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Abstract

We prove that the zeros of the derivatives of any order of a B-spline are increasing
functions of its interior knots. We then prove that if the interior knots of two B-
splines interlace, then the zeros of their derivatives of any order also interlace. The
same results are obtained for Chebyshevian B-splines.
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1 Introduction

In 1892, Vladimir Markov established the following lemma, now known as the
Markov interlacing property.

Lemma 1 ([8]) If the zeros of the polynomial p := (• − t1) · · · (• − tn) and
the zeros of the polynomial q := (•− s1) · · · (•− sn) interlace, that is

t1 ≤ s1 ≤ t2 ≤ s2 ≤ · · · ≤ tn−1 ≤ sn−1 ≤ tn ≤ sn,

then the zeros τ1 ≤ · · · ≤ τn−1 of p′ and the zeros σ1 ≤ · · · ≤ σn−1 of q′ also
interlace, that is

τ1 ≤ σ1 ≤ τ2 ≤ σ2 ≤ · · · ≤ τn−1 ≤ σn−1.

Moreover, if t1 < · · · < tn and if ti < si at least once, then the zeros of p′ and
the zeros of q′ strictly interlace, that is

τ1 < σ1 < τ2 < σ2 < · · · < τn−1 < σn−1.
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This lemma plays a major role in the original proof of the Markov inequality
[8] and in some of its simplifications, e.g. [2,12]. The interlacing property for
perfect splines [1], likewise, is essential in the proof of Markov-type inequalities
for oscillating perfect splines [3].

Bojanov remarked that the Markov interlacing property for polynomials is
equivalent to a certain monotonicity property, namely
Each zero of the derivative of a polynomial p := (•−x1) · · · (•−xn) is a strictly
increasing function of any xj on the domain x1 < · · · < xn.
He proved [1] this equivalence even for generalized polynomials with respect
to a Chebyshev system (satisfying certain conditions), and then obtained the
Markov interlacing property for generalized polynomials by showing the mono-
tonicity property.

Bojanov’s arguments were somehow similar to the ones used by Vidensky
when he gave, in 1951, the following general lemma.

Lemma 2 ([13]) Let f and g be two continuously differentiable functions
such that any non-trivial linear combination of f and g has at most n zeros
counting multiplicity. If the zeros t1 < · · · < tn of f and the zeros s1 < · · · < sn

of g interlace, then n− 1 zeros of f ′ and n− 1 zeros of g′ strictly interlace.

In this paper, we aim at proving an interlacing property for B-splines. More
precisely, we show that if the interior knots of two polynomial B-splines inter-
lace, then the zeros of their derivatives (of any order) also interlace. In section
2, we show how this can be derived from what we call the monotonicity prop-
erty, namely
Each zero of N

(l)
t0,...,tk+1

, 1 ≤ l ≤ k − 1, is a strictly increasing function of any
interior knot tj, 1 ≤ j ≤ k, on the domain t0 < t1 < · · · < tk < tk+1.
This property is proved in section 3. Next, we generalize these statements to
Chebyshevian B-splines. To this end, we need various results which are scat-
tered around the literature and are recalled in sections 4, 6 and 7. Finally, the
proof of the monotonicity property for Chebyshevian B-splines is presented in
section 8.

Our interest in this problem arose from a conjecture regarding the B-spline
basis condition number formulated by Scherer and Shadrin [11]. For t = (t0 <
t1 < · · · < tk < tk+1), with ωt representing the monic polynomial of degree k
which vanishes at t1, . . . , tk, they asked if it was possible to find a function Ωt

vanishing k-fold at t0 and tk+1 and such that the sign pattern of Ω
(l)
t is the

same as the sign pattern of (−1)lω
(k−l)
t , 0 ≤ l ≤ k. The hope to choose Ωt

as a Chebyshevian B-spline with knots t0, . . . , tk+1 raised the problem of the

monotonicity property. Indeed, the zeros of Ω
(l)
t should coincide with the zeros

of ω
(k−l)
t and thus should increase with any tj, 1 ≤ j ≤ k.
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Let us mention that the technique we use to establish the monotonicity prop-
erty for Chebyshevian B-splines is different from the one we use to establish it
for polynomial B-splines, so that the proof of section 3 is redundant. We chose
to include it nonetheless because, to our taste, it is a nice proof and because
of the additional information it provides, namely lemma 7.

To simplify the discussion, the notation “v” will mean “has the sign of”. We
will also use the notation Jm, nK := {m, m + 1, . . . , n} when m and n are
integers.

2 Interlacing property for polynomial B-splines

Let us recall that, for t0 ≤ · · · ≤ tk+1, the L∞-normalized B-spline of degree
k at t0, . . . , tk+1 is defined by

Nt0,...,tk+1
(x) := (tk+1 − t0) [t0, . . . , tk+1](•− x)k

+,

where the divided difference [t0, . . . , tk+1]f of a function f is the coefficient
of degree k + 1 of the polynomial of degree at most k + 1 agreeing with f
at the points t0, . . . , tk+1. It is well known that, for t := (t0 < · · · < tk+1),
the B-spline Nt is a function of class Ck−1 which is positive on (t0, tk+1) and

vanishes elsewhere. The derivative N
(k)
t is constant on each interval (ti, ti+1),

where it has the sign (−1)i. Moreover, for l ∈ J1, k− 1K, the function N
(l)
t has

exactly l interior zeros and it changes sign at these zeros.

We intend to prove that these zeros satisfy an interlacing property with respect
to the knots, the first and last knots being fixed, with, say, t0 = 0 and tk+1 = 1.
Let us note that a Vidensky-type argument (where zeros would be allowed to
coalesce) is not applicable in this case. Indeed, for two knot sequences t and
t′, there is a linear combination of f := Nt and g := Nt′ , namely 1

‖f‖f −
1
‖g‖g,

which has more zeros than f does.

Our approach consists of deducing the interlacing property from the mono-
tonicity property. The latter is formulated as follow.

Theorem 1 For l ∈ J1, k − 1K, let 0 < s1 < · · · < sl < 1 be the l interior

zeros of N
(l)
t0,...,tk+1

. For each i ∈ J1, lK, we have

∂si

∂tj
> 0, j ∈ J1, kK.

We note that each si is indeed a differentiable function of any tj. This is

derived, using the implicit function theorem, from the fact that N
(l+1)
t0,...,tk+1

(si) 6=
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0. The proof of Theorem 1 is the object of section 3. If we assume this result for
the moment, we can prove the interlacing property for polynomial B-splines.

Theorem 2 Let l ∈ J1, k − 1K. If the knots 0 = t0 < t1 < · · · < tk < tk+1 = 1
interlace with the knots 0 = t′0 < t′1 < · · · < t′k < t′k+1 = 1, that is

t1 ≤ t′1 ≤ t2 ≤ t′2 ≤ · · · ≤ tk ≤ t′k,

and if ti < t′i at least once, then the interior zeros s1 < · · · < sl of N
(l)
t0,...,tk+1

strictly interlace with the interior zeros s′1 < · · · < s′l of N
(l)
t′0,...,t′

k+1
, that is

s1 < s′1 < s2 < s′2 < · · · < sl < s′l.

PROOF. We proceed by induction on l.

For l = 1, we just have to show that s < s′, where s is the zero of N ′
t and

s′ is the zero of N ′
t′ , the knot sequences t and t′ satisfying the interlacing

conditions. This follows from Theorem 1.

Let us now assume that the result holds up to an integer l− 1, l ∈ J2, k − 1K,
and let us prove that it holds for l as well.
Let the knot sequences t and t′ satisfy the interlacing conditions, and let
s1 < · · · < sl and s′1 < · · · < s′l denote the interior zeros of N

(l)
t and N

(l)
t′ ,

respectively. Theorem 1 yields si < s′i for all i ∈ J1, lK. It remains to show that
s′i < si+1 for all i ∈ J1, l − 1K. To this end, let us assume that sh+1 ≤ s′h for
some h ∈ J1, l − 1K and let us derive a contradiction.

First of all, let us remark that it is enough to consider the case of equality
sh+1 = s′h. Indeed, if sh+1 < s′h, we set t(λ) = (1− λ)t + λt′, λ ∈ [0, 1], so that

t(0) = t and t(1) = t′. We also denote the interior zeros of N
(l)
t(λ) by s1(λ) <

· · · < sl(λ). By Theorem 1, the point sh(λ) runs monotonically continuously
through the interval [sh, s

′
h] when λ runs through [0, 1]. As sh+1 ∈ (sh, s

′
h),

there exists λ ∈ (0, 1) for which sh(λ) = sh+1. But then t and t(λ) satisfy the
interlacing conditions and sh+1 = sh(λ). This is the case of equality. It leads
to a contradiction, as we are now going to show.

Let us indeed suppose that sh+1 = s′h. We set s := sh+1 = s′h and we let
0 = z0 < z1 < · · · < zl−1 < zl = 1 and 0 = z′0 < z′1 < · · · < z′l−1 < z′l = 1

denote the zeros of N
(l−1)
t and N

(l−1)
t′ , respectively. We know that si < zi < si+1

and that s′i < z′i < s′i+1 for all i ∈ J1, l − 1K. Therefore we have

z1 < · · · < zh < s < z′h < · · · < z′l−1.
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We also note that, since s ∈ (zh, zh+1) and s ∈ (z′h−1, z
′
h), one has

N
(l−1)
t (s) v (−1)h and N

(l−1)
t′ (s) v (−1)h−1.

Thus we can introduce the function

H := N
(l−1)
t + c N

(l−1)
t′ , where c := −

N
(l−1)
t (s)

N
(l−1)
t′ (s)

> 0.

By the induction hypothesis, one has zi ∈ (z′i−1, z
′
i), so that H(zi) = c N

(l−1)
t′ (zi)

changes sign for i ∈ J1, hK. This gives rise to h − 1 zeros of H in (z1, zh).

Likewise, one has z′i ∈ (zi, zi+1), so that H(z′i) = N
(l−1)
t (z′i) changes sign for

i ∈ Jh, l− 1K. This gives l−h− 1 zeros of H in (z′h, z
′
l−1). Counting the double

zero of H at s, the function H has at least l interior zeros. Applying Rolle’s
theorem k− l + 1 times, we deduce that H̃ := H(k−l+1) has at least k + 1 sign
changes.
But H̃ = N

(k)
t + c N

(k)
t′ is a piecewise constant function. On [t′i, ti+1], it has

the sign (−1)i, and on [t′i+1, ti+2], it has the sign (−1)i+1, so that the inter-

mediate value of H̃ on [ti+1, t
′
i+1] does not contribute to the number of sign

changes of H̃. Only the values of H̃ on the intervals [t′0, t1], . . . , [t
′
k, tk+1] have

a contribution. Hence H̃ has exactly k sign changes. This is a contradiction.

We conclude that s′i < si+1 for all i ∈ J1, l − 1K, so that the result holds for l.
The inductive proof is now complete. 2

3 Monotonicity property for polynomial B-splines

Our proof of the monotonicity property for polynomial B-splines makes an
extensive use of an elegant formula which was given by Meinardus, ter Morsche
and Walz [7, Theorem 5] and which was expressed in a slightly different way by
Chakalov [5] as early as 1938 (see also [4, Formula (3.4.6)]). For the convenience
of the reader, we include a proof which, unlike [7], does not involve the integral
representation of divided differences.

Lemma 3 Let t0 = 0, tk+1 = 1, and let t ∈ [0, 1], e.g. tj ≤ t ≤ tj+1. We have

Nt0,...,tj ,t,tj+1,...,tk+1
(x) =

x− t

k + 1
N ′

t0,...,tj ,t,tj+1,...,tk+1
(x) + Nt0,...,tk+1

(x). (1)

PROOF. Let us write t := (t0, . . . , tk+1) and t′ := (t0, . . . , tj, t, tj+1, . . . , tk+1).
We define polynomials p, q and r by the facts that

5



p, of degree ≤ k + 1, interpolates (•− x)k
+ at t,

q, of degree ≤ k + 2, interpolates (•− x)k+1
+ at t′,

r, of degree ≤ k + 2, interpolates (•− x)k
+ at t′.

In this way, since t0 = 0 and tk+1 = 1,

the coefficient of degree k + 1 of p is Nt(x),

the coefficient of degree k + 2 of q is Nt′(x),

the coefficient of degree k + 2 of r is − 1

k + 1
N ′

t′(x).

We observe that

(•− x)× r, of degree ≤ k + 3, interpolates (•− x)k+1
+ at t′. (2)

We also remark that the polynomial r − p is of degree at most k + 2 and
vanishes at t and that the polynomial (•−x)× r− q is of degree at most k +3
and vanishes at t′. Looking at the leading coefficients of these polynomials, we
obtain

r − p =− 1

k + 1
N ′

t′(x)× (•− t0) · · · (•− tk+1),

(•− x)× r − q =− 1

k + 1
N ′

t′(x)× (•− t)(•− t0) · · · (•− tk+1).

Eliminating r from these equations, we get

q − (•− x)× p = − 1

k + 1
N ′

t′(x)× (t− x)× (•− t0) · · · (•− tk+1).

Identifying the terms of degree k + 2 leads to

Nt′(x)−Nt(x) =
x− t

k + 1
N ′

t′(x),

which is just a rearrangement of (1). 2

Remark 4 The trivial observation (2) is specific to the polynomial case. We
will later see how it can be used to simplify the arguments presented in the
proof of the monotonicity property for Chebyshevian B-splines.

The two following formulae are crucial in our approach.

Formulae 5 Using the notations

t := (0 = t0 < · · · < tk+1 = 1), tj := (0 = t0 < · · · < tj = tj < · · · < tk+1 = 1),
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we have

k + 1− l

k + 1
N

(l)

tj (x) =
x− tj
k + 1

N
(l+1)

tj (x) + N
(l)
t (x), l ∈ J0, k − 1K, (3)

and
∂N

(m)
t

∂tj
= − 1

k + 1
N

(m+1)

tj . (4)

PROOF. We rewrite (1) for t = tj to obtain

Ntj(x) =
x− tj
k + 1

N ′
tj(x) + Nt(x).

Differentiating the latter l times, we obtain formula (3). Formula (4) is an
easy consequence of the identity ∂

∂tj
[t0, . . . , tk+1] = [t0, . . . , tj, tj, . . . , tk+1]. 2

To give a feeling of the arguments involved in the proof of the monotonicity
property, we begin with the simple case of the zero of the first derivative of a
B-spline.

Proposition 6 Let s be the interior zero of N ′
t0,...,tk+1

. We have

∂s

∂tj
> 0, j ∈ J1, kK.

PROOF. Differentiating N ′
t(s) = 0 with respect to tj, we get

∂s

∂tj
×N ′′

t (s) +

(
∂N ′

t

∂tj

)
(s) = 0.

Since N ′′
t (s) < 0, it is enough to show that

(
∂N ′

t

∂tj

)
(s) > 0, or, in view of (4),

that

N ′′
tj(s) < 0.

Writing (3) for l = 1 and x = s, we obtain

k

k + 1
N ′

tj(s) =
s− tj
k + 1

N ′′
tj(s). (5)

Besides, (3) taken for l = 0 and x = s gives

s− tj
k + 1

N ′
tj(s) = Ntj(s)−Nt(s).
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Hence,
(s− tj)

2

k + 1
N ′′

tj(s) = k
[
Ntj(s)−Nt(s)

]
.

Let σ be the interior zero of N ′
tj , i.e. the point of maximum of Ntj . We clearly

have N ′′
tj(σ) < 0. Thus, if s = σ, we obtain the desired inequality N ′′

tj(s) < 0.
We can therefore assume that s 6= σ.

In this case, we can also assume that s 6= tj. Indeed, if s = tj, then (5) would
give N ′

tj(s) = 0, so that s = σ.

Consequently, in order to prove that N ′′
tj(s) < 0, we just have to prove that[

Ntj(s)−Nt(s)
]

< 0.

From (3) for l = 0 and x = σ, one has Ntj(σ) = Nt(σ), and then

Ntj(s) < Ntj(σ) = Nt(σ) ≤ Nt(s),

hence the inequality
[
Ntj(s)−Nt(s)

]
< 0 holds. 2

A little more work is required in order to adapt these arguments to the case
of higher derivatives. The following lemma is needed.

Lemma 7 Let l ∈ J2, k − 1K and let 0 < z1 < · · · < zl−1 < 1 be the zeros of

N
(l−1)
t .

1) Let 0 < σ1 < · · · < σl < 1 denote the zeros of N
(l)

tj , we have

σ1 < z1 < σ2 < z2 < · · · < σl−1 < zl−1 < σl.

2) Let 0 < ζ1 < · · · < ζl−1 < 1 denote the zeros of N
(l−1)

tj and let r ∈ J0, l− 1K
be such that ζr < tj < ζr+1 (having set ζ0 := 0 and ζl := 1), we have

z1 < ζ1 < z2 < ζ2 < · · · < zr < ζr

< ζr+1 < zr+1 < ζr+2 < zr+2 < · · · < zl−2 < ζl−1 < zl−1.

In other words, repeating the knot tj moves the zeros of the derivatives of the
B-spline towards tj.

Let us note that the second statement has already been obtained in the par-
ticular case l = 2 [7, Theorem 6].

PROOF. For the first statement, it is enough to show that there is a zero of
N

(l−1)
t in each interval (σi, σi+1), i ∈ J1, l − 1K. To this end, we note that (3)
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for l − 1 and x = σi gives

k + 2− l

k + 1
N

(l−1)

tj (σi) = N
(l−1)
t (σi).

Since N
(l−1)

tj (σi) v (−1)i+1, we have N
(l−1)
t (σi) v (−1)i+1, and the result now

follows from the intermediate value theorem.

As for the second statement, we note that (3) for l − 1 and x = ζi gives

N
(l−1)
t (ζi) =

tj − ζi

k + 1
N

(l)

tj (ζi).

Since N
(l)

tj (ζi) v (−1)i, there is at least one zero of N
(l−1)
t in each of the

intervals (ζ1, ζ2), . . . , (ζr−1, ζr), (ζr+1, ζr+2), . . . , (ζl−2, ζl−1). The result is now
clear for r = 0 and r = l − 1. Then, for r ∈ J1, l − 2K, we have tj >

ζ1, so that N
(l−1)
t (ζ1) = tj−ζ1

k+1
N

(l)

tj (ζ1) < 0. Besides, we have N
(l−1)
t (σ1) =

k+2−l
k+1

N
(l−1)

tj (σ1) > 0. Thus there is a zero of N
(l−1)
t in (σ1, ζ1). Likewise, there

is a zero of N
(l−1)
t in (ζl−1, σl). The l − 1 zeros of N

(l−1)
t which we have found

and localized are simply z1, . . . , zl. 2

It is now time for the main result of this section.

Theorem 1 For l ∈ J1, k − 1K, let 0 < s1 < · · · < sl < 1 be the l interior

zeros of N
(l)
t0,...,tk+1

. For each i ∈ J1, lK, we have

∂si

∂tj
> 0, j ∈ J1, kK.

PROOF. As the case l = 1 has already been treated, we suppose that l ∈
J2, k − 1K. Differentiating N

(l)
t (si) = 0 with respect to tj, we obtain

∂si

∂tj
×N

(l+1)
t (si) +

∂N
(l)
t

∂tj

 (si) = 0.

Since N
(l+1)
t (si) v (−1)i, it is enough to show that

(
∂N

(l)
t

∂tj

)
(si) v (−1)i+1, or,

in view of (4), that

N
(l+1)

tj (si) v (−1)i.

Writing (3) for l and x = si and for l − 1 and x = si, we obtain
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(k + 1− l)N
(l)

tj (si) = (si − tj)N
(l+1)

tj (si),

(si − tj)N
(l)

tj (si) = (k + 2− l)N
(l−1)

tj (si)− (k + 1)N
(l−1)
t (si).

Thus,

(si − tj)
2N

(l+1)

tj (si) = (k + 1− l)
[
(k + 2− l)N

(l−1)

tj (si)− (k + 1)N
(l−1)
t (si)

]
.

Let us suppose that si = tj. It is then clear that l 6= k−1, and we can write (3)

for l+1 and x = si to obtain k−l
k+1

N
(l+1)

tj (si) = N
(l+1)
t (si). As N

(l+1)
t (si) v (−1)i,

we have the desired result N
(l+1)

tj (si) v (−1)i. We can therefore assume that
si 6= tj.

In this case, we can also assume that si 6= σi. Indeed, if si = σi, then N
(l)

tj (si) =

0, and (3) for l and x = si would give (si−tj)N
(l+1)

tj (si) = 0, where N
(l+1)

tj (si) =

N
(l+1)

tj (σi) 6= 0, so we would have si = tj.

As si 6= tj, in order to prove that N
(l+1)

tj (si) v (−1)i, we just have to prove

that
[
(k + 2− l)N

(l−1)

tj (si)− (k + 1)N
(l−1)
t (si)

]
v (−1)i.

Since N
(l−1)
t (si) v (−1)i+1, the result is clear if N

(l−1)

tj (si) v (−1)i. Hence we

assume that N
(l−1)

tj (si) v (−1)i+1. This implies that si ∈ [ζi−1, ζi]. Indeed, if

for example si < ζi−1, then si < ζi−2, because N
(l−1)

tj v (−1)i on (ζi−2, ζi−1),
and lemma 7 yields si < zi−1, which is absurd.

Now, noting that (3) for l − 1 and x = σi implies (k + 2 − l)N
(l−1)

tj (σi) =

(k + 1)N
(l−1)
t (σi), we get

(k + 2− l)|N (l−1)

tj (si)|< (k + 2− l)‖N (l−1)

tj ‖[ζi−1,ζi]

= (k + 2− l)|N (l−1)

tj (σi)| = (k + 1)|N (l−1)
t (σi)|

≤ (k + 1)‖N (l−1)
t ‖[zi−1,zi] = (k + 1)|N (l−1)

t (si)|.

Therefore
[
(k + 2− l)N

(l−1)

tj (si)− (k + 1)N
(l−1)
t (si)

]
v −N

(l−1)
t (si) v (−1)i. 2

4 A reminder on ECT-spaces

To formulate the subsequent results, we have to recall a few facts about ex-
tended complete Chebyshev spaces and to fix the notations. This is the purpose
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of this section. Its content is all very standard, and the reader is referred to
[10], for example, should more details be needed.

An (n + 1)-dimensional subspace G of Cn(I), I interval, is said to be an ex-
tended Chebyshev space (ET-space) if any non-zero function in G has no
more than n zeros counting multiplicity. The space G is an ET-space if and
only if it admits a basis (g0, . . . , gn) which is an extended Chebyshev system
(ET-system), that is, for any points t0 ≤ · · · ≤ tn in I,

D

g0 . . . gn

t0 . . . tn

 :=

∣∣∣∣∣∣∣∣∣∣∣
g

(d0)
0 (t0) . . . g(d0)

n (t0)
... . . .

...

g
(dn)
0 (tn) . . . g(dn)

n (tn)

∣∣∣∣∣∣∣∣∣∣∣
> 0, (6)

the occurrence sequence d of t being defined by di := max {j : ti−j = · · · = ti}.

The system (g0, . . . , gn) of elements of Cn(I) is said to be an extended complete
Chebyshev system (ECT-system) if (g0, . . . , gm) is an ET-system for any m ∈
J1, nK, and an (n+1)-dimensional subspace G of Cn(I) is said to be an extended
complete Chebyshev space (ECT-space) if it admits a basis (g0, . . . , gn) which
is an ECT-system.

If (g0, . . . , gn) is an ECT-system, given t1 ≤ · · · ≤ tn in I, there is a unique
ω ∈ span(g0, . . . , gn) whose coordinate on gn is 1 and which satisfies

ω(di)(ti) = 0, di = max {j : ti−j = · · · = ti}, i ∈ J1, nK.

It is denoted ωg0,...,gn(•; t1, . . . , tn), and is given by

ωg0,...,gn(•; t1, . . . , tn) = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

g0 . . . gn−1 gn

g
(d1)
0 (t1) . . . g

(d1)
n−1(t1) g(d1)

n (t1)
... . . .

...
...

g
(dn)
0 (tn) . . . g

(dn)
n−1(tn) g(dn)

n (tn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
g

(d1)
0 (t1) . . . g

(d1)
n−1(t1)

... . . .
...

g
(dn)
0 (tn) . . . g

(dn)
n−1(tn)

∣∣∣∣∣∣∣∣∣∣∣

. (7)

According to (6), we easily read the sign pattern of ωg0,...,gn(•; t1, . . . , tn).

Given weight functions w0, . . . , wn such that wi ∈ Cn−i(I) and wi > 0 and given
a point t ∈ I, we now introduce generalized powers, following the notations
used by Lyche [6]. We start by defining inductively the functions Im(•, t) =
Im(•, t, w1, . . . , wm), m ∈ J0, nK, by
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I0(•, t) := 1,

Im(•, t, w1, . . . , wm) :=
∫ •

t
w1(x)Im−1(x, t, w2, . . . , wm)dx.

Using integration by parts, it is easily shown by induction that

Im(x, t) = (−1)mIm(t, x). (8)

We then set um(•, t, w0, . . . , wm) := w0(•)Im(•, t, w1, . . . , wm), that is

u0(x, t, w0) = w0(x),

u1(x, t, w0, w1) = w0(x)
∫ x

t
w1(x1)dx1,

...

un(x, t, w0, . . . , wn) = w0(x)
∫ x

t
w1(dx1) · · ·

∫ xn−1

t
wn(xn)dxn . . . dx1.

For example, um(x, t, 1, 1, 2, . . . ,m) = (x− t)m.

The system (u0(•, t, w0), . . . , un(•, t, w0, . . . , wn)) is an ECT-system, and we
write ECT(w0, . . . , wn) for the space it spans, as it indeed is independent on
t. In fact, any (n + 1)-dimensional ECT-space admits such a representation.
In this context, the successive differentiations are to be replaced by the more
appropriate ones,

Lw0 = D
( •

w0

)
, Dw1,w0 =

1

w1

Lw0 ,

...

Lwn−1,...,w0 = D

(
•

wn−1

)
◦ · · · ◦D

( •
w0

)
, Dwn,...,w0 =

1

wn

Lwn−1,...,w0 ,

so that Lw0(ECT(w0, . . . , wn)) is an ECT-space, namely it is ECT(w1, . . . , wn).

5 Monotonicity property in ECT-spaces

The Markov interlacing property in ECT-spaces is not new, see e.g. [1]. Here
is yet another proof of it, or rather, of the monotonicity property. It is partic-
ularly suited to ECT-spaces and we present it for the sole reason that we like
it.

Let ECT(w0, . . . , wn) be an ECT-space on I, and let us set (u0, . . . , un) :=
(u0(•, t, w0), . . . , un(•, t, w0, . . . , wn)) for some t ∈ I. Given t1 < · · · < tn in I,
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let ω stand here for

ωw0,...,wn(•; t1, . . . , tn) := ωu0,...,un(•; t1, . . . , tn).

We define τi to be the zero of Lw0(ω) ∈ ECT(w1, . . . , wn) which belongs to
the interval (ti, ti+1), i ∈ J1, n− 1K.

Proposition 8 For each i ∈ J1, n− 1K, we have

∂τi

∂tj
> 0, j ∈ J1, nK.

PROOF. Dividing by w0, we can without loss of generality replace w0 by 1
and Lw0 by the usual differentiation. We note that ω is proportional to

f :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u0 . . . un

u0(t1) . . . un(t1)
... . . .

...

u0(tn) . . . un(tn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, thus we have f ′(τi) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u′0(τi) . . . u′n(τi)

u0(t1) . . . un(t1)
... . . .

...

u0(tn) . . . un(tn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (9)

Differentiating f ′(τi) = 0 with respect to tj leads to

∂τi

∂tj
× f ′′(τi) +

(
∂f ′

∂tj

)
(τi) = 0.

Note that f(τi) v (−1)i, so that f ′′(τi) v (−1)i+1, hence it is enough to show
that

(
∂f ′

∂tj

)
(τi) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u′0(τi) u′1(τi) . . . u′n(τi)
... . . . . . .

...

u0(tj−1) u1(tj−1) . . . un(tj−1)

u′0(tj) u′1(tj) . . . u′n(tj)

u0(tj+1) u1(tj+1) . . . un(tj+1)
... . . . . . .

...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

v (−1)i.
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Let us introduce

g :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u′0(τi) u′1(τi) . . . u′n(τi)
... . . . . . .

...

u0(tj−1) u1(tj−1) . . . un(tj−1)

u0 u1 . . . un

u0(tj+1) u1(tj+1) . . . un(tj+1)
... . . . . . .

...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∈ ECT(w0, . . . , wn),

so that
(

∂f ′

∂tj

)
(τi) = g′(tj). We clearly have g(t1) = 0, . . . , g(tj−1) = 0, g(tj+1) =

0, . . . , g(tn) = 0, and in addition g(tj) = 0, in view of (9). Therefore g =
c f for some constant c. Using the fact that (u0, . . . , un) is an ECT-system,
manipulations on the rows yield g(τi) v (−1)j. Now, since f(τi) v (−1)i, we
obtain c v (−1)i+j. Hence, we get g′(tj) = c f ′(tj) v (−1)i+j(−1)j = (−1)i,
which concludes the proof. 2

6 Generalized divided differences

Before turning our attention to the zeros of the derivatives of Chebyshevian
B-splines, we need to define these Chebyshevian B-splines. A prerequisite is
the introduction of the generalized divided differences, which is carried out in
this section. Proposition 11 is of particular importance for our purpose and
seems to be new.

For an (n + 1)-dimensional ECT-space on I, for points t0 ≤ · · · ≤ tn in I and
for a differentiable enough function f , we write PG

t0,...,tn(f) for the interpolator
of f at t0, . . . , tn in G, i.e. the unique element of G agreeing with f at t0, . . . , tn.

Definition 9 The divided difference of a function f at the points t0, . . . , tn
with respect to the weight functions w0, . . . , wn is defined (independently on
t ∈ I) by

w0 . . . wn

t0 . . . tn

 f := coordinate of P
ECT(w0,...,wn)
t0,...,tn (f) on un(•, t, w0, . . . , wn).

Given t = (t0 < · · · < tn), let t\i represent the sequence t from which ti has
been removed, and t\i,j the sequence t from which ti and tj have been removed.
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The identity

P
ECT(w0,...,wn)
t (f) = P

ECT(w0,...,wn−1)
t\i

(f) +

w0 . . . wn

t0 . . . tn

 f × ωw0,...,wn(•; t\i)

is readily obtained, and provides the recurrence relation for divided differences.
This can be found in [9], expressed a little differently.

Proposition 10 For t0 < · · · < tn in I and 0 ≤ i < j ≤ n, we define
α = αw0,...,wn

t0,...,tn (i, j) by

ωw0,...,wn(•; t\j)− ωw0,...,wn(•; t\i) = α× ωw0,...,wn−1(•; t\i,j).

The constant α is positive and we have

w0 . . . wn

t0 . . . tn

 =

w0 . . . . . . . . . . . . wn−1

t0 . . . ti−1 ti+1 . . . tn

−
w0 . . . . . . . . . . . . wn−1

t0 . . . tj−1 tj+1 . . . tn


α

.

PROOF. To simplify the notations, we omit to write the weight functions
wm. The previous identity used twice gives

Pt(f) = Pt\i,j
(f) + [t\j]f × ω(•; t\i,j) + [t]f × ω(•; t\j)

= Pt\i,j
(f) + [t\i]f × ω(•; t\i,j) + [t]f × ω(•; t\i).

By subtraction, we get(
[t\i]f − [t\j]f

)
×ω(•; t\i,j) = [t]f ×

(
ω(•; t\j)− ω(•; t\i)

)
= [t]f ×α ω(•; t\i,j),

so that [t]f = 1
α

(
[t\i]f − [t\j]f

)
, which is the required result.

The positiveness of α is obtained by taking the values at tj of the functions
defining α. 2

In the traditional polynomial case, with w0 = 1, w1 = 1, . . . , wn = n, one
easily finds α1,1,2,...,n

t0,...,tn (i, j) = tj − ti. Hence we recover the usual definition of
divided differences.

Finally, the following result is crucial in our further considerations.
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Proposition 11 For t0 < · · · < tn in I, we have, for any j ∈ J0, nK,

∂

∂tj


w0 . . . wn

t0 . . . tn


 = β

w0 . . . . . . . . . . . . wn+1

t0 . . . tj tj . . . tn

 ,

where

β = β
w0,...,wn+1
t0,...,tn (j) :=

ω′
w0,...,wn+1

(tj; t)

ωw0,...,wn(tj; t\j)
> 0.

PROOF. We omit to write the weight functions wm here as well. For ε small
enough, with t := (t0, . . . , tn) and t(ε) := (t0, . . . , tj + ε, . . . , tn), we have

1

ε

([
t0 . . . tj + ε . . . tn

]
−
[
t0 . . . tj . . . tn

])
=

α

ε

[
t0 . . . tj tj + ε . . . tn

]
,

where ω(•; t)− ω(•; t(ε)) = α× ω(•; t\j). Thus,

α

ε
=
−ω(tj; t(ε))

ε ω(tj; t\j)
−→
ε→0

ω′(tj; t)

ω(tj; t\j)
.

The latter limit is obtained using (7). The conclusion now follows from the
fact that the generalized divided difference depends continuously on the knots,
which was shown by Mühlbach [9]. 2

For the polynomial case, a simple calculation gives β1,1,2,...,n+1
t0,...,tn (j) = 1.

7 Chebyshevian B-splines

We recall some properties of Chebyshevian B-splines that are to play a major
role in the last section. We make the simplifying assumption that each wm is
of class C∞.

The divided difference (note the reversed order of the wm’s)

wn+1 . . . w0

t0 . . . tn+1

 f

depends only on Dw0,...,wn+1(f). Indeed, if Dw0,...,wn+1(f) = Dw0,...,wn+1(g), then

f − g ∈ ECT(wn+1, . . . , w1), so that

wn+1 . . . w0

t0 . . . tn+1

 (f − g) = 0. Therefore
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we can define λ ∈ C([t0, tn+1])
∗ such that

wn+1 . . . w0

t0 . . . tn+1

 f = λ
(
Dw0,...,wn+1(f)

)
.

One can prove that

wn+1 . . . w0

t0 . . . tn+1

 f = Dw0,...,wn+1(f)(t) for some t ∈ [t0, tn+1],

implying that λ is a positive linear functional of norm 1 on C([t0, tn+1]). We
then expect the representation

wn+1 . . . w0

t0 . . . tn+1

 f =
∫ tn+1

t0
Dw0,...,wn+1(f)(t) Mw0,...,wn

t0,...,tn+1
(t) dt ,

for some Mw0,...,wn
t0,...,tn+1

≥ 0 satisfying
∫ tn+1

t0
Mw0,...,wn

t0,...,tn+1
(t)dt = 1.

This is the Peano representation of the divided difference. The choice

f = u+
n (•, x, wn+1, . . . , w1) :=

 0 on (−∞, x)

un(•, x, wn+1, . . . , w1) on [x, +∞)
,

for which Lw1,...,wn+1(f) = δx, leads to

Mw0,...,wn
t0,...,tn+1

(x) = w0(x)×

wn+1 . . . w0

t0 . . . tn+1

u+
n (•, x, wn+1, . . . , w1).

This identity is taken to be the definition of the Chebyshevian B-spline at
t0, . . . , tn+1 with respect to w0, . . . , wn, and the Peano representation can now
be derived from there. The B-spline Mw0,...,wn

t0,...,tn+1
is positive on (t0, tn+1) and

vanishes elsewhere. For t0 < · · · < tn+1, it is of class Cn−1 and its pieces on
each interval (ti, ti+1) are (restrictions of) elements of ECT(w0, . . . , wn). This
explains the reversed order of the wm’s and the use of the differentiation Lw0 .

One easily get, with the help of (8),

Lw0

(
Mw0,...,wn

t0,...,tn+1

)
(x) = −w1(x)×

wn+1 . . . w0

t0 . . . tn+1

u+
n−1(•, x, wn+1, . . . , w2).

(10)
Then the recurrence relation for divided differences implies the differentiation
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formula

Lw0

(
Nw0,...,wn

t0,...,tn+1

)
(x) = Mw1,...,wn

t0,...,tn (x)−Mw1,...,wn
t1,...,tn+1

(x),

where Nw0,...,wn
t0,...,tn+1

:= α
wn+1,...,w0
t0,...,tn+1

(0, n + 1)×Mw0,...,wn
t0,...,tn+1

.

Applications of the differentiation formula (l +1 times) and of Descartes’ rule
of sign on the one hand, and application of Rolle’s theorem on the other, yields
the fact that Lwl,...,w0

(
Mw0,...,wn

t0,...,tn+1

)
possesses exactly l + 1 interior zeros, where

it changes sign.

Remark 12 Some particular attention should be devoted to the interest-
ing case of the B-spline Mw

t0,...,tn+1
:= M1,...,1,w

t0,...,tn+1
, which is a function of class

Cn−1, positive on (t0, tn+1), vanishing elsewhere, and such that its n-th (usual)
derivative is, on each interval (ti, ti+1), a multiple of w with sign (−1)i. Given
t = (t0 < · · · < tn+1), with ωt denoting the monic polynomial of degree n
vanishing at t1, . . . , tn, it would be interesting to know if one can choose w
so that the l zeros of (Mw

t )(l) coincide with the l zeros of ω
(n−l)
t . This would

confirm the conjecture of Scherer and Shadrin mentioned in the introduction,
and would in turn provide the bound for the B-spline basis condition number
conjectured by de Boor. Let us note that the cases of small values of n reveal
that w cannot be chosen independently on t.

8 Interlacing property for Chebyshevian B-splines

In this section we finally state and prove the monotonicity property and the
interlacing property for Chebyshevian B-splines and the zeros of their appro-
priate derivatives.

Let us first emphasize two formulae which are essential in our approach.

Formulae 13

Lwl,...,w0

(
Mw0,...,wn

t0,...,tn+1

)
(x) = (−1)l+1wl+1(x)×wn+1 . . . w0

t0 . . . tn+1

u+
n−l−1(•, x, wn+1, . . . , wl+2), (11)

∂Mw0,...,wn
t0,...,tn+1

∂tj
= −β

wn+1,...,w−1
t0,...,tn+1

(j)× Lw−1

(
M

w−1,w0,...,wn
t0,...,tj ,tj ,...,tn+1

)
. (12)

PROOF. Formula (11) is obtained in the same way as (10). Formula (12) is
obtained from Proposition 11. 2
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Let us now establish a preparatory lemma.

Lemma 14 For all n ≥ 2, there holds

Property An: For any l ∈ J0, n − 2K, if s1 < · · · < sl+1 denote the zeros of

Lwl,...,w0

(
Mw0,...,wn

τ0,...,τn+1

)
, we have

Lwl,...,w1

(
Mw1,...,wn

τ0,...,τn

)
(si) = Lwl,...,w1

(
Mw1,...,wn

τ1,...,τn+1

)
(si) v (−1)i+1,

or equivalently

wn+1 . . . w1

τ0 . . . τn

u+
n−l−1(•, si, wn+1, . . . , wl+2)

=

wn+1 . . . w1

τ1 . . . τn+1

u+
n−l−1(•, si, wn+1, . . . , wl+2) v (−1)i+l+1.

PROOF. The equality Lwl,...,w1

(
Mw1,...,wn

τ0,...,τn

)
(si) = Lwl,...,w1

(
Mw1,...,wn

τ1,...,τn+1

)
(si) is

simply a consequence of Lwl,...,w0

(
Mw0,...,wn

τ0,...,τn+1

)
(si) = 0. The other equality is

now derived with the help of (11). Thus only the sign of Lwl,...,w1

(
Mw1,...,wn

τ0,...,τn

)
(si)

has to be determined.

Let us note that if An−1 holds, then so does the following property.

Property Bn: For any m ∈ J1, n− 2K, if f is an element of ECT(wn, . . . , w1)
agreeing with u+

m(•, z, wn, . . . , wn−m) at τ0, . . . , τn and if `(f) denotes the
coordinate of f on un−1(•, z, wn, . . . , w1), then

[
f − u+

m(•, z, wn, . . . , wn−m)
]
|(τi,τi+1)

v `(f)(−1)n+i.

Indeed, for m ∈ J1, n−2K, let us consider such a function f and let us suppose
that [f − u+

m(•, z, wn, . . . , wn−m)] has at least n+2 zeros counting multiplicity.
A repeated application of Rolle’s theorem implies that

Dwn−m,...,wn

[
f − u+

m(•, z, wn, . . . , wn−m)
]

= Dwn−m,...,wn(f)− u+
0 (•, z)

has at least n + 2 −m zeros, and then, applying Rolle’s theorem once more,
we see that Lwn−m,...,wn(f) vanishes at least n−m times. But Lwn−m,...,wn(f) is
an element of ECT(wn−m−1, . . . , w1), therefore Lwn−m,...,wn(f) = 0. The latter
implies that f ∈ ECT(wn, . . . , wn−m) ⊆ ECT(wn, . . . , w2). Since f agrees with
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u+
m(•, z, wn, . . . , wn−m) at τ1, . . . , τn, it follows thatwn . . . w1

τ1 . . . τn

u+
m(•, z, wn, . . . , wn−m) = 0.

Consequently, according to An−1, we have Lwn−m−2,...,w0

(
Mw0,...,wn−1

τ0,...,τn

)
(z) 6= 0,

i.e. wn . . . w0

τ0 . . . τn

u+
m(•, z, wn, . . . , wn−m) 6= 0.

But this contradicts the fact that f ∈ ECT(wn, . . . , w1).
We conclude that [f − u+

m(•, z, wn, . . . , wn−m)] vanishes only at τ0, . . . , τn, where
it changes sign. For x → −∞, one has f(x)−u+

m(x, z, wn, . . . , wn−m) = f(x) v
`(f)(−1)n−1, hence the sign pattern given in Bn.

We now proceed with the proof of the lemma.
Firstly, we remark that the assertion in An is clear for l = 0. Indeed, if s is the
zero of Lw0

(
Mw0,...,wn

τ0,...,τn+1

)
, then s ∈ (τ1, τn), and consequently Mw1,...,wn

τ0,...,τn
(s) > 0.

Let us now show An by induction on n ≥ 2.

According to the remark we have just made, the assertion A2 is true.

Let us then suppose that An−1 holds for some n ≥ 3, and let us prove that An

holds as well.
For l ∈ J1, n− 2K, let

z0 = τ0 < z1 < · · · < zl < zl+1 = τn be the zeros of Lwl,...,w1

(
Mw1,...,wn

τ0,...,τn

)
,

s1 < · · · < sl+1 be the zeros of Lwl,...,w0

(
Mw0,...,wn

τ0,...,τn+1

)
.

We will have shown An as soon as we prove that si ∈ (zi−1, zi), i ∈ J1, l + 1K.

We consider

fi ∈ ECT(wn+1, . . . , w1) agreeing with u+
n−l−1(•, zi, wn+1, . . . , wl+2)

at τ1, . . . , τn+1,

gi ∈ ECT(wn+1, . . . , w1) agreeing with u+
n−l−1(•, zi, wn+1, . . . , wl+2)

at τ0, . . . , τn.

Let `(fi) denote the coordinate of fi on un(•, t, wn+1, . . . , w1).
Let also `(gi) denote the coordinate of gi on un−1(•, t, wn+1, . . . , w2). In fact, we
have gi ∈ ECT(wn+1, . . . , w2), as the coordinate of gi on un(•, t, wn+1, . . . , w1)
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is equal to zero, in view of Lwl,...,w1

(
Mw1,...,wn

τ0,...,τn

)
(zi) = 0. According to An−1,

we have

`(gi) =

wn+1 . . . w2

τ1 . . . τn

u+
n−l−1(•, zi, wn+1, . . . , wl+2) v (−1)i+l, i ∈ J1, lK.

Let us now remark that

gi − fi = −`(fi)× ωwn+1,...,w1(•; τ1, . . . , τn).

Therefore,

(gi − fi)(τn+1) =−`(fi)× ωwn+1,...,w1(τn+1; τ1, . . . , τn) v −`(fi)

= gi(τn+1)− u+
n−l−1(τn+1, zi, wn+1, . . . , wl+2) v︸︷︷︸

Bn

`(gi).

We conclude that `(fi) v −`(gi) v (−1)i+l+1, i ∈ J1, lK. In other words,wn+1 . . . w1

τ1 . . . τn+1

u+
n−l−1(•, zi, wn+1, . . . , wl+2) v (−1)i+l+1,

that is

Lwl,...,w1

(
Mw1,...,wn

τ1,...,τn+1

)
(zi) v (−1)i+1, i ∈ J1, lK.

This implies the existence of ri ∈ (zi−1, zi) such that

Lwl,...,w1

(
Mw1,...,wn

τ0,...,τn

)
(ri) = Lwl,...,w1

(
Mw1,...,wn

τ1,...,τn+1

)
(ri),

i.e.

Lwl,...,w0

(
Mw0,...,wn

τ0,...,τn+1

)
(ri) = 0, i ∈ J2, lK.

Let us also note that

Lwl,...,w1

(
Mw1,...,wn

τ1,...,τn+1

)
(z1) > 0 = Lwl,...,w1

(
Mw1,...,wn

τ0,...,τn

)
(z1),

Lwl,...,w1

(
Mw1,...,wn

τ1,...,τn+1

)
(τ1) = 0 <Lwl,...,w1

(
Mw1,...,wn

τ0,...,τn

)
(τ1),

hence the existence of r1 ∈ (τ1, z1) ⊆ (z0, z1) such that

Lwl,...,w0

(
Mw0,...,wn

τ0,...,τn+1

)
(r1) = 0.

Similarly, we get the existence of rl+1 ∈ (zl, zl+1) such that

Lwl,...,w0

(
Mw0,...,wn

τ0,...,τn+1

)
(rl+1) = 0.
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Having found l+1 zeros of Lwl,...,w0

(
Mw0,...,wn

τ0,...,τn+1

)
, these zeros are just s1, . . . , sl+1.

On account of si ∈ (zi−1, zi), we conclude that An holds.
Our inductive proof is now complete. 2

Remark 15 The observation made in remark 4 was central to our proof of
the monotonicity property for polynomial B-splines. It also simplifies the ar-
guments we have just given here, as follow.

Proof of lemma 14 for polynomial B-splines. Let si be the i-th zero of
M (l+1)

τ0,...,τn+1
. Then the polynomial p interpolating (•− si)

n−l−1
+ at τ0, . . . , τn+1 is

of degree n, not n + 1. Its leading coefficient is M (l)
τ1,...,τn+1

(si). As in (2), the

polynomial (•− si)×p, of degree n+1, interpolates (•− si)
n−l
+ at τ0, . . . , τn+1.

Its leading coefficient is M (l)
τ0,...,τn+1

(si) and is also the leading coefficient of p.
Therefore, one has

M (l)
τ1,...,τn+1

(si) = M (l)
τ0,...,τn+1

(si) v (−1)i+1. 2

We are now ready to establish the monotonicity property for Chebyshevian
B-splines.

Theorem 3 For l ∈ J0, k − 2K, let s1 < · · · < sl+1 be the (l + 1) zeros of

Lwl,...,w0

(
Mw0,...,wk

t0,...,tk+1

)
. For each i ∈ J1, l + 1K, we have

∂si

∂tj
> 0, j ∈ J1, kK.

PROOF. Differentiating Dwl+1,...,w0

(
Mw0,...,wk

t0,...,tk+1

)
(si) = 0 with respect to tj,

we obtain

∂si

∂tj
× Lwl+1,...,w0

(
Mw0,...,wk

t0,...,tk+1

)
(si) +

∂Dwl+1,...,w0

(
Mw0,...,wk

t0,...,tk+1

)
∂tj

(si) = 0.

Since Lwl+1,...,w0

(
Mw0,...,wk

t0,...,tk+1

)
(si) v (−1)i, it is enough to show that

∂Dwl+1,...,w0

(
Mw0,...,wk

t0,...,tk+1

)
∂tj

(si) = Dwl+1,...,w0

(
∂Mw0,...,wk

t0,...,tk+1

∂tj

)
(si) v (−1)i+1,

or, in view of (12) and (11), thatwk+1 . . . . . . . . . w0 w−1

t0 . . . tj tj . . . tk+1

u+
k−l−1(•, si, wk+1, . . . , wl+2) v (−1)i+l.
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We consider

f ∈ ECT(wk+1, . . . , w−1) agreeing with u+
k−l−1(•, si, wk+1, . . . , wl+2)

at t0, . . . , tj, tj, . . . , tk+1,

g ∈ ECT(wk+1, . . . , w0) agreeing with u+
k−l−1(•, si, wk+1, . . . , wl+2)

at t0, . . . , tk+1.

Let `(f) denote the coordinate of f on uk+2(•, t, wk+1, . . . , w−1). We need to
show that

`(f) v (−1)i+l.

Let `(g) denote the coordinate of g on uk(•, t, wk+1, . . . , w1). In fact, we have

g ∈ ECT(wk+1, . . . , w1), which is a consequence of Lwl,...,w0

(
Mw0,...,wk

t0,...,tk+1

)
(si) =

0. According to Ak, we have

`(g) =

wk+1 . . . w1

t1 . . . tk+1

u+
k−l−1(•, si, wk+1, . . . , wl+2) v (−1)i+l+1.

Let us now remark that

f − g = `(f)× ωwk+1,...,w−1(•; t0, . . . , tk+1).

Therefore,

f ′(tj)− g′(tj) = `(f)× ω′
wk+1,...,w−1

(tj; t0, . . . , tk+1) v `(f)(−1)k+1+j

=−
(
g − u+

k−l−1(•, si, wk+1, . . . , wl+2)
)′

(tj) v︸︷︷︸
Bk+1

`(g)(−1)k+j.

We conclude that `(f) v −`(g) v (−1)i+l. 2

The interlacing property for Chebyshevian B-splines is deduced from the
monotonicity property in exactly the same way as in section 2. Its proof is
therefore omitted.

Theorem 4 Let l ∈ J0, k − 2K. If the knots 0 = t0 < t1 < · · · < tk < tk+1 = 1
interlace with the knots 0 = t′0 < t′1 < · · · < t′k < t′k+1 = 1, that is

t1 ≤ t′1 ≤ t2 ≤ t′2 ≤ · · · ≤ tk ≤ t′k,

and if ti < t′i at least once, then the interior zeros s1 < · · · < sl+1 of

Lwl,...,w0

(
Mw0,...,wk

t0,...,tk+1

)
strictly interlace with the interior zeros s′1 < · · · < s′l+1 of

Lwl,...,w0

(
Mw0,...,wk

t′0,...,t′
k+1

)
, that is

s1 < s′1 < s2 < s′2 < · · · < sl+1 < s′l+1.
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