆
fβf
0 6= ∅. We can then conclude that β̃f is B’-chaotic. �

3. Chaos via entropy

For the very definition of the topological entropy (using open covers) of a con-
tinuous map f from a compact space X into itself, we will consult [1]. If we deal
with a compact metric space, we can define the entropy in a more intuitive way,
using (n, ε)-spanning subsets: roughly speaking, the entropy of f represents the
exponential growth rate for the number of orbit segments distinguishable with ar-
bitrarily fine but finite precision. For details, we will consult [7], where it is also
shown that these two approches are equivalent. When X is compact, the topo-
logical entropy of f is written htop(f). Here is an overview of its properties: for
n ≥ 1, htop(fn) = nhtop(f); if f is a homeomorphism, htop(f−1) = htop(f); and if
X and Y are two compact spaces, with g : Y −→ Y and f : X −→ X topologically
conjugate, htop(g) = htop(f).

As already mentioned, if X is compact Hausdorff, f and βf are topologically
conjugate, so that htop(f) = htop(βf). This in fact allows us to define the topologi-
cal entropy of f when X is just a completely regular Hausdorff space by htop(f) :=
htop(βf), which verifies, as one easily checks:

• for n ≥ 1, htop(fn) = nhtop(f)
• if f is a homeomorphism, htop(f−1) = htop(f)
• if X and Y are two completely regular Hausdorff spaces, with g : Y −→ Y

and f : X −→ X topologically conjugate, htop(g) = htop(f).
Now, we can extend a very common definition of chaos :

Definition 3.1. If X is a completely regular Hausdorff space, we say that f is
E-chaotic if htop(f) > 0.

Here again, if for some n ≥ 1, fn is E-chaotic, so is f , the converse being also
true, and if f is a homeomorphism, f is E-chaotic if and only if f−1 is. Let us
remark that this latest situation is impossible on intervals, as we will see later.

4. Li and Yorke’s type of chaos

Definition 4.1. If (X, d) is a metric space, an uncountable susbet S of X is called
a scrambled set of f if for all x, y ∈ S, x 6= y, lim supn→∞ d(fn(x), fn(y)) exists and



DEFINITIONS OF DISCRETE TOPOLOGICAL CHAOS 7

is positive and lim infn→∞ d(fn(x), fn(y)) exists and is null. f is called L-Y-chaotic
if there exists a scrambled set of f .

Let us note that in this case again, if fn is L-Y-chaotic for some n ≥ 1, f is
L-Y-chaotic as well.

Some authors, following Li and Yorke, define a scrambled set with the additional
property: ∀x ∈ S, ∀p ∈ Perf , lim supn→∞d(fn(x), fn(p)) > 0 . We do not,
because a scrambled set contains at most one point which does not satisfy this
latest property. Indeed, if x, y ∈ S, x 6= y, are such that there exist periodic points
p and q with lim supn→∞d(fn(x), fn(p)) = 0 and lim supn→∞d(fn(y), fn(q)) = 0,
we have: d(fn(x), fn(p)) −→ 0 as n → ∞, and d(fn(y), fn(q)) −→ 0 as n → ∞.
For n ≥ 0, d(fn(p), fn(q)) ≤ d(fn(p), fn(x)) +d(fn(x), fn(y)) +d(fn(y), fn(q)),
consequently: lim infn→∞ d(fn(p), fn(q)) ≤ 0 + lim infn→∞ d(fn(x), fn(y)) +0
= 0. But, since p and q are periodic, {d(fn(p), fn(q)), n ≥ 0} is finite, so there exists
k ≥ 0 such that: d(fk(p), fk(q)) = lim infn→∞ d(fn(p), fn(q)) = 0, so f i(p) = f i(q)
for all i ≥ k. Then, if l and m are the periods of p and q respectively, p = f lmk(p) =
f lmk(q) = q. Consequently, d(fn(x), fn(y)) ≤ d(fn(x), fn(p)) +d(fn(q), fn(y))
−→ 0 as n →∞, which contradicts: lim supn→∞ d(fn(x), fn(y)) > 0.

To finish our brief description of the L-Y-chaos, we will just check that it is
preserved under topological conjugacy. Strangely enough, I have not found a proof
of this result in the litterature, and the proof I propose, deal, unfortunately, only
with compact metric spaces.

Proposition 4.2. If (X, d) and (Y, d′) are two compact metric spaces and f :
X −→ X and g : Y −→ Y are two continuous, topologically conjugate maps, (f is
L-Y-chaotic) ⇔ (g is L-Y-chaotic).

Proof. Let h : X −→ Y be the topological conjugacy between f and g and let
S ⊆ X be a scrambled set of f . S′ := h(S) is an uncountable subset of Y . Let
h(x), h(y) ∈ S′, h(x) 6= h(y), ie x 6= y. There exists an increasing sequence of posi-
tive integers (nk)k≥0 such that d(fnk(x), fnk(y)) −→ 0 as k →∞ . h is uniformely
continuous, since continuous on a compact, then d′(h(fnk(x)), h(fnk(y))) −→ 0
as k → ∞. But for all i ≥ 0, h ◦ f i = gi ◦ h, so d′(gnk(h(x)), gnk(h(y))) −→ 0
as k → ∞, so: lim infn→∞d′(gn(h(x)), gn(h(y))) = 0. Let us now suppose that
lim supn→∞d′(gn(h(x)), gn(h(y))) = 0 (it exists because Y is compact). Thus:
d′(gn(h(x)), gn(h(y))) = d′(h(fn(x)), h(fn(y))) −→ 0 as n → ∞, and because
of the uniform continuity of h−1, we then have: d(fn(x), fn(y)) −→ 0 as n →
∞, contradicting the fact that S is a scrambled set of f . Hence: lim supn→∞
d′(gn(h(x)), gn(h(y))) > 0. Finally, S′ is a scrambled set of g, so (f is L-Y-
chaotic)⇒(g is L-Y-chaotic). The converse is obtained by exchanging f and g. �

5. Chaos on intervals

5.1. Devaney’s-type-of-chaos block. Let us denote I an interval, with the abso-
lute value as a metric, and f a continuous self-map of I. I being a Baire Hausdorff
space with countable base, on I: B”-chaos=B’-chaos=F-chaos=B-chaos. Now, let
us recall the result given in [10]:

Proposition 5.1. On intervals, if f is topologically transitive, f is B-chaotic.

Thus, on intervals, we have what I call the Devaney’s-type-of-chaos block:
topological transitivity = B-chaos = F-chaos = B’-chaos=B”-chaos
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5.2. Horseshoes and B-C-chaos. Following [6], we now introduce an other def-
inition of chaos, only valid on intervals:

Definition 5.2. We say that a continuous map g : I −→ I has a horseshoe if there
exist a < c < b in I such that [a, b] ⊆ g([a, c]) ∩ g([c, b]). f is said to be H-chaotic
if fm has a horseshoe for some m ≥ 1.

Again, if fn is H-chaotic for some n ≥ 1, f is also H-chaotic. By induction, we
remark that if g has a horseshoe, so has gn, for all n ≥ 1, and using this property,
we see that if f is H-chaotic, so is fn, for all n ≥ 1. Moreover, we note that a
homeomorphism can not be H-chaotic.

The definition of L-Y-chaos has followed the famous article by Li and Yorke,
called “period three implies chaos”. The following proposition, generalizing such a
result, will explain what it means:

Proposition 5.3. On intervals, if f has a periodic point whose least period is not
a power of 2, then f is H-chaotic.

Proof. First case: there exists a point of least period 3, let x1 < x2 < x3 be the
three distinct points of the considered orbit.
First subcase: f(x1) = x2, f(x2) = x3, f(x3) = x1. f(x2) > x2 and f(x3) < x3,
then, by the intermediate value theorem, there exists z ∈ (x2, x3) such that f(z) =
z. Next, f(x1) < z and f(x2) > z, so there exists y ∈ (x1, x2) with f(y) = z. But
then: f2(y) = z > y, f2(x2) = x1 < y and f2(z) = z > y, so there exist s ∈ (x2, z),
r ∈ (y, x2) such that f2(s) = y and f2(r) = y. Thus: [y, z] ⊆ f2([y, r]) ⊆ f2([y, x2])
and [y, z] ⊆ f2([s, z]) ⊆ f2([x2, z]), showing that f2 has a horseshoe.
Second subcase: f(x1) = x3, f(x3) = x2, f(x2) = x1. This is treated as before,
exchanging > and <, x1 and x3.
Second case: there is a point of least period (2k + 1).2n, with k ≥ 1, n ≥ 0. By the
Sharkovsky’s theorem, there exists a point of least period 3.2n+1. Thus f2n+1

has
a periodic point of period 3, so f2n+2

has a horseshoe, and f is H-chaotic. �

This latest property can stand for a definition of chaos, in fact, it is the one used
on intervals in [4]; it is clear that it can be extended to any topological space:

Definition 5.4. f is B-C-chaotic if f has a periodic point whose least period is
not a power of 2.

We see that if f is a homeomorphism, f is B-C-chaotic if and only if f−1 is.
Besides:

Proposition 5.5. If fn is B-C-chaotic for some n ≥ 1, then f is also B-C-chaotic,
and on intervals, if f is B-C-chaotic, then for all n ≥ 1, fn is also B-C-chaotic.

Proof. Let us assume that f is not B-C-chaotic. Let p′ denote the period, by fn,
of a x ∈ Perfn , and let p, which is a power of 2, denote its period by f . With
d := gcd(p, n), d.p′ = p. Indeed, writing d.m = p and d.i = n with m and i
relatively prime, we have m.n = i.p, so fnm(x) = x, and if fnk(x) = x, p = d.m
divises n.k = d.i.k, ie m divises i.k, so m divises k, proving that p′ = m, as
announced. This implies that p′ is a power of 2, since p is, thus fn is not B-C-
chaotic.
Now, considering the situation on intervals, we assume that f is B-C-chaotic, ie
that there exists a periodic point by f of period p = 2k.(2i + 1), with k ≥ 0, i ≥ 1.
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Let us write n = 2l.(2j +1), with l ≥ 0, j ≥ 0. By the Sharkovsky’s theorem, there
exists a point of period n.p = 2k+l.(2i + 1)(2j + 1) by f . This point is a periodic
point by fn of period n.p/(gcd(n.p, n)) = p, which is not a period of 2, thus fn is
B-C-chaotic. �

5.3. Entropy-type-of-chaos block. We have noticed that the E-chaos, the H-
chaos and the B-C-chaos have in common the fact that, on intervals, if f is chaotic,
so is fn, for all n ≥ 1. This is not surprising, since, as we are going to see, they are
the same. First we need a preliminary lemma:

Lemma 5.6. If there exists x ∈ I such that f3(x) ≤ x ≤ f(x) < f2(x) (or
f3(x) ≥ x ≥ f(x) > f2(x)), there is a point of period 3 by f .

Proof. The following statements are easy to check:
Statement 1: for every continuous function g : [a, b] −→ R, if [a, b] ⊆ g([a, b]), there
exists a fixed point by g in [a, b].
Statement 2: for every continuous function g : I −→ R, I an interval, if J ⊆ I and
K are two compact intervals with K ⊆ f(J), there exists a compact interval L ⊆ J
such that K = f(L).
Now, let us write K := [x, f(x)], we have f([f(x), f2(x)]) ⊇ [f3(x), f2(x)] ⊇ K,
so by statement 2, there exists a compact interval L ⊆ [f(x), f2(x)] such that
f(L) = K. Then: f3(L) = f2(K) ⊇ [f3(x), f2(x)] ⊇ L, so by statement 1, there
exists y ∈ L such that f3(y) = y. Assuming that 3 is not the least period of y,
one must have: f(y) = y. In this case: y ∈ L ∩ f(L) ⊆ [f(x), f2(x)] ∩ [x, f(x)], ie
y = f(x), hence f(x) = f2(x), which is absurd. �

Theorem 5.7. On intervals, f is B-C-chaotic if and only if it is H-chaotic.

Proof. The ⇒ part has already been shown. Now let us assume that there exists
n ≥ 1 such that fn =: g has a horseshoe, ie [a, b] ⊆ g([a, c]) ∩ g([c, b]) for some
a < c < b. a ∈ g([c, b]), so there exists b0 ∈ [c, b] such that g(b0) = a.
First case: there exists c0 ∈ [c, b0] such that g(c0) = b, then [a, b] ⊆ g([c0, b0]).
So there exists y ∈ [c0, b0] such that g(y) = b0. Then y ∈ [a, b] ⊆ g([a, c]), so
there is x ∈ [a, c] such that g(x) = y. We have: x ≤ c ≤ c0 ≤ y = g(x),
g(x) = y ≤ b0 = g(y) = g2(x). If g(x) = g2(x), y = b0, so g(y) = g(b0), ie
b0 = a, contradicting b0 ∈ [c, b]. Finally, g3(x) = g(b0) = a ≤ x. In brief:
g3(x) ≤ x ≤ g(x) < g2(x).
Second case: ∀u ∈ [c, b0], g(u) 6= b, so there exists d ∈ [b0, b] such that g(d) = b.
Since [a, b] ⊆ g([a, c]), there also exists a0 ∈ [a, c] such that g(a0) = b. Thus,
[a, b] ⊆ g([b0, d]) and [a, b] ⊆ g([a0, b0]). Therefore, there exists y ∈ [a0, b0] such
that g(y) = a0, and then there exists x ∈ [b0, d] such that g(x) = y. We have:
x ≥ b0 ≥ y = g(x), g(x) = y ≥ a0 = g(y) = g2(x). If g(x) = g2(x), y = a0, so
g(y) = g(a0), ie a0 = b, contradicting a0 ∈ [a, c]. Finally, g3(x) = g(a0) = b ≥ x.
In brief: g3(x) ≥ x ≥ g(x) > g2(x).
In each case, by the previous lemma, g = fn has a periodic point of least period 3,
so fn, and then f , is B-C-chaotic. �

Theorem 5.8. On intervals, f is H-chaotic if and only if it is E-chaotic.

In fact, this is the reason why H-chaos is the definition of chaos adopted in [6];
a proof of this result can be found in [7], p489-496 (as well as in [4], p208-218.)



10 SIMON FOUCART

Therefore, as we considered a Devaney’s-type-of-chaos block, we can consider,
on intervals, an entropy-type-of-chaos block:

E-chaos = H-chaos = B-C-chaos
Let us not forget the L-Y-chaos block.

5.4. The relations between the three blocks. We claim that, on intervals, the
Devaney’s chaos is the strongest, whereas the Li and Yorke’s chaos is the weakest.

Theorem 5.9. On intervals, the Devaney’s type of chaos implies the entropy type
of chaos, and the converse is not true.

Proof. Let us assume that Ω is dense in I but f is not H-chaotic. First, there
exists z ∈ int(I) such that f(z) = z. Indeed, assuming the contrary: (∀x ∈
int(I), f(x) > x) or (∀x ∈ int(I), f(x) < x), then: (∀x ∈ I, f(x) ≥ x) or
(∀x ∈ I, f(x) ≤ x), therefore, no point of I could have a dense orbit. If there
exists y ∈ int(I), y 6= z, for example y < z, with f(y) = z, we can find a point
x ∈ Ω ∩ (y, z). Hence, there exists n ≥ 0 such that fn(x) < y (necessarily n ≥ 1).
Then: fn([y, x]) ⊇ [fn(x), fn(y)] ⊇ [y, z] and fn([x, z]) ⊇ [fn(x), fn(z)] ⊇ [y, z].
We obtain a horseshoe for fn, which is impossible. Consequently, there is no
y ∈ int(I), y 6= z, such that f(y) = z. Let us now consider the two following open
subintervals of I: I1 := int(I) ∩ (−∞, z); I2 := int(I) ∩ (z,+∞). f(I1) ⊆ I1 is
uncompatible with the density of Ω in I, so there exists x ∈ I1 such that f(x) ≥ z.
For u ∈ I1, if f(u) ≤ z, there exists y between x and u, so y ∈ int(I) \ {z}, such
that f(y) = z, which is absurd. Hence: f(I1) ⊆ I2. Similarly, f(I2) ⊆ I1. Let us
consider g := f2 : I1 −→ I1. Taking U and V two non-empty open of I1, they are
also non-empty open of I, so there exists n ≥ 0 such that fn(U) ∩ V 6= ∅. But
this can not occur if n is odd, because in this case, fn(U) ⊆ I2. So, n =: 2m
and gm(U) ∩ V 6= ∅. This means that g is topologically transitive. Applying the
previous reasoning to g instead of f , we obtain a t ∈ I1 with f2(t) = t. We then
write I1,1 := I1 ∩ (−∞, t) and I1,2 := I1 ∩ (t, +∞), and we have g(I1,2) ⊆ I1,1. But
z ∈ cl(I1,2), so g(z) = z ∈ cl(I1,1), implying that z ≤ t, which is absurd. This
achieves the first part of the proof. (We have adapted here the arguments given
in [1], p259-260, where it is stated that if f is topologically transitive, f2 has an
horseshoe, so that htop(f) ≥ log 2/2.)
Now, the following map, for which there is a forward invariant open set, is not
topologically transitive, still it is H-chaotic, showing the second part of the proof.

�
�

�
�
�
�
�
�
�
�
�
�A

A
A
A
A
A
A
A
A
A
AA

�
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Theorem 5.10. On intervals, the entropy type of chaos implies the Li and Yorke
chaos, and the converse is not true.

Proof. Let us assume that fm has a horseshoe for some m ≥ 1, so fm has a point
of period 3 (see the proof of theorem 5.7), thus there are some points y < r < s < z
such that: [y, z] ⊆ f2m([y, r]) and [y, z] ⊆ f2m([s, z]) (see the proof of proposi-
tion 5.3). We write I0 := [y, r], I1 := [s, z] and g := f2m. We claim: ∀n ≥ 1,
∀u0, u1, ..., un ∈ {0, 1}, there exists a non-empty compact interval Iu0u1...un ⊆
Iu0...un−1 such that: g(Iu0...un

) = Iu1...un
. We prove this claim by induction on

n. For n = 1, we have: Iu1 ⊆ g(Iu0), so, by statement 2 in lemma 5.6, there exists
a compact interval Iu0u1 ⊆ Iu0 such that g(Iu0u1) = Iu1 , and then necessarily Iu0u1

is non-empty. Let us then assume that our claim is true untill an integer n ≥ 1.
By the induction hypothesis: Iu1...un+1 ⊆ Iu1...un = g(Iu0...un), so there exists a
compact subinterval Iu0...un+1 ⊆ Iu0...un such that g(Iu0...un+1) = Iu1...un+1 , and
necessarily Iu0...un+1 is non-empty, which shows that the claim is true for n+1, and
achieves the proof by induction. We then set, for u ∈ {0, 1}N, Iu :=

⋂
n≥0 Iu0...un .

Iu is non-empty, otherwise, because of the compacity of [y, z], there would exist
N ≥ 0 such that

⋂N
n=0 Iu0...un = Iu0...uN

= ∅, which is not. Let us remark that,
for all u ∈ {0, 1}N, and for all n ≥ 0,(x ∈ Iu0...un

)⇒(∀k ∈ {0, ..., n}, gk(x) ∈ Iuk
).

Indeed, for k ∈ {0, ..., n}, gk(x) ∈ gk(Iu0...un
) = Iuk...un

⊆ Iuk
. We then easily

see that if x ∈ Iu, for all n ≥ 0, gn(x) ∈ Iun . This implies in particular that for
u, v ∈ {0, 1}N, (u 6= v)⇒(Iu ∩ Iv = ∅). Moreover, Iu, as intersection of compact in-
tervals, is a single point or an interval [c, d], c < d. Let C := {u ∈ {0, 1}N : l(Iu) :=
length(Iu) > 0}, C =

⋃
n≥0 Cn, where Cn := {u ∈ {0, 1}N : l(Iu) > 1/(n + 1)}.

Taking u1, u2, ..., uk distinct elements of Cn, since Iu1 ∪ ... ∪ Iuk ⊆ [y, z], we have:
z − y ≥ l(Iu1 ∪ ... ∪ Iuk) = l(Iu1) + ... + l(Iuk

) > k/(n + 1), ie: k < (n + 1)(z − y),
meaning that Cn is finite, and then C is countable. For u ∈ {0, 1}N \ C, we then
write Iu =: {xu}, and fixing a ∈ {0, 1}N \ C, we set: S := {xu, u := u(b) :=
a0b0a0a1b0b1a0a1a2b0b1b2... 6∈ C, b ∈ {0, 1}N}. We will show that S is a scrambled
set of f . Since {0, 1}N is uncoutable, since b ∈ {0, 1}N 7→ u(b) ∈ {0, 1}N is injective,
since C is countable, and since u ∈ {0, 1}N \ C 7→ xu ∈ [y, z] is injective, S is un-
countable. Now let xu, xv ∈ S, xu 6= xv, ie there exists i ≥ 0 such that bi 6= b′i, where
u =: a0b0a0a1b0b1a0a1a2b0b1b2... and v =: a0b

′
0a0a1b

′
0b
′
1a0a1a2b

′
0b
′
1b
′
2.... Since for

all n ≥ 0 and k ∈ {0, ..., n}, u2(1+2+...+n)+k = un(n+1)+k = ak = vn(n+1)+k,
u2(1+2+...+n)+n+1+k = u(n+1)2+k = bk and v(n+1)2+k = b′k, we have, for all n ≥ i,
g(n+1)2+i(xu) ∈ Ibi and g(n+1)2+i(xv) ∈ Ib′i

, so |g(n+1)2+i(xu) − g(n+1)2+i(xv)|
≥ s − r > 0. From (|g(n+1)2+i(xu) − g(n+1)2+i(xv)|)n≥0, we now can extract a
convergent subsequence, showing that: lim supn→∞ |fn(xu)− fn(xv)| ≥ s− r > 0.
Let us now assume that α := lim infn→∞ |fn(xu) − fn(xv)| > 0 (α exists be-
cause the sequence is bounded). Since a 6∈ C, Ia is a point, then there exists
k ≥ 0 such that l(Ia0...ak

) =: β < α. We have, for all n ≥ k, since xu ∈
Iu0...un(n+1)+n

, gn(n+1)(xu) ∈ Iun(n+1)...un(n+1)+n
= Ia0...an

⊆ Ia0...ak
, and similarly:

gn(n+1)(xv) ∈ Ia0...ak
, hence: |gn(n+1)(xu) − gn(n+1)(xv)| ≤ β. Now, from the se-

quence (|gn(n+1)(xu)− gn(n+1)(xv)|)n≥0, we can extract a subsequence converging
to γ, say. We have: γ ≤ β < α, which is absurd. Finally, lim infn→∞ |fn(xu) −
fn(xv)| = 0, and this achieves the first part of the proof.
For the second part, we can find an example of a L-Y-chaotic map which is not
E-chaotic in [5]. �
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The situation on intervals is summed up by the following diagram:

Devaney’s type of chaos
⇓6⇑

Entropy type of chaos
⇓6⇑

Li and Yorke chaos

6. A non-trivial chaotic map

If (X, d) is a metric space, let (K(X),∆) be the metric space of all compact
subsets of X, where ∆ is the Hausdorff metric: ∀A,B ∈ K(X), ∆(A,B) :=
sup{d(x,B), x ∈ A} + sup{d(y, A), y ∈ B}. Let us consider the map F from
K(X) to K(X) defined by: ∀A ∈ K(X), F(A) := f(A). We know that if (X, d) is
compact, (K(X),∆) is also compact, so, for f and F (which is continuous, as we
are going to prove), D-chaos, B-chaos, F-chaos, D’-chaos, B’-chaos and B”-chaos
are all the same.

Let us remind that f is said to be topologically mixing if for every U and V
non-empty open of X, there exists m ≥ 0 such that: ∀n ≥ m, U ∩ fn(V ) 6= ∅. On
intervals, a topologically mixing map is B-chaotic, since it is topologically transitive.
For example, if f is the tent map or the logistic map, f is topologically mixing,
then, as a result of the next proposition, F is topologically mixing and B-chaotic,
it is also E-chaotic, B-C-chaotic and L-Y-chaotic.

Proposition 6.1. If (X, d) is a compact metric space, (f is D-chaotic and topo-
logically mixing) ⇒ (F is D-chaotic and topologically mixing), (f is E-chaotic) ⇒
(F is E-chaotic), (f is B-C-chaotic) ⇒ (F is B-C-chaotic) and (f is L-Y-chaotic)
⇒ (F is L-Y-chaotic)

Proof. First of all, let us check that F is continuous. Let ε > 0, by the uniform
continuity of f : ∃α > 0: ∀x, y ∈ X, (d(x, y) < α)⇒(d(f(x), f(y)) < ε/2). Let
A,B ∈ K(X) with ∆(A,B) < α. For all x ∈ A, d(x, B) ≤ sup{d(t, B), t ∈ A} ≤
∆(A,B) < α. But, there exists b ∈ B such that d(x, b) = d(x,B) (since d(x,−)
is continuous on the compact B). d(x, b) < α, then d(f(x), f(b)) < ε/2. We have:
d(f(x),F(B)) < ε/2, holding for all x ∈ A, so: sup{d(f(x),F(B)), x ∈ A} ≤ ε/2.
Likewise, we obtain: sup{d(f(y),F(A)), y ∈ B} ≤ ε/2. Finally, ∆(A,B) ≤ ε,
proving that F is uniformely continuous. Next, #K(X) = +∞, since #X = +∞
and for all x ∈ X, {x} ∈ K(X). Let us now show that PerF is dense in K(X). Let
then A ∈ K(X) and ε > 0. A being compact, there exist N ≥ 0, x1, ..., xN ∈ A

such that: A ⊆
⋃N

i=1 B(xi, ε/3), where B(xi, ε/3) is the open ball (in X) of center
xi and of radius ε/3. But Perf is dense in X, so for all i ∈ {1, ..., N}, we can
take a point pi ∈ (Perf ∩ B(xi, ε/3)). We then set B := {p1, ..., pN}. Clearly,
B ∈ K(X) and B ∈ PerF . For i ∈ {1, ..., N}, d(pi, A) ≤ d(pi, xi) < ε/3, then:
sup{d(y, A), y ∈ B} < ε/3. For x ∈ A, there exists i ∈ {1, ..., N} such that
d(x, xi) < ε/3. Consequently: d(x, B) ≤ d(x, pi) ≤ d(x, xi)+d(xi, pi) < ε/3+ε/3 =
2ε/3, hence: sup{d(x, B), x ∈ A} ≤ 2ε/3. It follows that ∆(A,B) < ε, which proves
the density of PerF in K(X). It remains to show that F is topologically mixing
(and therefore topologically transitive). It is easy to see that for a metric space
(Y, δ), a map g from Y to Y is topologically mixing if and only if for all x, y ∈ Y ,
for all ε > 0, there exists m ≥ 0 such that for all n ≥ m, there exists zn ∈ Y
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such that δ(x, zn) < ε and δ(y, fn(zn)) < ε. Let then A,B ∈ K(X), and let ε > 0.
Since A and B are compact, there exist N ≥ 0, x1, ..., xN ∈ A, y1, ..., yN ∈ B

such that: A ⊆
⋃N

i=1 B(xi, ε/3), B ⊆
⋃N

i=1 B(yi, ε/3). But f being topologically
mixing, for all i ∈ {1, ..., N}, ∃mi ≥ 0: ∀n ≥ mi, ∃zi,n ∈ X: d(zi,n, xi) < ε/3 and
d(yi, f

n(zi,n)) < ε/3. Let m := max{mi, i ∈ {1, ..., N}}, and let n ≥ m. We write
Cn := {z1,n, ..., zN,n}. Obviously, Cn ∈ K(X). On the one hand, for i ∈ {1, ..., N},
d(zi,n, A) ≤ d(zi,n, xi) < ε/3, so: sup{d(y, A), y ∈ Cn} < ε/3, and for x ∈ A,
there exists i ∈ {1, ..., N} such that d(x, xi) < ε/3, so: d(x,Cn) ≤ d(x, zi,n) ≤
d(x, xi) + d(xi, zi,n) < ε/3 + ε/3 = 2ε/3, hence: sup{d(x, Cn), x ∈ A} ≤ 2ε/3.
Finally: ∆(A,Cn) < ε. On the other hand, for i ∈ {1, ..., N}, d(fn(zi,n), B) ≤
d(fn(zi,n), yi) < ε/3, so: sup{d(x,B), x ∈ Fn(Cn)} < ε/3, and for y ∈ B, there
exists i ∈ {1, ..., N} such that d(y, yi) < ε/3, so: d(y,Fn(Cn)) ≤ d(y, fn(zi,n)) ≤
d(y, yi) + d(yi, f

n(zi,n)) < ε/3 + ε/3 = 2ε/3, hence: sup{d(y,Fn(Cn)), y ∈ B} ≤
2ε/3. Finally: ∆(B,Fn(Cn)) < ε. This proves that F is topologically mixing.
Now, let us assume that f is E-chaotic. The map h : x ∈ X 7→ {x} ∈ K(X) is
injective, and verifies: h ◦ f = F ◦ h, so htop(F ) ≥ htop(f) (as proved in [ALlM], p
192), then F is E-chaotic.
If f is B-C-chaotic, so is F , because if x ∈ Perf , {x} ∈ PerF , with the same least
period.
At last, it is easy to see that if S is a scrambled set of f , {{s} ∈ K(X), s ∈ S} is a
scrambled set of F , remarking that for a, b ∈ X, ∆({a}, {b}) = 2d(a, b). �

We note that this process can be iterated again and again.
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