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» Optimization
Preferred, but competitive alternatives are available
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The Standard Compressive Sensing Problem



The Standard Compressive Sensing Problem

x : unknown signal of interest in K"



The Standard Compressive Sensing Problem

x : unknown signal of interest in K"

y : measurement vector in K"



The Standard Compressive Sensing Problem

x : unknown signal of interest in K"

y : measurement vector in K™ with m < N,



The Standard Compressive Sensing Problem

x : unknown signal of interest in K"
y : measurement vector in K™ with m < N,

s : sparsity of x



The Standard Compressive Sensing Problem

x : unknown signal of interest in K"
y : measurement vector in K™ with m < N,
s : sparsity of x =card{j € {1,..., N} : x; #0}.



The Standard Compressive Sensing Problem

x : unknown signal of interest in K"
y : measurement vector in K™ with m < N,
s : sparsity of x =card{j € {1,..., N} : x; #0}.

Find concrete sensing/recovery protocols,



The Standard Compressive Sensing Problem

x : unknown signal of interest in K"
y : measurement vector in K™ with m < N,
s : sparsity of x =card{j € {1,..., N} : x; #0}.

Find concrete sensing/recovery protocols, i.e., find

» measurement matrices A: x € KN —y e K™



The Standard Compressive Sensing Problem

x : unknown signal of interest in K"
y : measurement vector in K™ with m < N,
s : sparsity of x =card{j € {1,..., N} : x; #0}.

Find concrete sensing/recovery protocols, i.e., find

» measurement matrices A: x € KN —y e K™
» reconstruction maps A:y e K™ x e KN



The Standard Compressive Sensing Problem

x : unknown signal of interest in K"
y : measurement vector in K” with m < N,
s : sparsity of x =card{j € {1,..., N} : x; #0}.

Find concrete sensing/recovery protocols, i.e., find

» measurement matrices A: x € KN —y e K™
» reconstruction maps A:y e K™ x e KN

such that

A(Ax) = x for any s-sparse vector x € K.



The Standard Compressive Sensing Problem

x : unknown signal of interest in K"
y : measurement vector in K” with m < N,
s : sparsity of x =card{j € {1,..., N} : x; #0}.

Find concrete sensing/recovery protocols, i.e., find

» measurement matrices A: x € KN —y e K™
» reconstruction maps A:y e K™ x e KN

such that
A(Ax) = x for any s-sparse vector x € K.

In realistic situations, two issues to consider:



The Standard Compressive Sensing Problem

x : unknown signal of interest in K"
y : measurement vector in K” with m < N,
s : sparsity of x =card{j € {1,..., N} : x; #0}.

Find concrete sensing/recovery protocols, i.e., find

» measurement matrices A: x € KN —y e K™
» reconstruction maps A:y e K™ x e KN

such that
A(Ax) = x for any s-sparse vector x € K.
In realistic situations, two issues to consider:

Stability: X not sparse but compressible,

Robustness: measurement error in' y = Ax + e.
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A\
Figure: Left: traditional MRI reconstruction; Right: compressive
sensing reconstruction (courtesy of M. Lustig and S. Vasanawala)
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> Magnetic resonance imaging

» Sampling theory
» Error correction

» and many more...
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Application in Metagenomics [Koslicki—F.—Rosen]

» x € RN (N = 273,727): concentrations of known bacteria in
a given environmental sample. Sparsity assumption is realistic.
Note also that x > 0 and >, x; = L.

y € R™ (m = 4% = 4,096): frequencies of length-6 subwords
(in 16S rRNA gene reads or in whole-genome shotgun reads)

v

v

A € R™*N: frequencies of length-6 subwords in all known
(i.e., sequenced) bacteria. It is a frequency matrix, that is,

A,"j > 0 and Z;,'n:lAi,j =1.

v

Quikr improves on traditional read-by-read methods,
especially in terms of speed.

Codes available at
sourceforge.net/projects/quikr/
sourceforge.net/projects/wgsquikr/

v
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j=1 j=1
the notation ||x||o [sic] has become usual for

||Ix||o := card(supp(x)), where supp(x) := {j € [N] : x; # 0}.
For an s-sparse x € KV, observe the equivalence of

> X is the unique s-sparse solution of Az =y with y = Ax,

» x can be reconstructed as the unique solution of

(Po) minimize ||z||p  subject to Az =y.
zeKN

This is a combinatorial problem, NP-hard in general.
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Minimal Number of Measurements

Given A € K™*N the following are equivalent:

1. Every s-sparse x is the unique s-sparse solution of Az = Ax,
2. kerAn{z e KN : |z|o < 2s} = {0},

3.
4

. Every set of 2s columns of A is linearly independent.

For any S C [N] with card(S) < 2s, the matrix Ags is injective,

As a consequence, exact recovery of every s-sparse vector forces

m > 2s.

This can be achieved using partial Vandermonde matrices.
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Exact s-Sparse Recovery from 2s Fourier Measurements

Identify an s-sparse x € CV with a function x on {0,1,..., N — 1}
with support S, card(S) = s. Consider the 2s Fourier coefficients

RG) =Y x(k)ei2mik/N, 0<j<2s-1

Consider a trigonometric polynomial vanishing exactly on S, i.e.,
p(t) = H (1 _ e—i27rk/Nei277t/N>'
keS
Since p- x = 0, discrete convolution gives

N-1
0=(p*R)()) =D AKIRG—k), O0<j<N-L
k=0
Note that p(0) = 1 and that p(k) = 0 for k > s. The equations
S,...,2s — 1 translate into a Toeplitz system with unknowns
p(1),...,p(s). This determines p, hence p, then S, and finally x.
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Replace (Po) by

(P1) minimize ||z||;  subject to Az =y.
zeKN

Geometric intuition

v

v

Unique ¢1-minimizers are at most m-sparse (when K = R)

v

Convex optimization program, hence solvable in practice

v

In the real setting, recast as the linear optimization program

minimize Z ¢;j subjectto Az=yand —¢ <z <g.

v

In the complex setting, recast as a second order cone program



Basis Pursuit — Null Space Property



Basis Pursuit — Null Space Property

A1(Ax) = x for every vector x supported on S if and only if



Basis Pursuit — Null Space Property

A1(Ax) = x for every vector x supported on S if and only if

(NSP) Jus|l1 < |lug]l1, all u € ker A\ {0}.



Basis Pursuit — Null Space Property

A1(Ax) = x for every vector x supported on S if and only if

(NSP) Jus|l1 < |lug]l1, all u € ker A\ {0}.

For real measurement matrices,



Basis Pursuit — Null Space Property

A1(Ax) = x for every vector x supported on S if and only if

(NSP) Jus|l1 < |lug]l1, all u € ker A\ {0}.

For real measurement matrices, real and complex NSPs read



Basis Pursuit — Null Space Property

A1(Ax) = x for every vector x supported on S if and only if

(NSP) Jus|l1 < |lug]l1, all u € ker A\ {0}.

For real measurement matrices, real and complex NSPs read

Z’”j’<2|ud, all u € kerg A\ {0},

JjE€S (€S



Basis Pursuit — Null Space Property

A1(Ax) = x for every vector x supported on S if and only if

(NSP) Jus|l1 < |lug]l1, all u € ker A\ {0}.

For real measurement matrices, real and complex NSPs read

Z’”j‘<2|ud, all u € kerg A\ {0},

JjE€S (€S

Z‘/Vj2+Wj2 < Z\/v1£2+we2, all (v,w) € (kerg A)?\ {0}.

JES Les



Basis Pursuit — Null Space Property

A1(Ax) = x for every vector x supported on S if and only if

(NSP) Jus|l1 < |lug]l1, all u € ker A\ {0}.

For real measurement matrices, real and complex NSPs read

Z’”j‘<2|ud, all u € kerg A\ {0},

j€ES les
S\ ErwE < SRR el (vw) € (kers A {0}
jes les

Real and complex NSPs are in fact equivalent.
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Orthogonal Matching Pursuit
Starting with S® = () and x° = 0, iterate
(OMPy)  S"tt =gy {j"! —argmax{| (A*(y — Ax"))il}}
JEIN]
(OMP;)  x"! = argmin {Hy — AZHg,supp(z) - S”H}.
zeCN
» The norm of the residual decreases according to

* 2
ly = A3 < [ly — Ax"[[3 — [(A*(y — Ax"))jm |".

» Every vector xg supported on S, card(S) = s, is recovered
from y = Ax after at most s iterations of OMP if and only if
As is injective and

(ERC) max|(A*r);| > max|(A*r),|
JjE€S 0€S

for all r4g € {Az supp(z) C 5}
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» solving the rectangular system Ax =y amounts to solving the
square system A*Ax = A%y,

» classical iterative methods suggest the iteration
xn+1 — x" _|_A*(y _ AX”),

> at each iteration, keep s largest absolute entries and set the
other ones to zero.

IHT: Start with an s-sparse x° € CV and iterate:

(IHT) X" = Hy(x" + A*(y — Ax"))

until a stopping criterion is met.

HTP: Start with an s-sparse x° € CV and iterate:

(HTPy) S"*! = {s largest abs. entries of x" + A*(y — Ax")},
(HTP2) x"*! = argmin{|ly — Az||2, supp(z) C S"**},

until a stopping criterion is met (S"*1 = S" is natural here).



