
Overview of the
Mathematics of Compressive Sensing

Simon Foucart

Reading Seminar on
“Compressive Sensing, Extensions, and Applications”

Texas A&M University
1 October 2015

Part 1: Invitation to Compressive Sensing

Keywords

I Sparsity
Essential

I Randomness
Nothing better so far

(measurement process)

I Optimization
Preferred, but competitive alternatives are available

(reconstruction process)

Keywords

I Sparsity
Essential

I Randomness
Nothing better so far

(measurement process)

I Optimization
Preferred, but competitive alternatives are available

(reconstruction process)

Keywords

I Sparsity
Essential

I Randomness
Nothing better so far

(measurement process)

I Optimization
Preferred, but competitive alternatives are available

(reconstruction process)

Keywords

I Sparsity
Essential

I Randomness
Nothing better so far

(measurement process)

I Optimization
Preferred, but competitive alternatives are available

(reconstruction process)

The Standard Compressive Sensing Problem

x : unknown signal of interest in KN

y : measurement vector in Km with m� N,

s : sparsity of x = card
{
j ∈ {1, . . . ,N} : xj 6= 0

}
.

Find concrete sensing/recovery protocols, i.e., find

I measurement matrices A : x ∈ KN 7→ y ∈ Km

I reconstruction maps ∆ : y ∈ Km 7→ x ∈ KN

such that

∆(Ax) = x for any s-sparse vector x ∈ KN .

In realistic situations, two issues to consider:

Stability: x not sparse but compressible,

Robustness: measurement error in y = Ax + e.

The Standard Compressive Sensing Problem

x : unknown signal of interest in KN

y : measurement vector in Km with m� N,

s : sparsity of x = card
{
j ∈ {1, . . . ,N} : xj 6= 0

}
.

Find concrete sensing/recovery protocols, i.e., find

I measurement matrices A : x ∈ KN 7→ y ∈ Km

I reconstruction maps ∆ : y ∈ Km 7→ x ∈ KN

such that

∆(Ax) = x for any s-sparse vector x ∈ KN .

In realistic situations, two issues to consider:

Stability: x not sparse but compressible,

Robustness: measurement error in y = Ax + e.

The Standard Compressive Sensing Problem

x : unknown signal of interest in KN

y : measurement vector in Km

with m� N,

s : sparsity of x = card
{
j ∈ {1, . . . ,N} : xj 6= 0

}
.

Find concrete sensing/recovery protocols, i.e., find

I measurement matrices A : x ∈ KN 7→ y ∈ Km

I reconstruction maps ∆ : y ∈ Km 7→ x ∈ KN

such that

∆(Ax) = x for any s-sparse vector x ∈ KN .

In realistic situations, two issues to consider:

Stability: x not sparse but compressible,

Robustness: measurement error in y = Ax + e.

The Standard Compressive Sensing Problem

x : unknown signal of interest in KN

y : measurement vector in Km with m� N,

s : sparsity of x = card
{
j ∈ {1, . . . ,N} : xj 6= 0

}
.

Find concrete sensing/recovery protocols, i.e., find

I measurement matrices A : x ∈ KN 7→ y ∈ Km

I reconstruction maps ∆ : y ∈ Km 7→ x ∈ KN

such that

∆(Ax) = x for any s-sparse vector x ∈ KN .

In realistic situations, two issues to consider:

Stability: x not sparse but compressible,

Robustness: measurement error in y = Ax + e.

The Standard Compressive Sensing Problem

x : unknown signal of interest in KN

y : measurement vector in Km with m� N,

s : sparsity of x

= card
{
j ∈ {1, . . . ,N} : xj 6= 0

}
.

Find concrete sensing/recovery protocols, i.e., find

I measurement matrices A : x ∈ KN 7→ y ∈ Km

I reconstruction maps ∆ : y ∈ Km 7→ x ∈ KN

such that

∆(Ax) = x for any s-sparse vector x ∈ KN .

In realistic situations, two issues to consider:

Stability: x not sparse but compressible,

Robustness: measurement error in y = Ax + e.

The Standard Compressive Sensing Problem

x : unknown signal of interest in KN

y : measurement vector in Km with m� N,

s : sparsity of x = card
{
j ∈ {1, . . . ,N} : xj 6= 0

}
.

Find concrete sensing/recovery protocols, i.e., find

I measurement matrices A : x ∈ KN 7→ y ∈ Km

I reconstruction maps ∆ : y ∈ Km 7→ x ∈ KN

such that

∆(Ax) = x for any s-sparse vector x ∈ KN .

In realistic situations, two issues to consider:

Stability: x not sparse but compressible,

Robustness: measurement error in y = Ax + e.

The Standard Compressive Sensing Problem

x : unknown signal of interest in KN

y : measurement vector in Km with m� N,

s : sparsity of x = card
{
j ∈ {1, . . . ,N} : xj 6= 0

}
.

Find concrete sensing/recovery protocols,

i.e., find

I measurement matrices A : x ∈ KN 7→ y ∈ Km

I reconstruction maps ∆ : y ∈ Km 7→ x ∈ KN

such that

∆(Ax) = x for any s-sparse vector x ∈ KN .

In realistic situations, two issues to consider:

Stability: x not sparse but compressible,

Robustness: measurement error in y = Ax + e.

The Standard Compressive Sensing Problem

x : unknown signal of interest in KN

y : measurement vector in Km with m� N,

s : sparsity of x = card
{
j ∈ {1, . . . ,N} : xj 6= 0

}
.

Find concrete sensing/recovery protocols, i.e., find

I measurement matrices A : x ∈ KN 7→ y ∈ Km

I reconstruction maps ∆ : y ∈ Km 7→ x ∈ KN

such that

∆(Ax) = x for any s-sparse vector x ∈ KN .

In realistic situations, two issues to consider:

Stability: x not sparse but compressible,

Robustness: measurement error in y = Ax + e.

The Standard Compressive Sensing Problem

x : unknown signal of interest in KN

y : measurement vector in Km with m� N,

s : sparsity of x = card
{
j ∈ {1, . . . ,N} : xj 6= 0

}
.

Find concrete sensing/recovery protocols, i.e., find

I measurement matrices A : x ∈ KN 7→ y ∈ Km

I reconstruction maps ∆ : y ∈ Km 7→ x ∈ KN

such that

∆(Ax) = x for any s-sparse vector x ∈ KN .

In realistic situations, two issues to consider:

Stability: x not sparse but compressible,

Robustness: measurement error in y = Ax + e.

The Standard Compressive Sensing Problem

x : unknown signal of interest in KN

y : measurement vector in Km with m� N,

s : sparsity of x = card
{
j ∈ {1, . . . ,N} : xj 6= 0

}
.

Find concrete sensing/recovery protocols, i.e., find

I measurement matrices A : x ∈ KN 7→ y ∈ Km

I reconstruction maps ∆ : y ∈ Km 7→ x ∈ KN

such that

∆(Ax) = x for any s-sparse vector x ∈ KN .

In realistic situations, two issues to consider:

Stability: x not sparse but compressible,

Robustness: measurement error in y = Ax + e.

The Standard Compressive Sensing Problem

x : unknown signal of interest in KN

y : measurement vector in Km with m� N,

s : sparsity of x = card
{
j ∈ {1, . . . ,N} : xj 6= 0

}
.

Find concrete sensing/recovery protocols, i.e., find

I measurement matrices A : x ∈ KN 7→ y ∈ Km

I reconstruction maps ∆ : y ∈ Km 7→ x ∈ KN

such that

∆(Ax) = x for any s-sparse vector x ∈ KN .

In realistic situations, two issues to consider:

Stability: x not sparse but compressible,

Robustness: measurement error in y = Ax + e.

The Standard Compressive Sensing Problem

x : unknown signal of interest in KN

y : measurement vector in Km with m� N,

s : sparsity of x = card
{
j ∈ {1, . . . ,N} : xj 6= 0

}
.

Find concrete sensing/recovery protocols, i.e., find

I measurement matrices A : x ∈ KN 7→ y ∈ Km

I reconstruction maps ∆ : y ∈ Km 7→ x ∈ KN

such that

∆(Ax) = x for any s-sparse vector x ∈ KN .

In realistic situations, two issues to consider:

Stability: x not sparse but compressible,

Robustness: measurement error in y = Ax + e.

A Selection of Applications

I Magnetic resonance imaging

Figure: Left: traditional MRI reconstruction; Right: compressive
sensing reconstruction (courtesy of M. Lustig and S. Vasanawala)

I Sampling theory

0.5 0.4 0.3 0.2 0.1 0 0.1 0.2 0.3 0.4 0.5
6

4

2

0

2

4

6

8

Figure: Time-domain signal with 16 samples.

I Error correction

I and many more...

A Selection of Applications
I Magnetic resonance imaging

Figure: Left: traditional MRI reconstruction; Right: compressive
sensing reconstruction (courtesy of M. Lustig and S. Vasanawala)

I Sampling theory

0.5 0.4 0.3 0.2 0.1 0 0.1 0.2 0.3 0.4 0.5
6

4

2

0

2

4

6

8

Figure: Time-domain signal with 16 samples.

I Error correction

I and many more...

A Selection of Applications
I Magnetic resonance imaging

Figure: Left: traditional MRI reconstruction; Right: compressive
sensing reconstruction (courtesy of M. Lustig and S. Vasanawala)

I Sampling theory

0.5 0.4 0.3 0.2 0.1 0 0.1 0.2 0.3 0.4 0.5
6

4

2

0

2

4

6

8

Figure: Time-domain signal with 16 samples.

I Error correction

I and many more...

A Selection of Applications
I Magnetic resonance imaging

Figure: Left: traditional MRI reconstruction; Right: compressive
sensing reconstruction (courtesy of M. Lustig and S. Vasanawala)

I Sampling theory

0.5 0.4 0.3 0.2 0.1 0 0.1 0.2 0.3 0.4 0.5
6

4

2

0

2

4

6

8

Figure: Time-domain signal with 16 samples.

I Error correction

I and many more...

A Selection of Applications
I Magnetic resonance imaging

Figure: Left: traditional MRI reconstruction; Right: compressive
sensing reconstruction (courtesy of M. Lustig and S. Vasanawala)

I Sampling theory

0.5 0.4 0.3 0.2 0.1 0 0.1 0.2 0.3 0.4 0.5
6

4

2

0

2

4

6

8

Figure: Time-domain signal with 16 samples.

I Error correction

I and many more...

Application in Metagenomics [Koslicki–F.–Rosen]

I x ∈ RN (N = 273, 727): concentrations of known bacteria in
a given environmental sample.

Sparsity assumption is realistic.
Note also that x ≥ 0 and

∑
j xj = 1.

I y ∈ Rm (m = 46 = 4, 096): frequencies of length-6 subwords
(in 16S rRNA gene reads or in whole-genome shotgun reads)

I A ∈ Rm×N : frequencies of length-6 subwords in all known
(i.e., sequenced) bacteria.

It is a frequency matrix, that is,

Ai ,j ≥ 0 and
∑m

i=1Ai ,j = 1.

I Quikr improves on traditional read-by-read methods,
especially in terms of speed.

I Codes available at
sourceforge.net/projects/quikr/

sourceforge.net/projects/wgsquikr/

sourceforge.net/projects/quikr/
sourceforge.net/projects/wgsquikr/

Application in Metagenomics [Koslicki–F.–Rosen]

I x ∈ RN (N = 273, 727): concentrations of known bacteria in
a given environmental sample.

Sparsity assumption is realistic.
Note also that x ≥ 0 and

∑
j xj = 1.

I y ∈ Rm (m = 46 = 4, 096): frequencies of length-6 subwords
(in 16S rRNA gene reads or in whole-genome shotgun reads)

I A ∈ Rm×N : frequencies of length-6 subwords in all known
(i.e., sequenced) bacteria.

It is a frequency matrix, that is,

Ai ,j ≥ 0 and
∑m

i=1Ai ,j = 1.

I Quikr improves on traditional read-by-read methods,
especially in terms of speed.

I Codes available at
sourceforge.net/projects/quikr/

sourceforge.net/projects/wgsquikr/

sourceforge.net/projects/quikr/
sourceforge.net/projects/wgsquikr/

Application in Metagenomics [Koslicki–F.–Rosen]

I x ∈ RN (N = 273, 727): concentrations of known bacteria in
a given environmental sample. Sparsity assumption is realistic.

Note also that x ≥ 0 and
∑

j xj = 1.

I y ∈ Rm (m = 46 = 4, 096): frequencies of length-6 subwords
(in 16S rRNA gene reads or in whole-genome shotgun reads)

I A ∈ Rm×N : frequencies of length-6 subwords in all known
(i.e., sequenced) bacteria.

It is a frequency matrix, that is,

Ai ,j ≥ 0 and
∑m

i=1Ai ,j = 1.

I Quikr improves on traditional read-by-read methods,
especially in terms of speed.

I Codes available at
sourceforge.net/projects/quikr/

sourceforge.net/projects/wgsquikr/

sourceforge.net/projects/quikr/
sourceforge.net/projects/wgsquikr/

Application in Metagenomics [Koslicki–F.–Rosen]

I x ∈ RN (N = 273, 727): concentrations of known bacteria in
a given environmental sample. Sparsity assumption is realistic.
Note also that x ≥ 0 and

∑
j xj = 1.

I y ∈ Rm (m = 46 = 4, 096): frequencies of length-6 subwords
(in 16S rRNA gene reads or in whole-genome shotgun reads)

I A ∈ Rm×N : frequencies of length-6 subwords in all known
(i.e., sequenced) bacteria.

It is a frequency matrix, that is,

Ai ,j ≥ 0 and
∑m

i=1Ai ,j = 1.

I Quikr improves on traditional read-by-read methods,
especially in terms of speed.

I Codes available at
sourceforge.net/projects/quikr/

sourceforge.net/projects/wgsquikr/

sourceforge.net/projects/quikr/
sourceforge.net/projects/wgsquikr/

Application in Metagenomics [Koslicki–F.–Rosen]

I x ∈ RN (N = 273, 727): concentrations of known bacteria in
a given environmental sample. Sparsity assumption is realistic.
Note also that x ≥ 0 and

∑
j xj = 1.

I y ∈ Rm (m = 46 = 4, 096): frequencies of length-6 subwords
(in 16S rRNA gene reads or in whole-genome shotgun reads)

I A ∈ Rm×N : frequencies of length-6 subwords in all known
(i.e., sequenced) bacteria.

It is a frequency matrix, that is,

Ai ,j ≥ 0 and
∑m

i=1Ai ,j = 1.

I Quikr improves on traditional read-by-read methods,
especially in terms of speed.

I Codes available at
sourceforge.net/projects/quikr/

sourceforge.net/projects/wgsquikr/

sourceforge.net/projects/quikr/
sourceforge.net/projects/wgsquikr/

Application in Metagenomics [Koslicki–F.–Rosen]

I x ∈ RN (N = 273, 727): concentrations of known bacteria in
a given environmental sample. Sparsity assumption is realistic.
Note also that x ≥ 0 and

∑
j xj = 1.

I y ∈ Rm (m = 46 = 4, 096): frequencies of length-6 subwords
(in 16S rRNA gene reads or in whole-genome shotgun reads)

I A ∈ Rm×N : frequencies of length-6 subwords in all known
(i.e., sequenced) bacteria.

It is a frequency matrix, that is,

Ai ,j ≥ 0 and
∑m

i=1Ai ,j = 1.

I Quikr improves on traditional read-by-read methods,
especially in terms of speed.

I Codes available at
sourceforge.net/projects/quikr/

sourceforge.net/projects/wgsquikr/

sourceforge.net/projects/quikr/
sourceforge.net/projects/wgsquikr/

Application in Metagenomics [Koslicki–F.–Rosen]

I x ∈ RN (N = 273, 727): concentrations of known bacteria in
a given environmental sample. Sparsity assumption is realistic.
Note also that x ≥ 0 and

∑
j xj = 1.

I y ∈ Rm (m = 46 = 4, 096): frequencies of length-6 subwords
(in 16S rRNA gene reads or in whole-genome shotgun reads)

I A ∈ Rm×N : frequencies of length-6 subwords in all known
(i.e., sequenced) bacteria. It is a frequency matrix, that is,

Ai ,j ≥ 0 and
∑m

i=1Ai ,j = 1.

I Quikr improves on traditional read-by-read methods,
especially in terms of speed.

I Codes available at
sourceforge.net/projects/quikr/

sourceforge.net/projects/wgsquikr/

sourceforge.net/projects/quikr/
sourceforge.net/projects/wgsquikr/

Application in Metagenomics [Koslicki–F.–Rosen]

I x ∈ RN (N = 273, 727): concentrations of known bacteria in
a given environmental sample. Sparsity assumption is realistic.
Note also that x ≥ 0 and

∑
j xj = 1.

I y ∈ Rm (m = 46 = 4, 096): frequencies of length-6 subwords
(in 16S rRNA gene reads or in whole-genome shotgun reads)

I A ∈ Rm×N : frequencies of length-6 subwords in all known
(i.e., sequenced) bacteria. It is a frequency matrix, that is,

Ai ,j ≥ 0 and
∑m

i=1Ai ,j = 1.

I Quikr improves on traditional read-by-read methods,
especially in terms of speed.

I Codes available at
sourceforge.net/projects/quikr/

sourceforge.net/projects/wgsquikr/

sourceforge.net/projects/quikr/
sourceforge.net/projects/wgsquikr/

Application in Metagenomics [Koslicki–F.–Rosen]

I x ∈ RN (N = 273, 727): concentrations of known bacteria in
a given environmental sample. Sparsity assumption is realistic.
Note also that x ≥ 0 and

∑
j xj = 1.

I y ∈ Rm (m = 46 = 4, 096): frequencies of length-6 subwords
(in 16S rRNA gene reads or in whole-genome shotgun reads)

I A ∈ Rm×N : frequencies of length-6 subwords in all known
(i.e., sequenced) bacteria. It is a frequency matrix, that is,

Ai ,j ≥ 0 and
∑m

i=1Ai ,j = 1.

I Quikr improves on traditional read-by-read methods,
especially in terms of speed.

I Codes available at
sourceforge.net/projects/quikr/

sourceforge.net/projects/wgsquikr/

sourceforge.net/projects/quikr/
sourceforge.net/projects/wgsquikr/

Application in Metagenomics [Koslicki–F.–Rosen]

I x ∈ RN (N = 273, 727): concentrations of known bacteria in
a given environmental sample. Sparsity assumption is realistic.
Note also that x ≥ 0 and

∑
j xj = 1.

I y ∈ Rm (m = 46 = 4, 096): frequencies of length-6 subwords
(in 16S rRNA gene reads or in whole-genome shotgun reads)

I A ∈ Rm×N : frequencies of length-6 subwords in all known
(i.e., sequenced) bacteria. It is a frequency matrix, that is,

Ai ,j ≥ 0 and
∑m

i=1Ai ,j = 1.

I Quikr improves on traditional read-by-read methods,
especially in terms of speed.

I Codes available at
sourceforge.net/projects/quikr/

sourceforge.net/projects/wgsquikr/

sourceforge.net/projects/quikr/
sourceforge.net/projects/wgsquikr/

`0-Minimization

Since

‖x‖pp :=
N∑
j=1

|xj |p −→
p→0

N∑
j=1

1{xj 6=0},

the notation ‖x‖0 [sic] has become usual for

‖x‖0 := card(supp(x)), where supp(x) := {j ∈ [N] : xj 6= 0}.

For an s-sparse x ∈ KN , observe the equivalence of

I x is the unique s-sparse solution of Az = y with y = Ax,

I x can be reconstructed as the unique solution of

(P0) minimize
z∈KN

‖z‖0 subject to Az = y.

This is a combinatorial problem, NP-hard in general.

`0-Minimization

Since

‖x‖pp :=
N∑
j=1

|xj |p −→
p→0

N∑
j=1

1{xj 6=0},

the notation ‖x‖0 [sic] has become usual for

‖x‖0 := card(supp(x)), where supp(x) := {j ∈ [N] : xj 6= 0}.

For an s-sparse x ∈ KN , observe the equivalence of

I x is the unique s-sparse solution of Az = y with y = Ax,

I x can be reconstructed as the unique solution of

(P0) minimize
z∈KN

‖z‖0 subject to Az = y.

This is a combinatorial problem, NP-hard in general.

`0-Minimization

Since

‖x‖pp :=
N∑
j=1

|xj |p −→
p→0

N∑
j=1

1{xj 6=0},

the notation ‖x‖0 [sic] has become usual for

‖x‖0 := card(supp(x)), where supp(x) := {j ∈ [N] : xj 6= 0}.

For an s-sparse x ∈ KN , observe the equivalence of

I x is the unique s-sparse solution of Az = y with y = Ax,

I x can be reconstructed as the unique solution of

(P0) minimize
z∈KN

‖z‖0 subject to Az = y.

This is a combinatorial problem, NP-hard in general.

`0-Minimization

Since

‖x‖pp :=
N∑
j=1

|xj |p −→
p→0

N∑
j=1

1{xj 6=0},

the notation ‖x‖0 [sic] has become usual for

‖x‖0 := card(supp(x)), where supp(x) := {j ∈ [N] : xj 6= 0}.

For an s-sparse x ∈ KN , observe the equivalence of

I x is the unique s-sparse solution of Az = y with y = Ax,

I x can be reconstructed as the unique solution of

(P0) minimize
z∈KN

‖z‖0 subject to Az = y.

This is a combinatorial problem, NP-hard in general.

`0-Minimization

Since

‖x‖pp :=
N∑
j=1

|xj |p −→
p→0

N∑
j=1

1{xj 6=0},

the notation ‖x‖0 [sic] has become usual for

‖x‖0 := card(supp(x)), where supp(x) := {j ∈ [N] : xj 6= 0}.

For an s-sparse x ∈ KN , observe the equivalence of

I x is the unique s-sparse solution of Az = y with y = Ax,

I x can be reconstructed as the unique solution of

(P0) minimize
z∈KN

‖z‖0 subject to Az = y.

This is a combinatorial problem, NP-hard in general.

`0-Minimization

Since

‖x‖pp :=
N∑
j=1

|xj |p −→
p→0

N∑
j=1

1{xj 6=0},

the notation ‖x‖0 [sic] has become usual for

‖x‖0 := card(supp(x)), where supp(x) := {j ∈ [N] : xj 6= 0}.

For an s-sparse x ∈ KN , observe the equivalence of

I x is the unique s-sparse solution of Az = y with y = Ax,

I x can be reconstructed as the unique solution of

(P0) minimize
z∈KN

‖z‖0 subject to Az = y.

This is a combinatorial problem, NP-hard in general.

Minimal Number of Measurements

Given A ∈ Km×N , the following are equivalent:

1. Every s-sparse x is the unique s-sparse solution of Az = Ax,

2. kerA ∩ {z ∈ KN : ‖z‖0 ≤ 2s} = {0},
3. For any S ⊂ [N] with card(S) ≤ 2s, the matrix AS is injective,

4. Every set of 2s columns of A is linearly independent.

As a consequence, exact recovery of every s-sparse vector forces

m ≥ 2s.

This can be achieved using partial Vandermonde matrices.

Minimal Number of Measurements

Given A ∈ Km×N , the following are equivalent:

1. Every s-sparse x is the unique s-sparse solution of Az = Ax,

2. kerA ∩ {z ∈ KN : ‖z‖0 ≤ 2s} = {0},
3. For any S ⊂ [N] with card(S) ≤ 2s, the matrix AS is injective,

4. Every set of 2s columns of A is linearly independent.

As a consequence, exact recovery of every s-sparse vector forces

m ≥ 2s.

This can be achieved using partial Vandermonde matrices.

Minimal Number of Measurements

Given A ∈ Km×N , the following are equivalent:

1. Every s-sparse x is the unique s-sparse solution of Az = Ax,

2. kerA ∩ {z ∈ KN : ‖z‖0 ≤ 2s} = {0},
3. For any S ⊂ [N] with card(S) ≤ 2s, the matrix AS is injective,

4. Every set of 2s columns of A is linearly independent.

As a consequence, exact recovery of every s-sparse vector forces

m ≥ 2s.

This can be achieved using partial Vandermonde matrices.

Minimal Number of Measurements

Given A ∈ Km×N , the following are equivalent:

1. Every s-sparse x is the unique s-sparse solution of Az = Ax,

2. kerA ∩ {z ∈ KN : ‖z‖0 ≤ 2s} = {0},

3. For any S ⊂ [N] with card(S) ≤ 2s, the matrix AS is injective,

4. Every set of 2s columns of A is linearly independent.

As a consequence, exact recovery of every s-sparse vector forces

m ≥ 2s.

This can be achieved using partial Vandermonde matrices.

Minimal Number of Measurements

Given A ∈ Km×N , the following are equivalent:

1. Every s-sparse x is the unique s-sparse solution of Az = Ax,

2. kerA ∩ {z ∈ KN : ‖z‖0 ≤ 2s} = {0},
3. For any S ⊂ [N] with card(S) ≤ 2s, the matrix AS is injective,

4. Every set of 2s columns of A is linearly independent.

As a consequence, exact recovery of every s-sparse vector forces

m ≥ 2s.

This can be achieved using partial Vandermonde matrices.

Minimal Number of Measurements

Given A ∈ Km×N , the following are equivalent:

1. Every s-sparse x is the unique s-sparse solution of Az = Ax,

2. kerA ∩ {z ∈ KN : ‖z‖0 ≤ 2s} = {0},
3. For any S ⊂ [N] with card(S) ≤ 2s, the matrix AS is injective,

4. Every set of 2s columns of A is linearly independent.

As a consequence, exact recovery of every s-sparse vector forces

m ≥ 2s.

This can be achieved using partial Vandermonde matrices.

Minimal Number of Measurements

Given A ∈ Km×N , the following are equivalent:

1. Every s-sparse x is the unique s-sparse solution of Az = Ax,

2. kerA ∩ {z ∈ KN : ‖z‖0 ≤ 2s} = {0},
3. For any S ⊂ [N] with card(S) ≤ 2s, the matrix AS is injective,

4. Every set of 2s columns of A is linearly independent.

As a consequence, exact recovery of every s-sparse vector forces

m ≥ 2s.

This can be achieved using partial Vandermonde matrices.

Minimal Number of Measurements

Given A ∈ Km×N , the following are equivalent:

1. Every s-sparse x is the unique s-sparse solution of Az = Ax,

2. kerA ∩ {z ∈ KN : ‖z‖0 ≤ 2s} = {0},
3. For any S ⊂ [N] with card(S) ≤ 2s, the matrix AS is injective,

4. Every set of 2s columns of A is linearly independent.

As a consequence, exact recovery of every s-sparse vector forces

m ≥ 2s.

This can be achieved using partial Vandermonde matrices.

Exact s-Sparse Recovery from 2s Fourier Measurements

Identify an s-sparse x ∈ CN with a function x on {0, 1, . . . ,N − 1}
with support S , card(S) = s. Consider the 2s Fourier coefficients

x̂(j) =
N−1∑
k=0

x(k)e−i2πjk/N , 0 ≤ j ≤ 2s − 1.

Consider a trigonometric polynomial vanishing exactly on S , i.e.,

p(t) :=
∏
k∈S

(
1− e−i2πk/Ne i2πt/N

)
.

Since p · x ≡ 0, discrete convolution gives

0 = (p̂ ∗ x̂)(j) =
N−1∑
k=0

p̂(k)x̂(j − k), 0 ≤ j ≤ N − 1.

Note that p̂(0) = 1 and that p̂(k) = 0 for k > s. The equations
s, . . . , 2s − 1 translate into a Toeplitz system with unknowns
p̂(1), . . . , p̂(s). This determines p̂, hence p, then S , and finally x.

Exact s-Sparse Recovery from 2s Fourier Measurements
Identify an s-sparse x ∈ CN with a function x on {0, 1, . . . ,N − 1}
with support S , card(S) = s.

Consider the 2s Fourier coefficients

x̂(j) =
N−1∑
k=0

x(k)e−i2πjk/N , 0 ≤ j ≤ 2s − 1.

Consider a trigonometric polynomial vanishing exactly on S , i.e.,

p(t) :=
∏
k∈S

(
1− e−i2πk/Ne i2πt/N

)
.

Since p · x ≡ 0, discrete convolution gives

0 = (p̂ ∗ x̂)(j) =
N−1∑
k=0

p̂(k)x̂(j − k), 0 ≤ j ≤ N − 1.

Note that p̂(0) = 1 and that p̂(k) = 0 for k > s. The equations
s, . . . , 2s − 1 translate into a Toeplitz system with unknowns
p̂(1), . . . , p̂(s). This determines p̂, hence p, then S , and finally x.

Exact s-Sparse Recovery from 2s Fourier Measurements
Identify an s-sparse x ∈ CN with a function x on {0, 1, . . . ,N − 1}
with support S , card(S) = s. Consider the 2s Fourier coefficients

x̂(j) =
N−1∑
k=0

x(k)e−i2πjk/N , 0 ≤ j ≤ 2s − 1.

Consider a trigonometric polynomial vanishing exactly on S , i.e.,

p(t) :=
∏
k∈S

(
1− e−i2πk/Ne i2πt/N

)
.

Since p · x ≡ 0, discrete convolution gives

0 = (p̂ ∗ x̂)(j) =
N−1∑
k=0

p̂(k)x̂(j − k), 0 ≤ j ≤ N − 1.

Note that p̂(0) = 1 and that p̂(k) = 0 for k > s. The equations
s, . . . , 2s − 1 translate into a Toeplitz system with unknowns
p̂(1), . . . , p̂(s). This determines p̂, hence p, then S , and finally x.

Exact s-Sparse Recovery from 2s Fourier Measurements
Identify an s-sparse x ∈ CN with a function x on {0, 1, . . . ,N − 1}
with support S , card(S) = s. Consider the 2s Fourier coefficients

x̂(j) =
N−1∑
k=0

x(k)e−i2πjk/N , 0 ≤ j ≤ 2s − 1.

Consider a trigonometric polynomial vanishing exactly on S , i.e.,

p(t) :=
∏
k∈S

(
1− e−i2πk/Ne i2πt/N

)
.

Since p · x ≡ 0, discrete convolution gives

0 = (p̂ ∗ x̂)(j) =
N−1∑
k=0

p̂(k)x̂(j − k), 0 ≤ j ≤ N − 1.

Note that p̂(0) = 1 and that p̂(k) = 0 for k > s. The equations
s, . . . , 2s − 1 translate into a Toeplitz system with unknowns
p̂(1), . . . , p̂(s). This determines p̂, hence p, then S , and finally x.

Exact s-Sparse Recovery from 2s Fourier Measurements
Identify an s-sparse x ∈ CN with a function x on {0, 1, . . . ,N − 1}
with support S , card(S) = s. Consider the 2s Fourier coefficients

x̂(j) =
N−1∑
k=0

x(k)e−i2πjk/N , 0 ≤ j ≤ 2s − 1.

Consider a trigonometric polynomial vanishing exactly on S , i.e.,

p(t) :=
∏
k∈S

(
1− e−i2πk/Ne i2πt/N

)
.

Since p · x ≡ 0, discrete convolution gives

0 = (p̂ ∗ x̂)(j) =
N−1∑
k=0

p̂(k)x̂(j − k), 0 ≤ j ≤ N − 1.

Note that p̂(0) = 1 and that p̂(k) = 0 for k > s. The equations
s, . . . , 2s − 1 translate into a Toeplitz system with unknowns
p̂(1), . . . , p̂(s). This determines p̂, hence p, then S , and finally x.

Exact s-Sparse Recovery from 2s Fourier Measurements
Identify an s-sparse x ∈ CN with a function x on {0, 1, . . . ,N − 1}
with support S , card(S) = s. Consider the 2s Fourier coefficients

x̂(j) =
N−1∑
k=0

x(k)e−i2πjk/N , 0 ≤ j ≤ 2s − 1.

Consider a trigonometric polynomial vanishing exactly on S , i.e.,

p(t) :=
∏
k∈S

(
1− e−i2πk/Ne i2πt/N

)
.

Since p · x ≡ 0, discrete convolution gives

0 = (p̂ ∗ x̂)(j) =
N−1∑
k=0

p̂(k)x̂(j − k), 0 ≤ j ≤ N − 1.

Note that p̂(0) = 1 and that p̂(k) = 0 for k > s.

The equations
s, . . . , 2s − 1 translate into a Toeplitz system with unknowns
p̂(1), . . . , p̂(s). This determines p̂, hence p, then S , and finally x.

Exact s-Sparse Recovery from 2s Fourier Measurements
Identify an s-sparse x ∈ CN with a function x on {0, 1, . . . ,N − 1}
with support S , card(S) = s. Consider the 2s Fourier coefficients

x̂(j) =
N−1∑
k=0

x(k)e−i2πjk/N , 0 ≤ j ≤ 2s − 1.

Consider a trigonometric polynomial vanishing exactly on S , i.e.,

p(t) :=
∏
k∈S

(
1− e−i2πk/Ne i2πt/N

)
.

Since p · x ≡ 0, discrete convolution gives

0 = (p̂ ∗ x̂)(j) =
N−1∑
k=0

p̂(k)x̂(j − k), 0 ≤ j ≤ N − 1.

Note that p̂(0) = 1 and that p̂(k) = 0 for k > s. The equations
s, . . . , 2s − 1 translate into a Toeplitz system with unknowns
p̂(1), . . . , p̂(s).

This determines p̂, hence p, then S , and finally x.

Exact s-Sparse Recovery from 2s Fourier Measurements
Identify an s-sparse x ∈ CN with a function x on {0, 1, . . . ,N − 1}
with support S , card(S) = s. Consider the 2s Fourier coefficients

x̂(j) =
N−1∑
k=0

x(k)e−i2πjk/N , 0 ≤ j ≤ 2s − 1.

Consider a trigonometric polynomial vanishing exactly on S , i.e.,

p(t) :=
∏
k∈S

(
1− e−i2πk/Ne i2πt/N

)
.

Since p · x ≡ 0, discrete convolution gives

0 = (p̂ ∗ x̂)(j) =
N−1∑
k=0

p̂(k)x̂(j − k), 0 ≤ j ≤ N − 1.

Note that p̂(0) = 1 and that p̂(k) = 0 for k > s. The equations
s, . . . , 2s − 1 translate into a Toeplitz system with unknowns
p̂(1), . . . , p̂(s). This determines p̂, hence p, then S , and finally x.

`1-Minimization (Basis Pursuit)

Replace (P0) by

(P1) minimize
z∈KN

‖z‖1 subject to Az = y.

I Geometric intuition

I Unique `1-minimizers are at most m-sparse (when K = R)

I Convex optimization program, hence solvable in practice

I In the real setting, recast as the linear optimization program

minimize
c,z∈RN

N∑
j=1

cj subject to Az = y and − cj ≤ zj ≤ cj .

I In the complex setting, recast as a second order cone program

`1-Minimization (Basis Pursuit)

Replace (P0) by

(P1) minimize
z∈KN

‖z‖1 subject to Az = y.

I Geometric intuition

I Unique `1-minimizers are at most m-sparse (when K = R)

I Convex optimization program, hence solvable in practice

I In the real setting, recast as the linear optimization program

minimize
c,z∈RN

N∑
j=1

cj subject to Az = y and − cj ≤ zj ≤ cj .

I In the complex setting, recast as a second order cone program

`1-Minimization (Basis Pursuit)

Replace (P0) by

(P1) minimize
z∈KN

‖z‖1 subject to Az = y.

I Geometric intuition

I Unique `1-minimizers are at most m-sparse (when K = R)

I Convex optimization program, hence solvable in practice

I In the real setting, recast as the linear optimization program

minimize
c,z∈RN

N∑
j=1

cj subject to Az = y and − cj ≤ zj ≤ cj .

I In the complex setting, recast as a second order cone program

`1-Minimization (Basis Pursuit)

Replace (P0) by

(P1) minimize
z∈KN

‖z‖1 subject to Az = y.

I Geometric intuition

I Unique `1-minimizers are at most m-sparse (when K = R)

I Convex optimization program, hence solvable in practice

I In the real setting, recast as the linear optimization program

minimize
c,z∈RN

N∑
j=1

cj subject to Az = y and − cj ≤ zj ≤ cj .

I In the complex setting, recast as a second order cone program

`1-Minimization (Basis Pursuit)

Replace (P0) by

(P1) minimize
z∈KN

‖z‖1 subject to Az = y.

I Geometric intuition

I Unique `1-minimizers are at most m-sparse (when K = R)

I Convex optimization program, hence solvable in practice

I In the real setting, recast as the linear optimization program

minimize
c,z∈RN

N∑
j=1

cj subject to Az = y and − cj ≤ zj ≤ cj .

I In the complex setting, recast as a second order cone program

`1-Minimization (Basis Pursuit)

Replace (P0) by

(P1) minimize
z∈KN

‖z‖1 subject to Az = y.

I Geometric intuition

I Unique `1-minimizers are at most m-sparse (when K = R)

I Convex optimization program, hence solvable in practice

I In the real setting, recast as the linear optimization program

minimize
c,z∈RN

N∑
j=1

cj subject to Az = y and − cj ≤ zj ≤ cj .

I In the complex setting, recast as a second order cone program

`1-Minimization (Basis Pursuit)

Replace (P0) by

(P1) minimize
z∈KN

‖z‖1 subject to Az = y.

I Geometric intuition

I Unique `1-minimizers are at most m-sparse (when K = R)

I Convex optimization program, hence solvable in practice

I In the real setting, recast as the linear optimization program

minimize
c,z∈RN

N∑
j=1

cj subject to Az = y and − cj ≤ zj ≤ cj .

I In the complex setting, recast as a second order cone program

Basis Pursuit — Null Space Property

∆1(Ax) = x for every vector x supported on S if and only if

(NSP) ‖uS‖1 < ‖uS‖1, all u ∈ kerA \ {0}.

For real measurement matrices, real and complex NSPs read∑
j∈S
|uj | <

∑
`∈S

|u`|, all u ∈ kerR A \ {0},

∑
j∈S

√
v2j + w2

j <
∑
`∈S

√
v2` + w2

` , all (v,w) ∈ (kerR A)2 \ {0}.

Real and complex NSPs are in fact equivalent.

Basis Pursuit — Null Space Property

∆1(Ax) = x for every vector x supported on S if and only if

(NSP) ‖uS‖1 < ‖uS‖1, all u ∈ kerA \ {0}.

For real measurement matrices, real and complex NSPs read∑
j∈S
|uj | <

∑
`∈S

|u`|, all u ∈ kerR A \ {0},

∑
j∈S

√
v2j + w2

j <
∑
`∈S

√
v2` + w2

` , all (v,w) ∈ (kerR A)2 \ {0}.

Real and complex NSPs are in fact equivalent.

Basis Pursuit — Null Space Property

∆1(Ax) = x for every vector x supported on S if and only if

(NSP) ‖uS‖1 < ‖uS‖1, all u ∈ kerA \ {0}.

For real measurement matrices, real and complex NSPs read∑
j∈S
|uj | <

∑
`∈S

|u`|, all u ∈ kerR A \ {0},

∑
j∈S

√
v2j + w2

j <
∑
`∈S

√
v2` + w2

` , all (v,w) ∈ (kerR A)2 \ {0}.

Real and complex NSPs are in fact equivalent.

Basis Pursuit — Null Space Property

∆1(Ax) = x for every vector x supported on S if and only if

(NSP) ‖uS‖1 < ‖uS‖1, all u ∈ kerA \ {0}.

For real measurement matrices,

real and complex NSPs read∑
j∈S
|uj | <

∑
`∈S

|u`|, all u ∈ kerR A \ {0},

∑
j∈S

√
v2j + w2

j <
∑
`∈S

√
v2` + w2

` , all (v,w) ∈ (kerR A)2 \ {0}.

Real and complex NSPs are in fact equivalent.

Basis Pursuit — Null Space Property

∆1(Ax) = x for every vector x supported on S if and only if

(NSP) ‖uS‖1 < ‖uS‖1, all u ∈ kerA \ {0}.

For real measurement matrices, real and complex NSPs read

∑
j∈S
|uj | <

∑
`∈S

|u`|, all u ∈ kerR A \ {0},

∑
j∈S

√
v2j + w2

j <
∑
`∈S

√
v2` + w2

` , all (v,w) ∈ (kerR A)2 \ {0}.

Real and complex NSPs are in fact equivalent.

Basis Pursuit — Null Space Property

∆1(Ax) = x for every vector x supported on S if and only if

(NSP) ‖uS‖1 < ‖uS‖1, all u ∈ kerA \ {0}.

For real measurement matrices, real and complex NSPs read∑
j∈S
|uj | <

∑
`∈S

|u`|, all u ∈ kerR A \ {0},

∑
j∈S

√
v2j + w2

j <
∑
`∈S

√
v2` + w2

` , all (v,w) ∈ (kerR A)2 \ {0}.

Real and complex NSPs are in fact equivalent.

Basis Pursuit — Null Space Property

∆1(Ax) = x for every vector x supported on S if and only if

(NSP) ‖uS‖1 < ‖uS‖1, all u ∈ kerA \ {0}.

For real measurement matrices, real and complex NSPs read∑
j∈S
|uj | <

∑
`∈S

|u`|, all u ∈ kerR A \ {0},

∑
j∈S

√
v2j + w2

j <
∑
`∈S

√
v2` + w2

` , all (v,w) ∈ (kerR A)2 \ {0}.

Real and complex NSPs are in fact equivalent.

Basis Pursuit — Null Space Property

∆1(Ax) = x for every vector x supported on S if and only if

(NSP) ‖uS‖1 < ‖uS‖1, all u ∈ kerA \ {0}.

For real measurement matrices, real and complex NSPs read∑
j∈S
|uj | <

∑
`∈S

|u`|, all u ∈ kerR A \ {0},

∑
j∈S

√
v2j + w2

j <
∑
`∈S

√
v2` + w2

` , all (v,w) ∈ (kerR A)2 \ {0}.

Real and complex NSPs are in fact equivalent.

Orthogonal Matching Pursuit

Starting with S0 = ∅ and x0 = 0, iterate

Sn+1 = Sn ∪
{
jn+1 := argmax

j∈[N]

{
|(A∗(y − Axn))j |

}}
,(OMP1)

xn+1 = argmin
z∈CN

{
‖y − Az‖2, supp(z) ⊆ Sn+1

}
.(OMP2)

I The norm of the residual decreases according to

‖y − Axn+1‖22 ≤ ‖y − Axn‖22 −
∣∣(A∗(y − Axn))jn+1

∣∣2.
I Every vector x 6=0 supported on S , card(S) = s, is recovered

from y = Ax after at most s iterations of OMP if and only if
AS is injective and

(ERC) max
j∈S
|(A∗r)j | > max

`∈S
|(A∗r)`|

for all r 6=0 ∈
{
Az, supp(z) ⊆ S

}
.

Orthogonal Matching Pursuit

Starting with S0 = ∅ and x0 = 0, iterate

Sn+1 = Sn ∪
{
jn+1 := argmax

j∈[N]

{
|(A∗(y − Axn))j |

}}
,(OMP1)

xn+1 = argmin
z∈CN

{
‖y − Az‖2, supp(z) ⊆ Sn+1

}
.(OMP2)

I The norm of the residual decreases according to

‖y − Axn+1‖22 ≤ ‖y − Axn‖22 −
∣∣(A∗(y − Axn))jn+1

∣∣2.
I Every vector x 6=0 supported on S , card(S) = s, is recovered

from y = Ax after at most s iterations of OMP if and only if
AS is injective and

(ERC) max
j∈S
|(A∗r)j | > max

`∈S
|(A∗r)`|

for all r 6=0 ∈
{
Az, supp(z) ⊆ S

}
.

Orthogonal Matching Pursuit

Starting with S0 = ∅ and x0 = 0, iterate

Sn+1 = Sn ∪
{
jn+1 := argmax

j∈[N]

{
|(A∗(y − Axn))j |

}}
,(OMP1)

xn+1 = argmin
z∈CN

{
‖y − Az‖2, supp(z) ⊆ Sn+1

}
.(OMP2)

I The norm of the residual decreases according to

‖y − Axn+1‖22 ≤ ‖y − Axn‖22 −
∣∣(A∗(y − Axn))jn+1

∣∣2.

I Every vector x 6=0 supported on S , card(S) = s, is recovered
from y = Ax after at most s iterations of OMP if and only if
AS is injective and

(ERC) max
j∈S
|(A∗r)j | > max

`∈S
|(A∗r)`|

for all r 6=0 ∈
{
Az, supp(z) ⊆ S

}
.

Orthogonal Matching Pursuit

Starting with S0 = ∅ and x0 = 0, iterate

Sn+1 = Sn ∪
{
jn+1 := argmax

j∈[N]

{
|(A∗(y − Axn))j |

}}
,(OMP1)

xn+1 = argmin
z∈CN

{
‖y − Az‖2, supp(z) ⊆ Sn+1

}
.(OMP2)

I The norm of the residual decreases according to

‖y − Axn+1‖22 ≤ ‖y − Axn‖22 −
∣∣(A∗(y − Axn))jn+1

∣∣2.
I Every vector x 6=0 supported on S , card(S) = s, is recovered

from y = Ax after at most s iterations of OMP if and only if
AS is injective and

(ERC) max
j∈S
|(A∗r)j | > max

`∈S
|(A∗r)`|

for all r 6=0 ∈
{
Az, supp(z) ⊆ S

}
.

Iterative Hard Thresholding and Hard Thresholding Pursuit

I solving the rectangular system Ax = y amounts to solving the
square system A∗Ax = A∗y,

I classical iterative methods suggest the iteration
xn+1 = xn + A∗(y − Axn),

I at each iteration, keep s largest absolute entries and set the
other ones to zero.

IHT: Start with an s-sparse x0 ∈ CN and iterate:

(IHT) xn+1 = Hs(xn + A∗(y − Axn))

until a stopping criterion is met.

HTP: Start with an s-sparse x0 ∈ CN and iterate:

Sn+1 =
{
s largest abs. entries of xn + A∗(y − Axn)

}
,

(HTP1)

xn+1 = argmin
{
‖y − Az‖2, supp(z) ⊆ Sn+1

}
,

(HTP2)

until a stopping criterion is met (Sn+1 = Sn is natural here).

Iterative Hard Thresholding and Hard Thresholding Pursuit

I solving the rectangular system Ax = y amounts to solving the
square system A∗Ax = A∗y,

I classical iterative methods suggest the iteration
xn+1 = xn + A∗(y − Axn),

I at each iteration, keep s largest absolute entries and set the
other ones to zero.

IHT: Start with an s-sparse x0 ∈ CN and iterate:

(IHT) xn+1 = Hs(xn + A∗(y − Axn))

until a stopping criterion is met.

HTP: Start with an s-sparse x0 ∈ CN and iterate:

Sn+1 =
{
s largest abs. entries of xn + A∗(y − Axn)

}
,

(HTP1)

xn+1 = argmin
{
‖y − Az‖2, supp(z) ⊆ Sn+1

}
,

(HTP2)

until a stopping criterion is met (Sn+1 = Sn is natural here).

Iterative Hard Thresholding and Hard Thresholding Pursuit

I solving the rectangular system Ax = y amounts to solving the
square system A∗Ax = A∗y,

I classical iterative methods suggest the iteration
xn+1 = xn + A∗(y − Axn),

I at each iteration, keep s largest absolute entries and set the
other ones to zero.

IHT: Start with an s-sparse x0 ∈ CN and iterate:

(IHT) xn+1 = Hs(xn + A∗(y − Axn))

until a stopping criterion is met.

HTP: Start with an s-sparse x0 ∈ CN and iterate:

Sn+1 =
{
s largest abs. entries of xn + A∗(y − Axn)

}
,

(HTP1)

xn+1 = argmin
{
‖y − Az‖2, supp(z) ⊆ Sn+1

}
,

(HTP2)

until a stopping criterion is met (Sn+1 = Sn is natural here).

Iterative Hard Thresholding and Hard Thresholding Pursuit

I solving the rectangular system Ax = y amounts to solving the
square system A∗Ax = A∗y,

I classical iterative methods suggest the iteration
xn+1 = xn + A∗(y − Axn),

I at each iteration, keep s largest absolute entries and set the
other ones to zero.

IHT: Start with an s-sparse x0 ∈ CN and iterate:

(IHT) xn+1 = Hs(xn + A∗(y − Axn))

until a stopping criterion is met.

HTP: Start with an s-sparse x0 ∈ CN and iterate:

Sn+1 =
{
s largest abs. entries of xn + A∗(y − Axn)

}
,

(HTP1)

xn+1 = argmin
{
‖y − Az‖2, supp(z) ⊆ Sn+1

}
,

(HTP2)

until a stopping criterion is met (Sn+1 = Sn is natural here).

Iterative Hard Thresholding and Hard Thresholding Pursuit

I solving the rectangular system Ax = y amounts to solving the
square system A∗Ax = A∗y,

I classical iterative methods suggest the iteration
xn+1 = xn + A∗(y − Axn),

I at each iteration, keep s largest absolute entries and set the
other ones to zero.

IHT: Start with an s-sparse x0 ∈ CN and iterate:

(IHT) xn+1 = Hs(xn + A∗(y − Axn))

until a stopping criterion is met.

HTP: Start with an s-sparse x0 ∈ CN and iterate:

Sn+1 =
{
s largest abs. entries of xn + A∗(y − Axn)

}
,

(HTP1)

xn+1 = argmin
{
‖y − Az‖2, supp(z) ⊆ Sn+1

}
,

(HTP2)

until a stopping criterion is met (Sn+1 = Sn is natural here).

Iterative Hard Thresholding and Hard Thresholding Pursuit

I solving the rectangular system Ax = y amounts to solving the
square system A∗Ax = A∗y,

I classical iterative methods suggest the iteration
xn+1 = xn + A∗(y − Axn),

I at each iteration, keep s largest absolute entries and set the
other ones to zero.

IHT: Start with an s-sparse x0 ∈ CN and iterate:

(IHT) xn+1 = Hs(xn + A∗(y − Axn))

until a stopping criterion is met.

HTP: Start with an s-sparse x0 ∈ CN and iterate:

Sn+1 =
{
s largest abs. entries of xn + A∗(y − Axn)

}
,

(HTP1)

xn+1 = argmin
{
‖y − Az‖2, supp(z) ⊆ Sn+1

}
,

(HTP2)

until a stopping criterion is met (Sn+1 = Sn is natural here).

Iterative Hard Thresholding and Hard Thresholding Pursuit

I solving the rectangular system Ax = y amounts to solving the
square system A∗Ax = A∗y,

I classical iterative methods suggest the iteration
xn+1 = xn + A∗(y − Axn),

I at each iteration, keep s largest absolute entries and set the
other ones to zero.

IHT: Start with an s-sparse x0 ∈ CN and iterate:

(IHT) xn+1 = Hs(xn + A∗(y − Axn))

until a stopping criterion is met.

HTP: Start with an s-sparse x0 ∈ CN and iterate:

Sn+1 =
{
s largest abs. entries of xn + A∗(y − Axn)

}
,

(HTP1)

xn+1 = argmin
{
‖y − Az‖2, supp(z) ⊆ Sn+1

}
,

(HTP2)

until a stopping criterion is met (Sn+1 = Sn is natural here).

Iterative Hard Thresholding and Hard Thresholding Pursuit

I solving the rectangular system Ax = y amounts to solving the
square system A∗Ax = A∗y,

I classical iterative methods suggest the iteration
xn+1 = xn + A∗(y − Axn),

I at each iteration, keep s largest absolute entries and set the
other ones to zero.

IHT: Start with an s-sparse x0 ∈ CN and iterate:

(IHT) xn+1 = Hs(xn + A∗(y − Axn))

until a stopping criterion is met.

HTP: Start with an s-sparse x0 ∈ CN and iterate:

Sn+1 =
{
s largest abs. entries of xn + A∗(y − Axn)

}
,(HTP1)

xn+1 = argmin
{
‖y − Az‖2, supp(z) ⊆ Sn+1

}
,

(HTP2)

until a stopping criterion is met (Sn+1 = Sn is natural here).

Iterative Hard Thresholding and Hard Thresholding Pursuit

I solving the rectangular system Ax = y amounts to solving the
square system A∗Ax = A∗y,

I classical iterative methods suggest the iteration
xn+1 = xn + A∗(y − Axn),

I at each iteration, keep s largest absolute entries and set the
other ones to zero.

IHT: Start with an s-sparse x0 ∈ CN and iterate:

(IHT) xn+1 = Hs(xn + A∗(y − Axn))

until a stopping criterion is met.

HTP: Start with an s-sparse x0 ∈ CN and iterate:

Sn+1 =
{
s largest abs. entries of xn + A∗(y − Axn)

}
,(HTP1)

xn+1 = argmin
{
‖y − Az‖2, supp(z) ⊆ Sn+1

}
,(HTP2)

until a stopping criterion is met (Sn+1 = Sn is natural here).

Iterative Hard Thresholding and Hard Thresholding Pursuit

I solving the rectangular system Ax = y amounts to solving the
square system A∗Ax = A∗y,

I classical iterative methods suggest the iteration
xn+1 = xn + A∗(y − Axn),

I at each iteration, keep s largest absolute entries and set the
other ones to zero.

IHT: Start with an s-sparse x0 ∈ CN and iterate:

(IHT) xn+1 = Hs(xn + A∗(y − Axn))

until a stopping criterion is met.

HTP: Start with an s-sparse x0 ∈ CN and iterate:

Sn+1 =
{
s largest abs. entries of xn + A∗(y − Axn)

}
,(HTP1)

xn+1 = argmin
{
‖y − Az‖2, supp(z) ⊆ Sn+1

}
,(HTP2)

until a stopping criterion is met (Sn+1 = Sn is natural here).

