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Abstract. The condition number of a space, i.e. the least condition

number of its bases, is investigated in connection with minimal and

minimal interpolating projections. It is identified as projection con-

stants of particular types. These considerations turn into inequalities

between absolute projection constant, Banach–Mazur distance, and

absolute interpolating projection constant. Some situations where

the inequalities can or cannot become equalities are explored through

small-dimensional examples.

§1. Introduction

This paper will give a brief account of the relations between minimal
projections of various types and best conditioned bases. The notion of
best conditioned basis is less familiar than the one of minimal projection,
due to an unusual terminology which is to be clarified at once.

Let V denote in the whole paper a normed space of finite dimension
n. It will here and there be considered a subspace of a normed space X ,
most of the time the space C(K) of continuous functions on a compact
Hausdorff set K. For a basis v = (v1, . . . , vn) of V , its ℓ∞-condition
number is defined to be

κ∞(v) := sup
a6=0

‖∑i aivi‖
‖a‖∞

× sup
a6=0

‖a‖∞
‖
∑

i aivi‖
.

The first supremum is the maximum of a convex function on the unit
ball of ℓn

∞, hence it is attained at one of the extreme points of this ball.
As for the second supremum, if we denote the basis of V ∗ dual to v by
µ = (µ1, . . . , µn), it is simply the maximum of maxi |µi(v)| over all v in
the unit ball of V . The expression for the ℓ∞-condition number of the
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basis v therefore simplifies to

κ∞(v) = max
εi=±1

∥∥∥
∑

i

εivi

∥∥∥ × max
i

‖µi‖. (1)

When computing with the basis v, we should try to control the error prop-
agation, hence we require v to be ‘well conditioned’. Naturally enough,
we would like to use the ‘best conditioned’ bases, that is the bases of V
whose condition numbers equal the condition number κ∞(V ) of the space
V defined by

κ∞(V ) := inf
{
κ∞(v), v basis of V

}
.

Best conditioned bases always exist in finite dimension. They are invariant
under scaling or isometry, but a best conditioned basis is not necessarily
deduced from another one in such a way, see Appendix 5.1. Our notations
somehow disobey conventions, for the quantity κ∞(V ) is nothing else than
the Banach–Mazur distance from V to ℓn

∞, i.e.

d(V, ℓn
∞) := inf{‖T ‖ × ‖T−1‖, T : ℓn

∞ → V isomorphism}.

In addition to computational aspects, determining the condition numbers
of some specific function spaces is also motivated by significant links with
minimal projections. This is illustrated by the chain of inequalities

p(V ) ≤ κ∞(V ) ≤ pint(V ), (2)

involving the projection constant of the space V , its condition number,
and its interpolating projection constant.

In Section 2 the definitions of various projection constants will be ei-
ther recalled or put forward. Then the condition number κ∞(V ) will be
identified as some of them in Theorems 1 and 3. A justification of (2) will
also be given. In Sections 3 and 4, the inequalities (2) will be examined
more closely. Precisely, two problems will be addressed: is it possible for
the first inequality to be strict while the second one turns into an equality,
and is it possible for the second inequality to be strict while the first one
turns into an equality? The former question will be answered affirmatively
in Section 3, while the latter will merely be discussed in Section 4, where
some related questions are raised.

§2. Basic Results

In this section we present several results needed later in the paper.
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2.1. Best normalization

Given a basis v = (v1, . . . , vn) of V , a simple choice of the coefficients
α1, . . . , αn minimizes the condition number of the basis (α1v1, . . . , αnvn),
namely the one that makes the dual functionals all of equal norm, say of
norm one. Precisely, if µ = (µ1, . . . , µn) denotes the basis of V ∗ dual to the

basis v, we introduce the renormalized basis vN defined by vN
i := ‖µi‖ ·vi,

for which the dual basis µN satisfies µN
i = µi/‖µi‖. It follows, according

to (1), that

κ∞(vN ) = max
εi=±1

∥∥∥
∑

i

εi‖µi‖vi

∥∥∥≤ max
εi=±1

∥∥∥
∑

i

εivi

∥∥∥×max
i

‖µi‖=κ∞(v), (3)

i.e., the basis vN is always better conditioned than the basis v. This
elementary observation was already made in [4]. Duality arguments show
that a basis is optimally ℓ1-normalized when its elements are all of equal
norm. This is the case, for instance, of the L1-normalized B-spline basis.
In particular, in the space Lk of polynomials of degree at most k endowed
with the L1-norm on [−1, 1], the usual Bernstein basis B = (B0, . . . , Bk)
is optimally ℓ1-normalized, and Lyche and Scherer showed in [7] that its
ℓ1-condition number κ1(B) behaves like

√
π 2k/

√
k.

The observation (3) implies that, when dealing with a best conditioned
basis, we can always assume that the elements of the dual basis are all of
norm one. This will translate into Theorem 1. It also allows an elegant
proof of the known fact that d(ℓn

2 , ℓn
∞) =

√
n, together with a character-

ization of best conditioned bases of ℓn
2 . It is worth pointing out that no

such characterization exists for an arbitrary space V .

Proposition 1. A basis v of the n-dimensional Euclidean space En is
best conditioned if and only if it is, up to a scaling factor, orthonormal.
Furthermore, the condition number of En is

κ∞(En) =
√

n.

Proof: Let v = (v1, . . . , vn) be a basis of En. We are going to prove that
κ∞(v) ≥ √

n, with equality if and only if v is orthonormal, up to a scaling
factor. Let µ = (µ1, . . . , µn) be the basis of E∗

n dual to v. Each µi can
be represented as µi = 〈ui, •〉 for some ui ∈ En. Then, making use of the
parallelogram law, we obtain

κ∞(v)2 ≥ κ∞(vN )2 = max
εi=±1

∥∥∥
∑

i

εi‖µi‖vi

∥∥∥
2

= max
εi=±1

∥∥∥
∑

i

εi‖ui‖vi

∥∥∥
2

≥ 1

2n

∑

ε

∥∥∥
∑

i

εi‖ui‖vi

∥∥∥
2

=
∑

i

‖ui‖2‖vi‖2 ≥
∑

i

〈ui, vi〉2 = n.
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Equalities all the way through imply that v is optimally normalized, thus
‖µi‖ = ‖ui‖ = 1, and that 〈ui, vi〉 = ‖ui‖‖vi‖ = 1, thus ui = vi, and finally
the duality conditions 〈vi, vj〉 = δi,j mean that the basis v is orthonormal.
Conversely, if a basis v is orthonormal, it is clear that κ∞(v)2 = n.

2.2. Projection constants

Let us recall that the (relative) projection constant p(V, X) of V in the
superspace X – also denoted λ(V, X) – is

p(V, X) := inf
{
‖P‖, P : X ։ V projection

}
,

and that the (absolute) projection constant of V is

p(V ) := sup
{
p(V, X), V isometrically embedded in X

}
.

Note the common abuse of notation here: p(V, X) stands for p(i(V ), X),
where i : V →֒ X is the isometric embedding. With BV ∗ denoting the
unit ball of V ∗ endowed with the weak*-topology, a typical example is the
isometric embedding from V into C(BV ∗) induced by the map

v ∈ V 7→
[
•(v) :=

(
λ ∈ V ∗ 7→ λ(v) ∈ R

) ]
. (4)

It is important to keep in mind that the equality p(V ) = p(V, C(K)) is
valid whenever V →֒ C(K). Under this hypothesis, we can also define the
interpolating projection constant of V in C(K) by

pint(V, C(K)) := inf
{
‖P‖, P : C(K) ։ V interpolating projection

}
.

Just as p(V, C(BV ∗)) reduces to p(V ), we now claim that pint(V, C(BV ∗))
reduces to κ∞(V ). This provides another interpretation of the classical
inequality p(V ) ≤ κ∞(V ). The strict inequality will be briefly discussed
in Appendix 5.2.

Theorem 1. The condition number of the space V can be interpreted in
terms of projections only, namely one has

κ∞(V ) = pint(V, C(BV ∗)).

Proof: We only sketch the general inequality κ∞(V ) ≤ pint(V, C(K)), as
a stronger version appears in Theorem 3. Let Pf =

∑
i f(ti)ℓi represent

an interpolating projection at the points t1, . . . , tn. Since the norms of
dual functionals v ∈ V 7→ v(ti) ∈ R are at most 1, the condition number
of the Lagrange basis ℓ := (ℓ1, . . . , ℓn) satisfies

κ∞(ℓ) ≤ max
εi=±1

∥∥ ∑
i
εiℓi

∥∥ =
∥∥ ∑

i
|ℓi|

∥∥.
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The latter is precisely the norm of ‖P‖, see e.g. (6). Thus we obtain
κ∞(V ) ≤ ‖P‖, and it remains to take the infimum over P .

In order to establish the inequality pint(V, C(BV ∗)) ≤ κ∞(V ), let us
now consider a best conditioned basis v = (v1, . . . , vn) of V . We may
assume that ‖µi‖ = 1, where µ = (µ1, . . . , µn) denotes the basis of V ∗

dual to v. Then the expression Pf =
∑

i f(µi)vi defines an interpolating
projection P form C(BV ∗) onto V . As such, its norm is given by

‖P‖ =
∥∥∥

∑

i

|vi|
∥∥∥ = max

εi=±1

∥∥∥
∑

i

εivi

∥∥∥ = κ∞(v).

We obtain pint(V, C(BV ∗)) ≤ κ∞(v) = κ∞(V ), as expected.

Let us consider now the space P2 of quadratic polynomials endowed
with the supremum norm on [−1, 1]. According to [4], it is known that
pint(P2, C[−1, 1]) = 5/4 and that κ∞(P2) / 1.248394563 (this is likely
to be an equality). Theorem 1 therefore implies that the interpolating
projection constant pint(V, C(K)) is not independent of C(K), contrary to
the projection constant p(V, C(K)). We suggest to introduce the following
interpolating projection constant which is intrinsic to the space V .

Definition 1. The (absolute) interpolating projection constant of V is

pint(V ) := sup
{
pint(V,C(K)), V →֒ C(K)

}
.

The inequality κ∞(V ) ≤ pint(V ) mentioned in (2) now comes for free
with Theorem 1. The supremum is actually achieved for a specific choice
of K, as shown below.

Theorem 2. Let EV ∗ := cl[Ex(BV ∗)] be the weak*-closure of the extreme
points of BV ∗ . One has

pint(V ) = pint(V, C(EV ∗)).

Proof: Let us first point out that Ex(BV ∗) is a norm-determining set for
V , i.e. that for any v ∈ V , there exists λ ∈ Ex(BV ∗) such that λ(v) = ‖v‖.
It follows that EV ∗ is a weak*-compact norm-determining set for V , which
justifies that the map (4) induces an isometric embedding from V into
C(EV ∗). As a matter of fact, the set EV ∗ is the smallest weak*-compact
norm-determining set for V (this fact, not restricted to spaces of finite
dimension, often appears implicitly, see e.g. [5]). Thus, if V →֒ C(K),
we may write EV ∗ ⊆ K. This is again an abuse of notation, which says
that any element λ of EV ∗ is (up to a sign) of the form •(t)|V for some
t ∈ K. Now if Pf =

∑
i f(λi)ℓi defines an interpolating projection from

C(EV ∗) onto V , we have ‖P‖ = maxεi=±1 ‖
∑

i εiℓi‖. Since each λi can be

represented as •(ti)|V for some ti ∈ K, we observe that P̃ f :=
∑

f(ti)ℓi
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defines an interpolating projection P̃ from C(K) onto V . As such, its norm

is ‖P̃‖ = maxεi=±1 ‖
∑

i εiℓi‖. It follows that p(V, C(K)) ≤ ‖P̃‖ = ‖P‖,
and we finally obtain p(V, C(K)) ≤ p(V, C(EV ∗)) by taking the infimum
over P . This is the required result.

2.3. Connection with generalized interpolating projections

As established in [4], the condition number of the space V is closely re-
lated to the generalized interpolating projection constant of V in C(K),
as defined by

pg.int(V, C(K)) := inf
{
‖P‖, P : C(K) ։ V gzed interpolating projection

}
.

The theorem and its proof are reproduced here for completeness, hence a
few reminders are necessary. The term generalized interpolating projection
was devised in [3] to designate a projection P from C(K) onto V which
can be represented, for some v1, . . . , vn ∈ V and µ̃1, . . . , µ̃n ∈ C(K)∗, as

Pf =
∑

i

µ̃i(f) vi, µ̃i(vj) = δi,j , car µ̃i pairwise disjoint. (5)

The carrier car µ̃ of a linear functional µ̃ on C(K) is the smallest closed
subset C of K such that f|C = 0 ⇒ µ̃(f) = 0. The simple expression of
the norm of a generalized interpolating projection is in fact fundamental,
it reads

‖P‖ =
∥∥∥

∑

i

‖µ̃i‖ |vi|
∥∥∥
∞

. (6)

Theorem 3. In general, one has the inequality

κ∞(V ) ≤ pg.int(V, C(K)),

and if one can choose K to be e.g. [−1, 1], then one has the equality

κ∞(V ) = pg.int(V, C[−1, 1]).

Proof: Let P be a generalized interpolating projection of the form (5).
Note that the system µ = (µ1, . . . , µn), with µi := µ̃i|V , constitutes the
basis of V ∗ dual to v. Since ‖µ̃i‖ ≥ ‖µi‖, we get

‖P‖ ≥
∥∥∥

∑

i

‖µi‖ |vi|
∥∥∥ = κ∞(vN ) ≥ κ∞(V ).

The inequality κ∞(V ) ≤ pg.int(V, C(K)) is derived by taking the infimum
over P .

Let us now proceed with the reverse inequality in the case K = [−1, 1].
We consider a basis (v1, . . . , vn) of V . Let µ = (µ1, . . . , µn) denote the
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basis of V ∗ dual to v. Each linear functional µi admits a norm-preserving
extension to C(K) of the form (see [9, Theorem 2.13] or [5])

µ̃i(f) =

n∑

j=1

αi,j f(ti,j), ti,j ∈ [−1, 1]. (7)

There exist sequences of points (tki,j) converging to ti,j and such that the

tki,j are all distinct for any fixed k. We consider the linear functional
defined on C[−1, 1] by

µ̃k
i (f) :=

n∑

j=1

αi,j f(tki,j),

and we set µk
i := µ̃k

i |V . Since ‖µk
i ‖ ≤ ‖µ̃k

i ‖ =
∑

j |αi,j | = ‖µ̃i‖ = ‖µi‖,
we may assume that (µk

i ), or at least one of its subsequences, converges
in norm. The limit must be µi because µk

i (v) → µi(v) for any v ∈ V .
We write [µk

1 , . . . , µk
n]⊤ =: Ak [µ1, . . . , µn]⊤, so that the matrix Ak tends

to the identity matrix I. In particular, the matrix Ak is invertible, at
least for k large enough, and its inverse A−1

k tends to I. We then define
[vk

1 , . . . , vk
n]⊤ := A−1

k [v1, . . . , vn]⊤, and we obtain vk
i → vi. In view of

µk
i (vk

j ) = δi,j , the expression P kf :=
∑

i µ̃k
i (f) vk

i defines a generalized
interpolating projection from C[−1, 1] onto V . We get

pg.int(V, C[−1, 1]) ≤ lim
k→∞

‖P k‖ = lim
k→∞

∥∥∥
∑

i

‖µ̃k
i ‖ |vk

i |
∥∥∥

= lim
k→∞

∥∥∥
∑

i

‖µi‖ |vk
i |

∥∥∥ =
∥∥∥

∑

i

‖µi‖ |vi|
∥∥∥ = κ∞(vN ) ≤ κ∞(v).

The inequality pg.int(V, C[−1, 1]) ≤ κ∞(V ) is finally derived by taking the
infimum over v.

Observe that the space V , being separable, can always be isometrically
embedded into C[−1, 1]. This implies in particular that the Pλ-problem,
asking for a relationship between the projection constant p(V ) and the
Banach–Mazur distance d(V, ℓn

∞), may very well be reformulated in terms
of projections only – a remark that could have been made after Theorem 1.
The observation also offers a straightforward way of explaining the chain
of inequalities (2), which is to be the center of our attention from now on.
Precisely, we address two problems:

• Problem 1: Is it possible to have p(V ) < κ∞(V ) = pint(V )?

• Problem 2: Is it possible to have p(V ) = κ∞(V ) < pint(V )?
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§3. Regarding the First Problem

In this section we will present several examples showing that the first
question has an affirmative answer. Of crucial importance is the following
lemma.

Lemma 1. If the space V is smooth, then

κ∞(V ) = pint(V ).

Proof: The smoothness of V implies the strict convexity of V ∗, hence
the fact that BV ∗ = EV ∗ . The result is now an immediate consequence of
Theorems 1 and 2.

Let us illustrate this point with more concrete examples. The subspace
of C(T) spanned by cos and sin is the simplest one. Let us denote it E2,
since it is Euclidean by virtue of

‖a cos+b sin‖∞ =
√

a2 + b2.

Thus we know that κ∞(E2) = pint(E2) =
√

2. On the other hand, we know
that p(E2) = 4/π, as a particular case of

p(En) =
2√
π

Γ
(
(n + 2)/2

)

Γ
(
(n + 1)/2

) .

Alternatively, p(E2) = 4/π can be deduced from the minimality of the
orthogonal projection onto E2 – this is justified exactly in the same way as
the minimality of the Fourier projection onto the space Tn of trigonometric
polynomials of degree at most n. In any case, we emphasize that

p(E2) < κ∞(E2) = pint(E2).

Let us consider next the space Ln of algebraic polynomials of degree
at most n endowed with the L1-norm on [−1, 1]. Let us specify n = 1 and
recount some history about the determination of p(L1). First, Franchetti
and Cheney obtained the value p(L1, L1) ≈ 1.22040491 in [6]. Chalmers
then remarked in [2] that this relative projection constant actually equals
the absolute projection constant. To this end, he noticed that

∫ 1

−1

|at + b|dt = max
t∈[−1,1]

|a(1 − t2) + 2bt| =






2|b|, if |a| ≤ |b|,
a2 + b2

|a| , if |a| > |b|,

so that the space L1 spanned by v1(t) := t and v2(t) := 1/2 is isometrically
isomorphic to the space W spanned by w1(t) := 1 − t2 and w2(t) := t,
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and endowed with the supremum norm on [−1, 1]. He could conclude that
p(L1, L1) = p(L1) by outlining a projection from C[−1, 1] onto W with
norm p(L1, L1), so that

p(L1) = p(W) = p(W , C[−1, 1]) ≤ p(L1, L1) ≤ p(L1).

We shall now remark that the space Ln is smooth, since the measure of
the set {x ∈ [−1, 1] : v(x) = 0} equals zero for any v ∈ V \ {0}. This
yields κ∞(Ln) = pint(Ln). The precise value is κ∞(L1) = pint(L1) = 5/4
for n = 1. This is obtained by minimizing the norm of an interpolating
projection from C[−1, 1] onto W . Note that κ∞(L1) = 5/4 was obtained
in [5] without the help of Lemma 1, at the price of six pages of intricate
calculations. In any case, we emphasize that

p(L1) < κ∞(L1) = pint(L1).

Our final example indicates that the condition of smoothness of V
is not necessary for the equality κ∞(V ) = pint(V ) to hold. It will be
provided by the subspace T1 of C(T), where Tn denotes the space of all
trigonometric polynomials of degree at most n. Clearly, this space is not
smooth, for a constant function has many support functionals. As shown
in [1], the Lagrange bases at equidistant points are associated with minimal
interpolating projections, and in the case n = 1 computations even reveal
that these bases are best conditioned (no such computations have been
carried out for n ≥ 2). We infer that κ∞(T1) = pint(T1, C(T)) = 5/3. We
also have to make sure that ET ∗

1
= T, which presents no difficulty. On the

other hand, the minimality of the Fourier projection onto Tn implies that
p(T1, C(T)) = 1/3 + 2

√
3/π ≈ 1.435991124. To conclude, we emphasize

once more that

p(T1) < κ∞(T1) = pint(T1).

§4. Regarding the Second Problem

The second problem will not be settled in this section, only discussed.
We have never come across the situation p(V ) = κ∞(V ) < pint(V ),
and it is our belief that the equality p(V ) = κ∞(V ) should imply the
equality p(V ) = pint(V ). Note that p(V ) > 1 can be assumed, since
p(V ) = 1 is known to imply V ∼= ℓn

∞, hence pint(V ) = 1. At this point,
we should at least verify that the hypothesis p(V ) = κ∞(V ) > 1 is
not void. The example provided by Pan and Shektman in [8] does the
trick. Indeed, they examined a subspace V of a discrete C(K), namely
C(K) = ℓ6

∞, satisfying p(V, C(K)) = pint(V, C(K)) > 1. This immediately
yields p(V ) = κ∞(V ) > 1. If our belief is true, this should imply that
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p(V ) = pint(V ), which is not a straightforward consequence of the above.
Let us recall that the space V is spanned by vectors v and w defined by

v := [1, 0, τ, υ, τ, υ]⊤,

w := [0, 1, υ, τ,−υ,−τ ]⊤,

where τ := (2 +
√

2)/4 and υ :=
√

2/4. We also recall the expression
of the projection P from C(K) = ℓ6

∞ onto V which is both minimal and
interpolating, namely

P (x) = x1v + x2w, for which ‖P‖ = ‖|v| + |w|‖ =
1 +

√
2

2
.

We aim at proving that the linear functionals λ : x ∈ ℓ6
∞ 7→ x1 ∈ R and

µ : x ∈ ℓ6
∞ 7→ x2 ∈ R are extreme points of Ex(BV ∗), so that P also

defines an interpolating projection from C(EV ∗) onto V . For this purpose,
with σ :=

√
2 − 1, we observe that

‖av + bw‖ = max[|a|, |b|, τ |a| + υ|b|, υ|a| + τ |b|],
‖aλ + bµ‖ = max[|a| + σ|b|, σ|a| + |b|, 2σ(|a| + |b|)].

We have used the fact that ‖aλ + bµ‖ = maxu∈Ex(BV ) ‖aλ(u) + bµ(v)‖
in the latter calculation. We can now draw the unit balls of V and V ∗,
respectively. The figure shows that indeed λ and µ are extreme points of
the unit ball of V ∗.

To conclude this discussion, we note that we can reformulate the problem

p(V ) = κ∞(V )
?⇒ p(V ) = pint(V ) in terms of projections only, according

to Theorems 1 and 3. Thus, two related questions are worth inquiries,
namely

• if a minimal projection from C(BV ∗) onto V is interpolating, can we
find a minimal projection from C(EV ∗) onto V which is interpolating?

• if a minimal projection from C[−1, 1] onto V is generalized interpo-
lating, can we find a minimal projection from C[−1, 1] onto V which
is interpolating?
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§5. Appendix

5.1. Best conditioned bases are not essentially unique

As announced in Section 1, we shall prove here that not every best con-
ditioned basis is of the form c T (v), where c is a non-zero constant, T is
an isometry from V to V , and v is a fixed best conditioned basis. The
counterexample is supplied by the regular octahedral space, i.e. the space
V is taken to be R

2 endowed with the norm

‖(a, b)‖ := max[|a|, |b|, (|a| + |b|)/
√

2].

We claim that κ∞(V ) =
√

2, and that
the bases e = (e1, e2) and u = (u1, u2),
shown on the picture of the unit ball
BV of V , are best conditioned. We then
assert that the linear map transforming
e into u is not an isometry of V , since u1

and u2 are extreme points of BV , while
e1 and e2 are not.

Let v = (v1, v2) be an arbitrary basis of V , and let µ = (µ1, µ2) be the

basis of V ∗ dual to v. We need to establish that κ∞(v) ≥
√

2. Let us
denote by λ = (λ1, λ2) the basis of V ∗ dual to the canonical basis e of V .
The bases v and µ may be represented as

v1 = α e1 + β e2,
v2 = γ e1 + δ e2,

µ1 = [ δ λ1 − γ λ2 ] / D,
µ2 = [−β λ1 + α λ2] / D,

where D := αδ − βγ 6= 0. Using ‖µi‖ = maxu∈Ex(BV ) |µi(u)|, we obtain

‖µ1‖ = max[|γ| + (
√

2 − 1)|δ|, (
√

2 − 1)|γ| + |δ|] / D,

‖µ2‖ = max[|α| + (
√

2 − 1)|β|, (
√

2 − 1)|α| + |β|] / D.

Let us also notice that, with ε = ±1,

‖v1 + εv2‖ = max[|α + εβ|, |γ + εδ|, (|α + εβ| + |γ + εδ|)/
√

2].

The values α = 1, β = 1−
√

2, γ =
√

2−1, δ = 1 correspond to the basis u.
In this case, we can verify that ‖µ1‖ = ‖µ2‖ = 1 and that ‖v1±v2‖ =

√
2.

This yields κ∞(u) =
√

2, as announced. Besides, we easily check that
‖λ1‖ = ‖λ2‖ = 1 and that ‖e1 ± e2‖ =

√
2, so that κ∞(e) =

√
2 holds

as well. Back to the arbitrary basis v, we remark that the expressions of
‖µ1‖, ‖µ2‖, and ‖v1 + εv2‖ are invariant under the changes α ↔ β and
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γ ↔ δ, so we may safely assume that |α| ≥ |β| and that |γ| ≥ |δ|. Since we
may also assume that the basis v is optimally normalized, the conditions
‖µ1‖ = ‖µ2‖ = 1 read

|γ| + (
√

2 − 1)|δ| = |α| + (
√

2 − 1)|β| = |αδ − βδ|. (8)

We now separate two cases. In each of them, we will get κ∞(v) ≥
√

2,
which will complete the proof.
Case 1: αβγδ > 0. The fact that sgn(αβ) = sgn(γδ) implies

max
ε=±1

‖v1 + εv2‖ = max[|α| + |β|, |γ| + |δ|, (|α| + |β| + |γ| + |δ|)/
√

2].

Using (8) with e.g. |αδ| ≥ |βγ|, we then get

|γ| ≤ |γ| + (
√

2 − 1)|δ|
|α| ≤ |α| + (

√
2 − 1)|β| ≤ |αδ| ≤ |α||γ|.

The inequalities |α| ≥ 1 and |γ| ≥ 1 follow. We finally derive that

κ∞(v) ≥ |α| + |β| + |γ| + |δ|√
2

≥
√

2.

Case 2: αβγδ ≤ 0. Since sgn(αδ) 6= sgn(βγ), we rewrite (8) as

|γ| + (
√

2 − 1)|δ| = |α| + (
√

2 − 1)|β| = |αδ| + |βγ|.

Note that one of |α| or |γ| is positive. We suppose e.g. that |γ| > 0, and
we set x := |δ|/|γ| ∈ [0, 1]. We have

1 + (
√

2 − 1)x = |α|x + |β|.

The linear function f(x) := (|α| + 1 −
√

2)x + |β| − 1 vanishes on [0, 1],
so we must have f(0)f(1) ≤ 0, i.e. (|β| − 1)(|α| + |β| −

√
2) ≤ 0. Thus,

if |α| + |β| ≤
√

2, we obtain |β| ≥ 1, and as a result |α| + |β| ≥ 2|β| ≥ 2,
a contradiction. This means that |α| + |β| ≥

√
2 holds. We finally derive

that
κ∞(v) ≥ |α| + |β| ≥

√
2.

5.2. Projection constant strictly smaller than condition number

In connection with the second problem, we should have a look at the
restrictions imposed by the equality p(V ) = κ∞(V ). Hence we suppose
that p(V, X) = κ∞(V ), where the superspace X is not necessarily of the
type C(K). Let v = (v1, . . . , vn) be a best conditioned basis of V . We
may assume that ‖µi‖ = 1, where µ = (µ1, . . . , µn) is the basis of V ∗ dual
to v. For each µi, we pick a norm-preserving extension µ̃i to the whole
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X . We then define a projection P from X onto V by Px :=
∑

i µ̃i(x) vi.
We take a slight detour to establish that P is minimal, as follows. For
λ ∈ Ex(BV ∗) satisfying ‖P ∗(λ)‖ = ‖P‖, we write

‖P‖ = ‖P ∗(λ)‖ =
∥∥∥

∑

i

λ(vi)µ̃i

∥∥∥ ≤
∑

i

|λ(vi)| =:
∑

i

εiλ(vi)

= λ
( ∑

i

εivi

)
≤

∥∥∥
∑

i

εivi

∥∥∥ ≤ κ∞(v) = κ∞(V ) = p(V, X) ≤ ‖P‖. (9)

Now, if X = C(K), let us recall that µ̃i can be chosen in the form (7).
Thus, in addition to being minimal, the projection P is also discrete, in
the sense that the carriers of the µ̃i are finite. We could try to find some
conditions under which minimal projections fail to attain their norms, for
the norm of a discrete projection is always attained. Coming back to (9),
we remark that equalities all the way through imply in particular that

∥∥∥
∑

i

αi µ̃i

∥∥∥ = 1, αi :=
λ(vi)∑
j |λ(vj)|

.

Assume now that X∗ is strictly convex, i.e. that no point of the unit sphere
of X∗ is a strict convex combination of other points of this unit sphere. We
may take for example X = Lp[−1, 1] for 1 < p < ∞. Provided that n ≥ 2,
we must have e.g. α1 = ±1, α2 = 0, . . . , αn = 0. The linear functional λ
is proportional to the linear functional µ1, and the values of their norms
yield λ = ±µ1. It follows that κ∞(V ) =

∑
i |µ1(vi)| = 1, meaning that V

is isometrically isomorphic to ℓn
∞. Since X∗ is strictly convex, however,

the space X is smooth and consequently so is V . This is contradictory.
We can therefore state the following result, and wonder if the inequality
p(V, X) < p(V ) would hold as well under the same hypothesis.

Proposition 2. Let X be a normed space whose dual is strictly convex,
and let V be a subspace of X of finite dimension ≥ 2. One has

p(V, X) < κ∞(V ).
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