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Abstract

It is known that for Pn, the subspace of C([−1, 1]) of all polynomials of degree
at most n, the least basis condition number κ∞(Pn) (also called the Banach-Mazur
distance between Pn and `n+1

∞ ) is bounded from below by the projection constant
of Pn in C([−1, 1]). We show that κ∞(Pn) is in fact the generalized interpolating
projection constant of Pn in C([−1, 1]), and is consequently bounded from above
by the interpolating projection constant of Pn in C([−1, 1]). Hence the condition
number of the Lagrange basis (say, at the Chebyshev extrema), which coincides
with the norm of the corresponding interpolating projection and thus grows like
O(lnn), is of optimal order, and for n = 2,

1.2201 . . . ≤ κ∞(P2) ≤ 1.25.

We prove that there is a basis u of P2 such that

κ∞(u) ≈ 1.24839.

This result means that no Lagrange basis of P2 is best conditioned. It also seems
likely that the previous value is actually the least basis condition number of P2,
which therefore would not equal the projection constant of P2 in C([−1, 1]).

As for trigonometric polynomials of degree at most 1, we present numerical evi-
dence that the Lagrange bases at equidistant points are best conditioned.
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1 Preliminaries

Let u := (u1, . . . , un) be a basis of a finite-dimensional subspace U of a Banach
space (X, ‖ • ‖). The `∞-condition number of u is by definition

κ∞(u) := sup
a∈`n

∞\{0}

‖∑n
i=1 aiui‖
‖a‖∞

× sup
a∈`n

∞\{0}

‖a‖∞
‖∑n

i=1 aiui‖
=: s1(u)× s2(u) . (1)

In approximation theory, some efforts were put into evaluating the condition
number of certain bases. In particular, Gautschi considered the power basis [8]
and orthogonal bases [7] of Pn, the space of all algebraic polynomials of degree
at most n, and deBoor initiated the studies of the B-spline basis condition
number, which attracted a great deal of attention (see [10,12] and references
therein).

The condition number of a basis u of U is pertinent not only because it char-
acterizes, to a certain extent, the stability of numerical computations with
u, but also because one can associate to u a projection P from X onto U
satisfying

‖P‖ ≤ κ∞(u). (2)

Indeed, giving the basis u is giving an isomorphism T : U → `n
∞, and by the

Hahn-Banach theorem applied componentwise, there exists a norm-preserving
extension of T , say T̃ : X → `n

∞. Then P := T−1T̃ is a projection from X
onto U which satisfies ‖P‖ ≤ ‖T−1‖‖T‖ = κ∞(u).

Therefore, when searching for a projection with minimal norm, it is reasonable
to examine the least of these condition numbers, that is the value

κ∞(U) := inf κ∞(u) = inf {‖T‖‖T−1‖, T : U → `n
∞ isomorphism},

which is known to the Banach space geometer as the Banach-Mazur distance
between U and `n

∞. Thus, for the (relative) projection constant of U in X,
defined by

p(U,X) := inf {‖P‖, P : X � U projection},
equation (2) implies the upper estimate

p(U,X) ≤ κ∞(U) .

We are interested in the possibility of a deeper relation between those two con-
stants, in particular we wonder if equality can occur. With no further assump-
tions on the spaces, the answer is clearly no. Indeed, even an inequality of the
type κ∞(U) ≤ C p(U,X) is wrong in general, since for example p(`n

2 , `2) = 1
while κ∞(`n

2 ) =
√

n [14, chapter 9]. Furthermore, Szarek [13] showed that a
much weaker inequality κ∞(U) ≤ C p(U) also fails to be true. Here p(U), the
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(absolute) projection constant of U is, in a sense, the supremum of the relative
projection constants of U , more precisely

p(U) := sup {p(i(U), X), X Banach, i : U → X isometric embedding}.

However, if we impose X = C (C representing C([−1, 1]) or C(T)), there is the
estimate, noticed by de Boor in [1, p. 19],

κ∞(U) ≤ pint(U, C), (3)

where

pint(U, C) := inf {‖P‖, P : C � U interpolating projection}

is the interpolating projection constant of U in C. Let us outline the arguments.
If P =

∑n
i=1 •(xi)`i is an interpolating projection (` is the Lagrange basis of U

at the points x1, . . . , xn, i.e. it satisfies `i(xj) = δi,j), then ‖P‖ = ‖∑n
i=1 |li|‖.

On the other hand, with s1 and s2 being defined in (1), we easily find s1(l) =
‖∑n

i=1 |li|‖ and s2(l) ≤ 1. Hence κ∞(`) ≤ ‖P‖, with equality if 1 ∈ U , and we
get (3) by taking the infimum over P .

So, for a finite-dimensional subspace U of C,

p(U, C) ≤ κ∞(U) ≤ pint(U, C),

and an inequality of the type κ∞(U) ≤ C p(U, C) becomes true for subspaces
U of C whose projection constants are both of the same order. The first to
come to mind are the spaces Pn, since in this case both constants are of order
O(ln n). More precisely (see Cheney and Light [5, chapter 3]),

2

π2
ln n− 1

2
≤ p(Pn, C) and pint(Pn, C) ≤ 2

π
ln(n + 1) + 1,

hence the condition number of the Lagrange basis at the Chebyshev extrema,
coinciding with the norm of the corresponding interpolating projection, is of
optimal order, since it grows like 2

π
ln n [2].

2 Objectives

While the numerical value of the interpolating projection constant pint(Pn, C)
is known [2] at least up to n = 200, the projection constant p(Pn, C) has
only been calculated [4] in the case n = 2. So the only available pair of exact
constants is

1.2201 ≈ p(P2, C) ≤ κ∞(P2) ≤ pint(P2, C) =
5

4
, (4)
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where 5
4

is the value of the norm of the interpolating projection at the Cheby-
shev extrema −1, 0 and 1, and at some of their dilatations and shifts.

We are going to prove that there is a basis u of P2 such that

κ∞(u) ≈ 1.248394563,

hence the second inequality of (4) is strict, i.e. no Lagrange basis of P2 is best
conditioned. The first inequality of (4) seems to be strict as well, for we believe
that this basis u is in fact best conditioned.

To this end, let us denote by p(b, c, d) the following symmetric basis of P2:

p1(x) :=
x(x + b)

2d
, p2(x) := c2 − x2, p3(x) :=

x(x− b)

2d
, x ∈ [−1, 1],

where

b, c, d ∈ (0, +∞).

c -b b -c 

p1 p2 p3 

For example, 1
b2

p(b, b, 1) is the interpolating basis at the points −b, 0, b.

The main part of this paper is devoted to the proof of the following statement:

Theorem 1 min
b,c,d>0

κ∞(p(b, c, d)) ≈ 1.248394563 < 5
4
.

The referee pointed out to us that the latter value, provided here by theoreti-
cal means, coincides with the value of the symmetric generalized interpolating
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projection constant of P2 in C which was obtained by Chalmers and Metcalf
in [3] from computational procedures. Once we have underlined the best con-
ditioned normalization of a basis, the equality between least basis condition
number and generalized interpolating projection constant is established, and
we finally proceed with the precise minimization of theorem 1.

3 Optimal normalization

We consider a basis u = (u1, . . . , un) of a subspace U of a Banach space
(X, ‖ • ‖), and we denote by (µ1, . . . , µn) the dual basis of U∗. One easily gets

s1(u) = max
ε1,...,εn=±1

∥∥∥∥∥
n∑

i=1

εiui

∥∥∥∥∥
(

=

∥∥∥∥∥
n∑

i=1

|ui|
∥∥∥∥∥ if X = C

)
and s2(u) = max

i∈{1,...,n}
‖µi‖ .

Hence, normalizing the dual functionals to 1, i.e. introducing the basis uN

defined by uN
i := ‖µi‖ui, i ∈ {1, . . . , n}, we have s2(u

N) = 1 and

s1(u
N) = max

ε1,...,εn=±1

∥∥∥∥∥
n∑

i=1

εi‖µi‖ui

∥∥∥∥∥ ≤ max
i∈{1,...,n}

‖µi‖ × max
ε1,...,εn=±1

∥∥∥∥∥
n∑

i=1

εiui

∥∥∥∥∥ .

Therefore we derive the estimate

κ∞(uN) ≤ κ∞(u). (5)

4 Generalized interpolating projections

This notion was introduced by Cheney and Price in [6]. For a finite dimen-
sional subspace U of C, a projection P : C � U is said to be a generalized
interpolating projection if we can find a basis u = (u1, . . . , un) of U such that
the functionals µ̃i ∈ C∗ in the representation P =

∑n
i=1 µ̃i(•)ui have disjoint

carriers. We define the generalized interpolating projection constant of U in C
by

pg.int(U, C) := inf{‖P‖, P : C � U generalized interpolating projection}.

The following theorem holds (see also [3, theorem 2]):

Theorem 2 For a finite dimensional subspace U of C, we have

κ∞(U) = pg.int(U, C).
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Proof. Let P =
∑n

i=1 µ̃i(•)ui be a generalized interpolating projection from
C onto U , where the carriers of the µ̃i’s are disjoint. It was established in [6,
lemma 9] that

‖P‖ =

∥∥∥∥∥
n∑

i=1

‖µ̃i‖|ui|
∥∥∥∥∥ .

Hence, (µ1 := µ̃1|U , . . . , µn := µ̃n|U) being the dual basis of u , we have
‖∑n

i=1 ‖µi‖|ui|‖ ≤ ‖P‖, i.e. κ∞(uN) ≤ ‖P‖. By taking the infimum over P ,
we obtain

κ∞(U) ≤ pg.int(U, C).

Let now u = (u1, . . . , un) be a basis of U , and let (µ1, . . . , µn) be the dual basis
of U∗. Each µi has a norm-preserving extension to the whole C which can be
written (see e.g. [11, theorem 2.13])

µ̃i =
mi∑
j=1

αi,j • (ti,j), mi ≤ n, ti,j ∈ [−1, 1], αi,j 6= 0.

We consider sequences of points (tki,j)k∈N converging to ti,j and such that,
for a fixed k, the tki,j’s are all distinct. We set µ̃k

i :=
∑mi

j=1 αi,j • (tki,j) and
µk

i := µ̃k
i|U . Since ‖µk

i ‖ ≤ ‖µ̃k
i ‖ =

∑mi
j=1 |αi,j| = ‖µi‖, extracting a convergent

subsequence if necessary, we can assume that µk
i converges in norm. The limit

must be µi, in view of µ̃k
i

σ(C∗,C)−→
k→∞

µ̃i. Writing
(
µk

1 · · · µk
n

)
=:
(
µ1 · · ·µn

)
A(k),

we have A(k) −→
k→∞

I, hence A(k) is invertible, at least for k large enough,

and A(k)−1 −→
k→∞

I. Thus, with
(
uk

1 · · · uk
n

)
:=

(
u1 · · · un

)
A(k)−1, we get

µk
j (u

k
i ) = δi,j and uk

i −→
k→∞

ui. Therefore P k :=
∑n

i=1 µ̃k
i (•)uk

i is a generalized

interpolating projection from C onto U and then

pg.int(U, C)≤ lim
k→∞

‖P k‖ = lim
k→∞

∥∥∥∥∥
n∑

i=1

‖µ̃k
i ‖|uk

i |
∥∥∥∥∥ = lim

k→∞

∥∥∥∥∥
n∑

i=1

‖µi‖|uk
i |
∥∥∥∥∥

=

∥∥∥∥∥
n∑

i=1

‖µi‖|ui|
∥∥∥∥∥ = κ∞(uN) ≤ κ∞(u).

By taking the infimum over u, we derive

pg.int(U, C) ≤ κ∞(U).
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5 Determining the first supremum

For the basis p(b, c, d), it is readily seen that the first supremum in (1) is

s1 := s1(p(b, c, d)) = max
±,∓

(‖p±,∓‖[0,1]), where p±,∓ := p1 ± p2 ∓ p3.

More precisely, we have, for x ∈ [0, 1] and with C := c2,

p+,+(x) =
(

1

d
− 1

)
x2 + C either increases or decreases with x,

p−,+(x) =
(

1

d
+ 1

)
x2 − C increases with x,

p−,−(x) = x2 +
b

d
x− C increases with x,

p+,−(x) =−x2 +
b

d
x + C .

We get ‖p+,+‖[0,1] = max(|p+,+(0)|, |p+,+(1)|) = max
(
C,
∣∣∣1
d
− 1 + C

∣∣∣) and

‖p−,+‖[0,1] = max(|p−,+(0)|, |p−,+(1)|) = max
(
C,
∣∣∣1
d

+ 1− C
∣∣∣), hence

max(‖p+,+‖[0,1], ‖p−,+‖[0,1]) = max
(
C,

1

d
+ |C − 1|

)
. (6)

We also have ‖p−,−‖[0,1] = max(|p−,−(0)|, |p−,−(1)|) = max
(
C,
∣∣∣ b
d

+ 1− C
∣∣∣).

Now, if x∗ := b
2d

, the critical point of p+,−, is in the interval [0, 1], we get

‖p+,−‖[0,1] = max(|p+,−(x∗)|, |p+,−(1)|) = max
(

b2

4d2 + C,
∣∣∣ b
d
− 1 + C

∣∣∣), and then

max(‖p−,−‖[0,1], ‖p+,−‖[0,1]) = max

(
b

d
+ |C − 1|, b2

4d2
+ C

)
. (7)

If otherwise x∗ = b
2d
≥ 1, we have

max(‖p−,−‖[0,1], ‖p+,−‖[0,1]) = max

(
C,

b

d
+ |C − 1|

)
. (8)

In view of (6), (7) and (8), the following proposition holds:

Proposition 3 If b ≤ 2d, we have

s1 = max

(
max(1, b)

d
+ |C − 1|, b2

4d2
+ C

)
.
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If otherwise b ≥ 2d, we have

s1 = max

(
max(1, b)

d
+ |C − 1|, C

)
.

6 Reducing the minimization domain

We show in this section that only the case b ≤ c ≤ 1 can lead to a condition
number κ := κ∞(p(b, c, d)) smaller than 5

4
. First, we note that the dual basis

of p(b, c, d) has the expression, for f ∈ P2 and with t∗ := C(1+b)
b+C

,

µ1(f) =
d

bC(b + 2C + bC)

(
−C(C − b2)f(−1) + (b + C)2f(t∗)

)
,

µ2(f) =
1

C
f(0),

µ3(f) =
d

bC(b + 2C + bC)

(
−C(C − b2)f(1) + (b + C)2f(−t∗)

)
.

We will use the upper bound s2 := s2(p(b, c, d)) ≥ max( 1
C
, d

b
), as we remark

that ‖µ2‖ = 1
C

and that ‖µ1‖ ≥ d
b
, considering µ1(f) for f(x) = x.

1) The case c ≥ 1.

According to proposition 3, we separate two subcases.

1a)The case b ≥ 2d.

Since s1 ≥ b
d

+ C − 1 ≥ C + 1, we have κ ≥ 1 + 1
C
, so that we can assume

C ≥ 4 in order to get κ ≤ 5
4
. Consequently, in view of s2 ≥ max( 1

C
, d

b
),

i) if
b

d
≥ C, then s1 ≥ 2C − 1, and κ ≥ 2− 1

C
≥ 7

4
,

ii) if C ≥ b

d
, then s1 ≥ 2

b

d
− 1, and κ ≥ 2− d

b
≥ 3

2
.

1b)The case b ≤ 2d.

If C ≥ 4, we obtain s1 ≥ b
d

+ 3, so that κ ≥ 1 + 3d
b
≥ 5

2
. Hence we can assume

C ≤ 4. Since s1 ≥ b2

4d2 + C and s2 ≥ max( 1
C
, d

b
),
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i) if d ≤ b

C
, we get κ ≥ 1

C

b2

4d2
+ 1 ≥ C

4
+ 1 ≥ 5

4
,

ii) if d ≥ b

C
, we get κ ≥ b

4d
+ C

d

b
≥ C

4
+ 1 ≥ 5

4
,

the latter holding because b
4

1
d
+ C

b
d is an increasing function of d on

[
b
2c

, +∞
)
,

and b
2c
≤ b

C
as C ≤ 4.

2) The case c ≤ 1 and b ≥ c.

On account of C ≤ 1, the point t∗ lies in [0, 1]. This implies that

‖µ1‖ =
d

bC(b + 2C + bC)

(
|C(C − b2)|+ (b + C)2

)
.

With b ≥ c, we get ‖µ1‖ = d
C

= ‖µ3‖. In view of (5) and of ‖µ2‖ = 1
C
, for

fixed b and c, the choice d = 1 minimizes κ. Two cases have to be considered,
according to proposition 3.

2a) If b ≤ 2, then κ ≥
(

b2

4
+ C

)
1

C
≥
(

C

4
+ C

)
1

C
=

5

4
.

2b) If b ≥ 2, then κ ≥ (b + 1− C)
1

C
≥ 3

C
− 1 ≥ 2.

7 Minimizing the condition number

We suppose now that b ≤ c ≤ 1, so that ‖µ1‖ = dλ
C

= ‖µ3‖, where

λ := λ(b, C) :=
b2 + 2bC + 2C2 − b2C

b(b + 2C + bC)
=

(b + C)2 + C(C − b2)

(b + C)2 − C(C − b2)
.

Thus, for fixed b and c, the optimal choice is d = 1
λ
. We note that b ≤ 2

λ
, so

that, according to proposition 3, it remains to minimize, under the conditions
0 < b ≤ c ≤ 1, C = c2,

κ∞

(
p
(
b, c,

1

λ

))
= max(F (b, C), G(b, C)),

where

F (b, C) :=
λ + 1

C
− 1 and G(b, C) :=

b2λ2

4C
+ 1.

One calculates

(b2 + 2bC + b2C)2∂λ

∂b
= −4C2(b + C)(b + 1) ≤ 0,
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hence λ, and therefore F , decreases with b. One also gets

(b + 2C + bC)2∂(bλ)

∂b
= (1− C)(b(b + bC + 4C) + 2C2) ≥ 0,

hence bλ, and therefore G, increases with b.

F( ,C) 

G( ,C) 

b*(C) 

5/4 

2/C-1 

to infinity

to C/4+1 

c 

Let us remark that λ(c, C) = 1, thus F (b, C) ≥ F (c, C) = 2
C
− 1, so that,

in order to get κ ≤ 5
4
, we may assume C ≥ 8

9
. Then we get F (c, C) ≤ 5

4
=

G(c, C), and on the other hand, since bλ(b, C) −→
b↓0

C, we have G(0, C) =

C
4

+ 1 < lim
b↓0

F (b, C) = +∞. Therefore, for each C ∈
[

8
9
, 1
]
, there exists a

unique b∗(C) ∈ [0, c] such that F (b∗(C), C) = G(b∗(C), C) =: H(C), and we
have

κ ≥ κ∞

(
p

(
b∗(C), c,

1

λ(b∗(C), C)

))
= H(C).

Finally, for any C ∈
(

8
9
, 1
)
, one has H(C) = G(b∗(C), C) < G(c, C) = 5

4
,

which already proves that

min
b,c,d>0

κ∞(p(b, c, d)) <
5

4
, so that κ∞(P2) < pint(P2, C).

Let us now evaluate the minimal value of κ∞(p(b, c, d)), i.e. the minimal value

of H on
[

8
9
, 1
]
. Let C∗ ∈

[
8
9
, 1
]

be such that H(C∗) = min 8
9
≤C≤1 H(C), it

must satisfies H ′(C∗) = 0, because C∗ is neither 8
9

nor 1. Now, differentiating
the relation F (b∗(C), C) = G(b∗(C), C) with respect to C, we get, for all

10



C ∈
[

8
9
, 1
]
,

b∗′(C)×
[
∂F

∂b
− ∂G

∂b

] (
b∗(C), C

)
+

[
∂F

∂C
− ∂G

∂C

] (
b∗(C), C

)
= 0.

On the other hand, we have, for all C ∈
[

8
9
, 1
]
,

H ′(C) = b∗′(C)× ∂F

∂b

(
b∗(C), C

)
+

∂F

∂C

(
b∗(C), C

)
.

Hence, annihilating the determinant of the previous system, we conclude that
H ′(C) = 0 if and only if

[
∂F
∂b

∂G
∂C
− ∂F

∂C
∂G
∂b

]
(b∗(C), C) = 0. As a result, C ∈[

8
9
, 1
]

satisfies H ′(C) = 0 if and only if (b∗(C), C) is solution of the following

(polynomial, after simplification) system: F (b, C)−G(b, C) = 0,[
∂F
∂b

∂G
∂C
− ∂F

∂C
∂G
∂b

]
(b, C) = 0.

Using the Groebner package from Maple, one finds that this system is equiv-
alent to

144 C8 + 6498 C7 + 25839 C6 − 25108 C5 + 9827 C4

− 17192 C3 + 2336 C2 + 1088 C − 192 = 0,

and

60 b8 − 906 b7 − 1452 b6 + 2261 b5 + 6451 b4

+ 568 b3 − 3704 b2 − 1408 b− 192 = 0,

which, in the prescribed domain, have the unique solution C ≈ 0.9402938300,
b ≈ 0.8675381234. Computing F for these b and C gives us the value

min
b,c,d>0

κ∞(p(b, c, d)) ≈ 1.248394563.

8 Concluding remarks

8.1 About the assumption of symmetry

We tried to cover the case of symmetric bases completely by introducing an
additional parameter a, |a| ≤ b, and minimizing the condition number over
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the bases:

p1(x) :=
(x + a)(x + b)

2d
, p2(x) := c2−x2, p3(x) :=

(x− a)(x− b)

2d
, x ∈ [−1, 1].

The technique is the same, though the calculations become rather more intri-
cated: whereas, when b ≤ 1 and c ≤ 1, we could show theoretically that the
case a ≤ 0 does not lead to any improvement, the same conclusion for a ≥ 0
was obtained numerically, using the Matlab function fminimax. Hence if, as
we believe, best conditioned bases are symmetric, it is very likely that our
optimal basis is actually the best conditioned basis of P2, implying the strict
inequality p(P2, C) < κ∞(P2).

8.2 About the trigonometric case

A slightly different technique, based on the determination of the norms of the
dual functionals via the extreme points of the unit ball of P2, can also be
used. Let us note that the description of the extreme points of the unit ball
of Pn, for any n ∈ N, was given by Konheim and Rivlin in [9]. For T1, the
space of trigonometric polynomials of degree at most 1, this technique can
also be applied, as we find easily that the extreme points of the unit ball of T1

are the family {±1} ∪ {sin(• − t), t ∈ T}. If we trust once again the Matlab
function fminimax, we conclude, quite surpisingly, that the Lagrange bases at
equidistant points are best conditioned in T1, with

κ∞(T1) = pint(T1, C) =
5

3
.

Let us note that this is not the projection constant of T1 in C. Indeed, it is
known that the Fourier projection from C onto Tn is minimal, and we easily
derive

p(T1, C) =
1

3
+

2
√

3

π
≈ 1.435991124.
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