Overview of the
 Mathematics of Compressive Sensing

Simon Foucart

Reading Seminar on
"Compressive Sensing, Extensions, and Applications"
Texas A\&M University
1 October 2015

Part 1: Invitation to Compressive Sensing

Keywords

Keywords

- Sparsity

Essential

Keywords

- Sparsity

Essential

- Randomness

Nothing better so far
(measurement process)

Keywords

- Sparsity

Essential

- Randomness

Nothing better so far
(measurement process)

- Optimization

Preferred, but competitive alternatives are available (reconstruction process)

The Standard Compressive Sensing Problem

The Standard Compressive Sensing Problem

\mathbf{x} : unknown signal of interest in \mathbb{K}^{N}

The Standard Compressive Sensing Problem

\mathbf{x} : unknown signal of interest in \mathbb{K}^{N}
y : measurement vector in \mathbb{K}^{m}

The Standard Compressive Sensing Problem

\mathbf{x} : unknown signal of interest in \mathbb{K}^{N}
\mathbf{y} : measurement vector in \mathbb{K}^{m} with $m \ll N$,

The Standard Compressive Sensing Problem

x : unknown signal of interest in \mathbb{K}^{N}
\mathbf{y} : measurement vector in \mathbb{K}^{m} with $m \ll N$,
s : sparsity of \mathbf{x}

The Standard Compressive Sensing Problem

\mathbf{x} : unknown signal of interest in \mathbb{K}^{N}
\mathbf{y} : measurement vector in \mathbb{K}^{m} with $m \ll N$,
$s:$ sparsity of $\mathbf{x}=\operatorname{card}\left\{j \in\{1, \ldots, N\}: x_{j} \neq 0\right\}$.

The Standard Compressive Sensing Problem

\mathbf{x} : unknown signal of interest in \mathbb{K}^{N}
\mathbf{y} : measurement vector in \mathbb{K}^{m} with $m \ll N$,
$s:$ sparsity of $\mathbf{x}=\operatorname{card}\left\{j \in\{1, \ldots, N\}: x_{j} \neq 0\right\}$.
Find concrete sensing/recovery protocols,

The Standard Compressive Sensing Problem

\mathbf{x} : unknown signal of interest in \mathbb{K}^{N}
\mathbf{y} : measurement vector in \mathbb{K}^{m} with $m \ll N$,
$s:$ sparsity of $\mathbf{x}=\operatorname{card}\left\{j \in\{1, \ldots, N\}: x_{j} \neq 0\right\}$.
Find concrete sensing/recovery protocols, i.e., find

- measurement matrices $A: \mathbf{x} \in \mathbb{K}^{N} \mapsto \mathbf{y} \in \mathbb{K}^{m}$

The Standard Compressive Sensing Problem

\mathbf{x} : unknown signal of interest in \mathbb{K}^{N}
\mathbf{y} : measurement vector in \mathbb{K}^{m} with $m \ll N$,
$s:$ sparsity of $\mathbf{x}=\operatorname{card}\left\{j \in\{1, \ldots, N\}: x_{j} \neq 0\right\}$.
Find concrete sensing/recovery protocols, i.e., find

- measurement matrices $A: \mathbf{x} \in \mathbb{K}^{N} \mapsto \mathbf{y} \in \mathbb{K}^{m}$
- reconstruction maps $\Delta: \mathbf{y} \in \mathbb{K}^{m} \mapsto \mathbf{x} \in \mathbb{K}^{N}$

The Standard Compressive Sensing Problem

\mathbf{x} : unknown signal of interest in \mathbb{K}^{N}
\mathbf{y} : measurement vector in \mathbb{K}^{m} with $m \ll N$,
$s:$ sparsity of $\mathbf{x}=\operatorname{card}\left\{j \in\{1, \ldots, N\}: x_{j} \neq 0\right\}$.
Find concrete sensing/recovery protocols, i.e., find

- measurement matrices $A: \mathbf{x} \in \mathbb{K}^{N} \mapsto \mathbf{y} \in \mathbb{K}^{m}$
- reconstruction maps $\Delta: \mathbf{y} \in \mathbb{K}^{m} \mapsto \mathbf{x} \in \mathbb{K}^{N}$
such that

$$
\Delta(A \mathbf{x})=\mathbf{x} \quad \text { for any } s \text {-sparse vector } \mathbf{x} \in \mathbb{K}^{N}
$$

The Standard Compressive Sensing Problem

\mathbf{x} : unknown signal of interest in \mathbb{K}^{N}
\mathbf{y} : measurement vector in \mathbb{K}^{m} with $m \ll N$,
$s:$ sparsity of $\mathbf{x}=\operatorname{card}\left\{j \in\{1, \ldots, N\}: x_{j} \neq 0\right\}$.
Find concrete sensing/recovery protocols, i.e., find

- measurement matrices $A: \mathbf{x} \in \mathbb{K}^{N} \mapsto \mathbf{y} \in \mathbb{K}^{m}$
- reconstruction maps $\Delta: \mathbf{y} \in \mathbb{K}^{m} \mapsto \mathbf{x} \in \mathbb{K}^{N}$
such that

$$
\Delta(A \mathbf{x})=\mathbf{x} \quad \text { for any } s \text {-sparse vector } \mathbf{x} \in \mathbb{K}^{N}
$$

In realistic situations, two issues to consider:

The Standard Compressive Sensing Problem

\mathbf{x} : unknown signal of interest in \mathbb{K}^{N}
$\mathbf{y}: \quad$ measurement vector in \mathbb{K}^{m} with $m \ll N$,
$s:$ sparsity of $\mathbf{x}=\operatorname{card}\left\{j \in\{1, \ldots, N\}: x_{j} \neq 0\right\}$.
Find concrete sensing/recovery protocols, i.e., find

- measurement matrices $A: \mathbf{x} \in \mathbb{K}^{N} \mapsto \mathbf{y} \in \mathbb{K}^{m}$
- reconstruction maps $\Delta: \mathbf{y} \in \mathbb{K}^{m} \mapsto \mathbf{x} \in \mathbb{K}^{N}$
such that

$$
\Delta(A \mathbf{x})=\mathbf{x} \quad \text { for any } s \text {-sparse vector } \mathbf{x} \in \mathbb{K}^{N}
$$

In realistic situations, two issues to consider:

$$
\begin{array}{ll}
\text { Stability: } & \mathbf{x} \text { not sparse but compressible, } \\
\text { Robustness: } & \text { measurement error in } \mathbf{y}=A \mathbf{x}+\mathbf{e} .
\end{array}
$$

A Selection of Applications

A Selection of Applications

- Magnetic resonance imaging

Figure: Left: traditional MRI reconstruction; Right: compressive sensing reconstruction (courtesy of M. Lustig and S. Vasanawala)

A Selection of Applications

- Magnetic resonance imaging
- Sampling theory

Figure: Time-domain signal with 16 samples.

A Selection of Applications

- Magnetic resonance imaging
- Sampling theory
- Error correction

A Selection of Applications

- Magnetic resonance imaging
- Sampling theory
- Error correction
- and many more...

Application in Metagenomics
[Koslicki-F.-Rosen]

Application in Metagenomics
[Koslicki-F.-Rosen]

- $\mathbf{x} \in \mathbb{R}^{N}(N=273,727)$: concentrations of known bacteria in a given environmental sample.
- $\mathbf{x} \in \mathbb{R}^{N}(N=273,727)$: concentrations of known bacteria in a given environmental sample. Sparsity assumption is realistic.
- $\mathbf{x} \in \mathbb{R}^{N}(N=273,727)$: concentrations of known bacteria in a given environmental sample. Sparsity assumption is realistic. Note also that $\mathbf{x} \geq \mathbf{0}$ and $\sum_{j} x_{j}=1$.

Application in Metagenomics

[Koslicki-F.-Rosen]

- $\mathbf{x} \in \mathbb{R}^{N}(N=273,727)$: concentrations of known bacteria in a given environmental sample. Sparsity assumption is realistic. Note also that $\mathbf{x} \geq \mathbf{0}$ and $\sum_{j} x_{j}=1$.
- $\mathbf{y} \in \mathbb{R}^{m}\left(m=4^{6}=4,096\right)$: frequencies of length-6 subwords (in 16S rRNA gene reads or in whole-genome shotgun reads)

Application in Metagenomics

[Koslicki-F.-Rosen]

- $\mathbf{x} \in \mathbb{R}^{N}(N=273,727)$: concentrations of known bacteria in a given environmental sample. Sparsity assumption is realistic. Note also that $\mathbf{x} \geq \mathbf{0}$ and $\sum_{j} x_{j}=1$.
- $\mathbf{y} \in \mathbb{R}^{m}\left(m=4^{6}=4,096\right)$: frequencies of length-6 subwords (in 16S rRNA gene reads or in whole-genome shotgun reads)
- $\mathbf{A} \in \mathbb{R}^{m \times N}$: frequencies of length- 6 subwords in all known (i.e., sequenced) bacteria.

Application in Metagenomics

[Koslicki-F.-Rosen]

- $\mathbf{x} \in \mathbb{R}^{N}(N=273,727)$: concentrations of known bacteria in a given environmental sample. Sparsity assumption is realistic. Note also that $\mathbf{x} \geq \mathbf{0}$ and $\sum_{j} x_{j}=1$.
- $\mathbf{y} \in \mathbb{R}^{m}\left(m=4^{6}=4,096\right)$: frequencies of length-6 subwords (in 16S rRNA gene reads or in whole-genome shotgun reads)
- $\mathbf{A} \in \mathbb{R}^{m \times N}$: frequencies of length- 6 subwords in all known (i.e., sequenced) bacteria. It is a frequency matrix, that is,

Application in Metagenomics

[Koslicki-F.-Rosen]

- $\mathbf{x} \in \mathbb{R}^{N}(N=273,727)$: concentrations of known bacteria in a given environmental sample. Sparsity assumption is realistic. Note also that $\mathbf{x} \geq \mathbf{0}$ and $\sum_{j} x_{j}=1$.
- $\mathbf{y} \in \mathbb{R}^{m}\left(m=4^{6}=4,096\right)$: frequencies of length- 6 subwords (in 16S rRNA gene reads or in whole-genome shotgun reads)
- $\mathbf{A} \in \mathbb{R}^{m \times N}$: frequencies of length- 6 subwords in all known (i.e., sequenced) bacteria. It is a frequency matrix, that is,

$$
A_{i, j} \geq 0 \quad \text { and } \quad \sum_{i=1}^{m} A_{i, j}=1 .
$$

Application in Metagenomics

[Koslicki-F.-Rosen]

- $\mathbf{x} \in \mathbb{R}^{N}(N=273,727)$: concentrations of known bacteria in a given environmental sample. Sparsity assumption is realistic. Note also that $\mathbf{x} \geq \mathbf{0}$ and $\sum_{j} x_{j}=1$.
- $\mathbf{y} \in \mathbb{R}^{m}\left(m=4^{6}=4,096\right)$: frequencies of length-6 subwords (in 16S rRNA gene reads or in whole-genome shotgun reads)
- $\mathbf{A} \in \mathbb{R}^{m \times N}$: frequencies of length- 6 subwords in all known (i.e., sequenced) bacteria. It is a frequency matrix, that is,

$$
A_{i, j} \geq 0 \quad \text { and } \quad \sum_{i=1}^{m} A_{i, j}=1
$$

- Quikr improves on traditional read-by-read methods, especially in terms of speed.

Application in Metagenomics

[Koslicki-F.-Rosen]

- $\mathbf{x} \in \mathbb{R}^{N}(N=273,727)$: concentrations of known bacteria in a given environmental sample. Sparsity assumption is realistic. Note also that $\mathbf{x} \geq \mathbf{0}$ and $\sum_{j} x_{j}=1$.
- $\mathbf{y} \in \mathbb{R}^{m}\left(m=4^{6}=4,096\right)$: frequencies of length-6 subwords (in 16S rRNA gene reads or in whole-genome shotgun reads)
- $\mathbf{A} \in \mathbb{R}^{m \times N}$: frequencies of length- 6 subwords in all known (i.e., sequenced) bacteria. It is a frequency matrix, that is,

$$
A_{i, j} \geq 0 \quad \text { and } \quad \sum_{i=1}^{m} A_{i, j}=1
$$

- Quikr improves on traditional read-by-read methods, especially in terms of speed.
- Codes available at sourceforge.net/projects/quikr/ sourceforge.net/projects/wgsquikr/

ℓ_{0}-Minimization

Since

$$
\|\mathbf{x}\|_{p}^{p}:=\sum_{j=1}^{N}\left|x_{j}\right|^{p} \underset{p \rightarrow 0}{\longrightarrow} \sum_{j=1}^{N} \mathbf{1}_{\left\{x_{j} \neq 0\right\}}
$$

ℓ_{0}-Minimization

Since

$$
\|\mathbf{x}\|_{p}^{p}:=\sum_{j=1}^{N}\left|x_{j}\right|^{p} \underset{p \rightarrow 0}{\longrightarrow} \sum_{j=1}^{N} \mathbf{1}_{\left\{x_{j} \neq 0\right\}}
$$

the notation $\|\mathbf{x}\|_{0}$ [sic] has become usual for

$$
\|\mathbf{x}\|_{0}:=\operatorname{card}(\operatorname{supp}(\mathbf{x})), \quad \text { where } \operatorname{supp}(\mathbf{x}):=\left\{j \in[N]: x_{j} \neq 0\right\}
$$

ℓ_{0}-Minimization

Since

$$
\|\mathbf{x}\|_{p}^{p}:=\sum_{j=1}^{N}\left|x_{j}\right|^{p} \underset{p \rightarrow 0}{\longrightarrow} \sum_{j=1}^{N} \mathbf{1}_{\left\{x_{j} \neq 0\right\}}
$$

the notation $\|\mathbf{x}\|_{0}$ [sic] has become usual for

$$
\|\mathbf{x}\|_{0}:=\operatorname{card}(\operatorname{supp}(\mathbf{x})), \quad \text { where } \operatorname{supp}(\mathbf{x}):=\left\{j \in[N]: x_{j} \neq 0\right\}
$$

For an s-sparse $\mathbf{x} \in \mathbb{K}^{N}$, observe the equivalence of

ℓ_{0}-Minimization

Since

$$
\|\mathbf{x}\|_{p}^{p}:=\sum_{j=1}^{N}\left|x_{j}\right|^{p} \underset{p \rightarrow 0}{\longrightarrow} \sum_{j=1}^{N} \mathbf{1}_{\left\{x_{j} \neq 0\right\}}
$$

the notation $\|\mathbf{x}\|_{0}$ [sic] has become usual for

$$
\|\mathbf{x}\|_{0}:=\operatorname{card}(\operatorname{supp}(\mathbf{x})), \quad \text { where } \operatorname{supp}(\mathbf{x}):=\left\{j \in[N]: x_{j} \neq 0\right\}
$$

For an s-sparse $\mathbf{x} \in \mathbb{K}^{N}$, observe the equivalence of

- \mathbf{x} is the unique s-sparse solution of $A \mathbf{z}=\mathbf{y}$ with $\mathbf{y}=A \mathbf{x}$,

ℓ_{0}-Minimization

Since

$$
\|\mathbf{x}\|_{p}^{p}:=\sum_{j=1}^{N}\left|x_{j}\right|^{p} \underset{p \rightarrow 0}{\longrightarrow} \sum_{j=1}^{N} \mathbf{1}_{\left\{x_{j} \neq 0\right\}}
$$

the notation $\|\mathbf{x}\|_{0}$ [sic] has become usual for

$$
\|\mathbf{x}\|_{0}:=\operatorname{card}(\operatorname{supp}(\mathbf{x})), \quad \text { where } \operatorname{supp}(\mathbf{x}):=\left\{j \in[N]: x_{j} \neq 0\right\}
$$

For an s-sparse $\mathbf{x} \in \mathbb{K}^{N}$, observe the equivalence of

- \mathbf{x} is the unique s-sparse solution of $A \mathbf{z}=\mathbf{y}$ with $\mathbf{y}=A \mathbf{x}$,
- \mathbf{x} can be reconstructed as the unique solution of
$\left(\mathrm{P}_{0}\right) \quad \underset{\mathbf{z} \in \mathbb{K}^{N}}{\operatorname{minimize}}\|\mathbf{z}\|_{0} \quad$ subject to $A \mathbf{z}=\mathbf{y}$.

ℓ_{0}-Minimization

Since

$$
\|\mathbf{x}\|_{p}^{p}:=\sum_{j=1}^{N}\left|x_{j}\right|^{p} \underset{p \rightarrow 0}{\longrightarrow} \sum_{j=1}^{N} \mathbf{1}_{\left\{x_{j} \neq 0\right\}}
$$

the notation $\|\mathbf{x}\|_{0}$ [sic] has become usual for

$$
\|\mathbf{x}\|_{0}:=\operatorname{card}(\operatorname{supp}(\mathbf{x})), \quad \text { where } \operatorname{supp}(\mathbf{x}):=\left\{j \in[N]: x_{j} \neq 0\right\}
$$

For an s-sparse $\mathbf{x} \in \mathbb{K}^{N}$, observe the equivalence of

- \mathbf{x} is the unique s-sparse solution of $A \mathbf{z}=\mathbf{y}$ with $\mathbf{y}=A \mathbf{x}$,
- \mathbf{x} can be reconstructed as the unique solution of
$\left(\mathrm{P}_{0}\right) \quad \underset{\mathbf{z} \in \mathbb{K}^{N}}{\operatorname{minimize}}\|\mathbf{z}\|_{0} \quad$ subject to $A \mathbf{z}=\mathbf{y}$.
This is a combinatorial problem, NP-hard in general.

Minimal Number of Measurements

Minimal Number of Measurements

Given $A \in \mathbb{K}^{m \times N}$, the following are equivalent:

Minimal Number of Measurements

Given $A \in \mathbb{K}^{m \times N}$, the following are equivalent:

1. Every s-sparse \mathbf{x} is the unique s-sparse solution of $A \mathbf{z}=A \mathbf{x}$,

Minimal Number of Measurements

Given $A \in \mathbb{K}^{m \times N}$, the following are equivalent:

1. Every s-sparse \mathbf{x} is the unique s-sparse solution of $A \mathbf{z}=A \mathbf{x}$, 2. $\operatorname{ker} A \cap\left\{\mathbf{z} \in \mathbb{K}^{N}:\|\mathbf{z}\|_{0} \leq 2 s\right\}=\{\mathbf{0}\}$,

Minimal Number of Measurements

Given $A \in \mathbb{K}^{m \times N}$, the following are equivalent:

1. Every s-sparse \mathbf{x} is the unique s-sparse solution of $A \mathbf{z}=A \mathbf{x}$,
2. $\operatorname{ker} A \cap\left\{\mathbf{z} \in \mathbb{K}^{N}:\|\mathbf{z}\|_{0} \leq 2 s\right\}=\{\mathbf{0}\}$,
3. For any $S \subset[N]$ with $\operatorname{card}(S) \leq 2 s$, the matrix A_{S} is injective,

Minimal Number of Measurements

Given $A \in \mathbb{K}^{m \times N}$, the following are equivalent:

1. Every s-sparse \mathbf{x} is the unique s-sparse solution of $A \mathbf{z}=A \mathbf{x}$,
2. $\operatorname{ker} A \cap\left\{\mathbf{z} \in \mathbb{K}^{N}:\|\mathbf{z}\|_{0} \leq 2 s\right\}=\{\mathbf{0}\}$,
3. For any $S \subset[N]$ with $\operatorname{card}(S) \leq 2 s$, the matrix A_{S} is injective,
4. Every set of $2 s$ columns of A is linearly independent.

Minimal Number of Measurements

Given $A \in \mathbb{K}^{m \times N}$, the following are equivalent:

1. Every s-sparse \mathbf{x} is the unique s-sparse solution of $A \mathbf{z}=A \mathbf{x}$,
2. $\operatorname{ker} A \cap\left\{\mathbf{z} \in \mathbb{K}^{N}:\|\mathbf{z}\|_{0} \leq 2 s\right\}=\{\mathbf{0}\}$,
3. For any $S \subset[N]$ with $\operatorname{card}(S) \leq 2 s$, the matrix A_{S} is injective,
4. Every set of $2 s$ columns of A is linearly independent.

As a consequence, exact recovery of every s-sparse vector forces

$$
m \geq 2 s
$$

Minimal Number of Measurements

Given $A \in \mathbb{K}^{m \times N}$, the following are equivalent:

1. Every s-sparse \mathbf{x} is the unique s-sparse solution of $A \mathbf{z}=A \mathbf{x}$,
2. $\operatorname{ker} A \cap\left\{\mathbf{z} \in \mathbb{K}^{N}:\|\mathbf{z}\|_{0} \leq 2 s\right\}=\{\mathbf{0}\}$,
3. For any $S \subset[N]$ with $\operatorname{card}(S) \leq 2 s$, the matrix A_{S} is injective,
4. Every set of $2 s$ columns of A is linearly independent.

As a consequence, exact recovery of every s-sparse vector forces

$$
m \geq 2 s
$$

This can be achieved using partial Vandermonde matrices.

Exact s-Sparse Recovery from 2s Fourier Measurements

Exact s-Sparse Recovery from 2s Fourier Measurements

 Identify an s-sparse $\mathbf{x} \in \mathbb{C}^{N}$ with a function x on $\{0,1, \ldots, N-1\}$ with support $S, \operatorname{card}(S)=s$.
Exact s-Sparse Recovery from 2s Fourier Measurements

 Identify an s-sparse $\mathbf{x} \in \mathbb{C}^{N}$ with a function x on $\{0,1, \ldots, N-1\}$ with support $S, \operatorname{card}(S)=s$. Consider the $2 s$ Fourier coefficients$$
\hat{x}(j)=\sum_{k=0}^{N-1} x(k) e^{-i 2 \pi j k / N}, \quad 0 \leq j \leq 2 s-1
$$

Exact s-Sparse Recovery from $2 s$ Fourier Measurements

 Identify an s-sparse $\mathbf{x} \in \mathbb{C}^{N}$ with a function x on $\{0,1, \ldots, N-1\}$ with support $S, \operatorname{card}(S)=s$. Consider the $2 s$ Fourier coefficients$$
\hat{x}(j)=\sum_{k=0}^{N-1} x(k) e^{-i 2 \pi j k / N}, \quad 0 \leq j \leq 2 s-1
$$

Consider a trigonometric polynomial vanishing exactly on S, i.e.,

$$
p(t):=\prod_{k \in S}\left(1-e^{-i 2 \pi k / N} e^{i 2 \pi t / N}\right) .
$$

Exact s-Sparse Recovery from 2s Fourier Measurements

 Identify an s-sparse $\mathbf{x} \in \mathbb{C}^{N}$ with a function x on $\{0,1, \ldots, N-1\}$ with support $S, \operatorname{card}(S)=s$. Consider the $2 s$ Fourier coefficients$$
\hat{x}(j)=\sum_{k=0}^{N-1} x(k) e^{-i 2 \pi j k / N}, \quad 0 \leq j \leq 2 s-1
$$

Consider a trigonometric polynomial vanishing exactly on S, i.e.,

$$
p(t):=\prod_{k \in S}\left(1-e^{-i 2 \pi k / N} e^{i 2 \pi t / N}\right) .
$$

Since $p \cdot x \equiv 0$, discrete convolution gives

$$
0=(\hat{p} * \hat{x})(j)=\sum_{k=0}^{N-1} \hat{p}(k) \hat{x}(j-k), \quad 0 \leq j \leq N-1 .
$$

Exact s-Sparse Recovery from 2s Fourier Measurements

 Identify an s-sparse $\mathbf{x} \in \mathbb{C}^{N}$ with a function x on $\{0,1, \ldots, N-1\}$ with support $S, \operatorname{card}(S)=s$. Consider the $2 s$ Fourier coefficients$$
\hat{x}(j)=\sum_{k=0}^{N-1} x(k) e^{-i 2 \pi j k / N}, \quad 0 \leq j \leq 2 s-1
$$

Consider a trigonometric polynomial vanishing exactly on S, i.e.,

$$
p(t):=\prod_{k \in S}\left(1-e^{-i 2 \pi k / N} e^{i 2 \pi t / N}\right) .
$$

Since $p \cdot x \equiv 0$, discrete convolution gives

$$
0=(\hat{p} * \hat{x})(j)=\sum_{k=0}^{N-1} \hat{p}(k) \hat{x}(j-k), \quad 0 \leq j \leq N-1 .
$$

Note that $\hat{p}(0)=1$ and that $\hat{p}(k)=0$ for $k>s$.

Exact s-Sparse Recovery from 2s Fourier Measurements

 Identify an s-sparse $\mathbf{x} \in \mathbb{C}^{N}$ with a function x on $\{0,1, \ldots, N-1\}$ with support $S, \operatorname{card}(S)=s$. Consider the $2 s$ Fourier coefficients$$
\hat{x}(j)=\sum_{k=0}^{N-1} x(k) e^{-i 2 \pi j k / N}, \quad 0 \leq j \leq 2 s-1
$$

Consider a trigonometric polynomial vanishing exactly on S, i.e.,

$$
p(t):=\prod_{k \in S}\left(1-e^{-i 2 \pi k / N} e^{i 2 \pi t / N}\right) .
$$

Since $p \cdot x \equiv 0$, discrete convolution gives

$$
0=(\hat{p} * \hat{x})(j)=\sum_{k=0}^{N-1} \hat{p}(k) \hat{x}(j-k), \quad 0 \leq j \leq N-1 .
$$

Note that $\hat{p}(0)=1$ and that $\hat{p}(k)=0$ for $k>s$. The equations $s, \ldots, 2 s-1$ translate into a Toeplitz system with unknowns $\hat{p}(1), \ldots, \hat{p}(s)$.

Exact s-Sparse Recovery from $2 s$ Fourier Measurements

 Identify an s-sparse $\mathbf{x} \in \mathbb{C}^{N}$ with a function x on $\{0,1, \ldots, N-1\}$ with support $S, \operatorname{card}(S)=s$. Consider the $2 s$ Fourier coefficients$$
\hat{x}(j)=\sum_{k=0}^{N-1} x(k) e^{-i 2 \pi j k / N}, \quad 0 \leq j \leq 2 s-1
$$

Consider a trigonometric polynomial vanishing exactly on S, i.e.,

$$
p(t):=\prod_{k \in S}\left(1-e^{-i 2 \pi k / N} e^{i 2 \pi t / N}\right) .
$$

Since $p \cdot x \equiv 0$, discrete convolution gives

$$
0=(\hat{p} * \hat{x})(j)=\sum_{k=0}^{N-1} \hat{p}(k) \hat{x}(j-k), \quad 0 \leq j \leq N-1 .
$$

Note that $\hat{p}(0)=1$ and that $\hat{p}(k)=0$ for $k>s$. The equations $s, \ldots, 2 s-1$ translate into a Toeplitz system with unknowns $\hat{p}(1), \ldots, \hat{p}(s)$. This determines \hat{p}, hence p, then S, and finally $\mathbf{x}_{\underline{\underline{三}}}$

ℓ_{1}-Minimization (Basis Pursuit)

ℓ_{1}-Minimization (Basis Pursuit)

Replace (P_{0}) by
$\left(\mathrm{P}_{1}\right) \quad \operatorname{minimize}_{\mathbf{z} \in \mathbb{K}^{N}}\|\mathbf{z}\|_{1} \quad$ subject to $A \mathbf{z}=\mathbf{y}$.

ℓ_{1}-Minimization (Basis Pursuit)

Replace (P_{0}) by
$\left(\mathrm{P}_{1}\right) \quad \operatorname{minimize}_{\mathbf{z} \in \mathbb{K}^{N}}\|\mathbf{z}\|_{1} \quad$ subject to $A \mathbf{z}=\mathbf{y}$.

- Geometric intuition

ℓ_{1}-Minimization (Basis Pursuit)

Replace (P_{0}) by
$\left(\mathrm{P}_{1}\right) \quad \operatorname{minimize}_{\mathbf{z} \in \mathbb{K}^{N}}\|\mathbf{z}\|_{1} \quad$ subject to $A \mathbf{z}=\mathbf{y}$.

- Geometric intuition
- Unique ℓ_{1}-minimizers are at most m-sparse (when $\mathbb{K}=\mathbb{R}$)

ℓ_{1}-Minimization (Basis Pursuit)

Replace (P_{0}) by
$\left(\mathrm{P}_{1}\right) \quad \underset{\mathbf{z} \in \mathbb{K}^{N}}{\operatorname{minimize}}\|\mathbf{z}\|_{1} \quad$ subject to $A \mathbf{z}=\mathbf{y}$.

- Geometric intuition
- Unique ℓ_{1}-minimizers are at most m-sparse (when $\mathbb{K}=\mathbb{R}$)
- Convex optimization program, hence solvable in practice

ℓ_{1}-Minimization (Basis Pursuit)

Replace (P_{0}) by
$\left(\mathrm{P}_{1}\right) \quad \underset{\mathbf{z} \in \mathbb{K}^{N}}{\operatorname{minimize}}\|\mathbf{z}\|_{1} \quad$ subject to $A \mathbf{z}=\mathbf{y}$.

- Geometric intuition
- Unique ℓ_{1}-minimizers are at most m-sparse (when $\mathbb{K}=\mathbb{R}$)
- Convex optimization program, hence solvable in practice
- In the real setting, recast as the linear optimization program

$$
\underset{\mathbf{c}, \mathbf{z} \in \mathbb{R}^{N}}{\operatorname{minimize}} \sum_{j=1}^{N} c_{j} \quad \text { subject to } A \mathbf{z}=\mathbf{y} \text { and }-c_{j} \leq z_{j} \leq c_{j}
$$

ℓ_{1}-Minimization (Basis Pursuit)

Replace (P_{0}) by
$\left(\mathrm{P}_{1}\right) \quad \underset{\mathbf{z} \in \mathbb{K}^{N}}{\operatorname{minimize}}\|\mathbf{z}\|_{1} \quad$ subject to $A \mathbf{z}=\mathbf{y}$.

- Geometric intuition
- Unique ℓ_{1}-minimizers are at most m-sparse (when $\mathbb{K}=\mathbb{R}$)
- Convex optimization program, hence solvable in practice
- In the real setting, recast as the linear optimization program

$$
\underset{\mathbf{c}, \mathbf{z} \in \mathbb{R}^{N}}{\operatorname{minimize}} \sum_{j=1}^{N} c_{j} \quad \text { subject to } A \mathbf{z}=\mathbf{y} \text { and }-c_{j} \leq z_{j} \leq c_{j} .
$$

- In the complex setting, recast as a second order cone program

Basis Pursuit - Null Space Property

Basis Pursuit - Null Space Property

$\Delta_{1}(A \mathbf{x})=\mathbf{x}$ for every vector \mathbf{x} supported on S if and only if

Basis Pursuit - Null Space Property

$\Delta_{1}(A \mathbf{x})=\mathbf{x}$ for every vector \mathbf{x} supported on S if and only if
(NSP) $\quad\left\|\mathbf{u}_{S}\right\|_{1}<\left\|\mathbf{u}_{\bar{s}}\right\|_{1}, \quad$ all $\mathbf{u} \in \operatorname{ker} A \backslash\{\mathbf{0}\}$.

Basis Pursuit - Null Space Property

$\Delta_{1}(A \mathbf{x})=\mathbf{x}$ for every vector \mathbf{x} supported on S if and only if
(NSP) $\quad\left\|\mathbf{u}_{S}\right\|_{1}<\left\|\mathbf{u}_{\bar{s}}\right\|_{1}, \quad$ all $\mathbf{u} \in \operatorname{ker} A \backslash\{\mathbf{0}\}$.

For real measurement matrices,

Basis Pursuit - Null Space Property

$\Delta_{1}(A \mathbf{x})=\mathbf{x}$ for every vector \mathbf{x} supported on S if and only if
(NSP) $\quad\left\|\mathbf{u}_{S}\right\|_{1}<\left\|\mathbf{u}_{\bar{S}}\right\|_{1}, \quad$ all $\mathbf{u} \in \operatorname{ker} A \backslash\{\mathbf{0}\}$.
For real measurement matrices, real and complex NSPs read

Basis Pursuit - Null Space Property

$\Delta_{1}(A \mathbf{x})=\mathbf{x}$ for every vector \mathbf{x} supported on S if and only if
(NSP) $\quad\left\|\mathbf{u}_{S}\right\|_{1}<\left\|\mathbf{u}_{\bar{S}}\right\|_{1}, \quad$ all $\mathbf{u} \in \operatorname{ker} A \backslash\{\mathbf{0}\}$.
For real measurement matrices, real and complex NSPs read

$$
\sum_{j \in S}\left|u_{j}\right|<\sum_{\ell \in \bar{S}}\left|u_{\ell}\right|, \quad \quad \text { all } \mathbf{u} \in \operatorname{ker}_{\mathbb{R}} A \backslash\{0\}
$$

Basis Pursuit - Null Space Property

$\Delta_{1}(A \mathbf{x})=\mathbf{x}$ for every vector \mathbf{x} supported on S if and only if
(NSP) $\quad\left\|\mathbf{u}_{S}\right\|_{1}<\left\|\mathbf{u}_{\bar{S}}\right\|_{1}, \quad$ all $\mathbf{u} \in \operatorname{ker} A \backslash\{\mathbf{0}\}$.
For real measurement matrices, real and complex NSPs read

$$
\begin{array}{cl}
\sum_{j \in S}\left|u_{j}\right|<\sum_{\ell \in \bar{S}}\left|u_{\ell}\right|, & \text { all } \mathbf{u} \in \operatorname{ker}_{\mathbb{R}} A \backslash\{0\}, \\
\sum_{j \in S} \sqrt{v_{j}^{2}+w_{j}^{2}}<\sum_{\ell \in \bar{S}} \sqrt{v_{\ell}^{2}+w_{\ell}^{2}}, & \text { all }(\mathbf{v}, \mathbf{w}) \in\left(\operatorname{ker}_{\mathbb{R}} A\right)^{2} \backslash\{0\} .
\end{array}
$$

Basis Pursuit - Null Space Property

$\Delta_{1}(A \mathbf{x})=\mathbf{x}$ for every vector \mathbf{x} supported on S if and only if
(NSP) $\quad\left\|\mathbf{u}_{S}\right\|_{1}<\left\|\mathbf{u}_{\bar{S}}\right\|_{1}, \quad$ all $\mathbf{u} \in \operatorname{ker} A \backslash\{\mathbf{0}\}$.
For real measurement matrices, real and complex NSPs read

$$
\begin{array}{cl}
\sum_{j \in S}\left|u_{j}\right|<\sum_{\ell \in \bar{S}}\left|u_{\ell}\right|, & \text { all } \mathbf{u} \in \operatorname{ker}_{\mathbb{R}} A \backslash\{0\}, \\
\sum_{j \in S} \sqrt{v_{j}^{2}+w_{j}^{2}}<\sum_{\ell \in \bar{S}} \sqrt{v_{\ell}^{2}+w_{\ell}^{2}}, & \text { all }(\mathbf{v}, \mathbf{w}) \in\left(\operatorname{ker}_{\mathbb{R}} A\right)^{2} \backslash\{0\} .
\end{array}
$$

Real and complex NSPs are in fact equivalent.

Orthogonal Matching Pursuit

Orthogonal Matching Pursuit

Starting with $S^{0}=\emptyset$ and $\mathbf{x}^{0}=\mathbf{0}$, iterate
$\left(\mathrm{OMP}_{1}\right) \quad S^{n+1}=S^{n} \cup\left\{j^{n+1}:=\underset{j \in[N]}{\operatorname{argmax}}\left\{\left|\left(A^{*}\left(\mathbf{y}-A \mathbf{x}^{n}\right)\right) j\right|\right\}\right\}$,
$\left(\mathrm{OMP}_{2}\right) \quad \mathbf{x}^{n+1}=\underset{\mathbf{z} \in \mathbb{C}^{N}}{\operatorname{argmin}}\left\{\|\mathbf{y}-A \mathbf{z}\|_{2}, \operatorname{supp}(\mathbf{z}) \subseteq S^{n+1}\right\}$.

Orthogonal Matching Pursuit

Starting with $S^{0}=\emptyset$ and $\mathbf{x}^{0}=\mathbf{0}$, iterate
$\left(\mathrm{OMP}_{1}\right) \quad S^{n+1}=S^{n} \cup\left\{j^{n+1}:=\underset{\left.A_{\in} \mid N\right]}{\operatorname{argmax}}\left\{\left|\left(A^{*}\left(\mathbf{y}-A \boldsymbol{x}^{n}\right)\right) j\right|\right\}\right\}$,
$\left(\mathrm{OMP}_{2}\right) \quad \mathbf{x}^{n+1}=\underset{\mathbf{z} \in \mathbb{C}^{N}}{\operatorname{argmin}}\left\{\|\mathbf{y}-A \mathbf{z}\|_{2}, \operatorname{supp}(\mathbf{z}) \subseteq S^{n+1}\right\}$.

- The norm of the residual decreases according to

$$
\left\|\mathbf{y}-A \mathbf{x}^{n+1}\right\|_{2}^{2} \leq\left\|\mathbf{y}-A \mathbf{x}^{n}\right\|_{2}^{2}-\left|\left(A^{*}\left(\mathbf{y}-A \mathbf{x}^{n}\right)\right)_{j^{n+1}}\right|^{2}
$$

Orthogonal Matching Pursuit

Starting with $S^{0}=\emptyset$ and $\mathbf{x}^{0}=\mathbf{0}$, iterate
$\left(\mathrm{OMP}_{1}\right) \quad S^{n+1}=S^{n} \cup\left\{j^{n+1}:=\underset{A_{i}}{\operatorname{argmax}}\left\{\left|\left(A^{*}\left(\mathbf{y}-A \mathbf{x}^{n}\right)\right) j\right|\right\}\right\}$,
$\left(\mathrm{OMP}_{2}\right) \quad \mathbf{x}^{n+1}=\underset{\mathbf{z} \in \mathbb{C}^{N}}{\operatorname{argmin}}\left\{\|\mathbf{y}-A \mathbf{z}\|_{2}, \operatorname{supp}(\mathbf{z}) \subseteq S^{n+1}\right\}$.

- The norm of the residual decreases according to

$$
\left\|\mathbf{y}-A \mathbf{x}^{n+1}\right\|_{2}^{2} \leq\left\|\mathbf{y}-A \mathbf{x}^{n}\right\|_{2}^{2}-\left|\left(A^{*}\left(\mathbf{y}-A \mathbf{x}^{n}\right)\right)_{j^{n+1}}\right|^{2} .
$$

- Every vector $\mathbf{x}_{\neq 0}$ supported on $S, \operatorname{card}(S)=s$, is recovered from $\mathbf{y}=A \mathbf{x}$ after at most s iterations of OMP if and only if A_{S} is injective and
(ERC)

$$
\max _{j \in S}\left|\left(A^{*} \mathbf{r}\right)_{j}\right|>\max _{\ell \in \bar{S}}\left|\left(A^{*} \mathbf{r}\right)_{\ell}\right|
$$

for all $\mathbf{r}_{\neq \mathbf{0}} \in\{A \mathbf{z}, \operatorname{supp}(\mathbf{z}) \subseteq S\}$.

Iterative Hard Thresholding and Hard Thresholding Pursuit

Iterative Hard Thresholding and Hard Thresholding Pursuit

- solving the rectangular system $A \mathbf{x}=\mathbf{y}$ amounts to solving the square system $A^{*} A \mathbf{x}=A^{*} \mathbf{y}$,

Iterative Hard Thresholding and Hard Thresholding Pursuit

- solving the rectangular system $A \mathbf{x}=\mathbf{y}$ amounts to solving the square system $A^{*} A \mathbf{x}=A^{*} \mathbf{y}$,
- classical iterative methods suggest the iteration $\mathbf{x}^{n+1}=\mathbf{x}^{n}+A^{*}\left(\mathbf{y}-A \mathbf{x}^{n}\right)$,

Iterative Hard Thresholding and Hard Thresholding Pursuit

- solving the rectangular system $A \mathbf{x}=\mathbf{y}$ amounts to solving the square system $A^{*} A \mathbf{x}=A^{*} \mathbf{y}$,
- classical iterative methods suggest the iteration $\mathbf{x}^{n+1}=\mathbf{x}^{n}+A^{*}\left(\mathbf{y}-A \mathbf{x}^{n}\right)$,
- at each iteration, keep s largest absolute entries and set the other ones to zero.

Iterative Hard Thresholding and Hard Thresholding Pursuit

- solving the rectangular system $A \mathbf{x}=\mathbf{y}$ amounts to solving the square system $A^{*} A \mathbf{x}=A^{*} \mathbf{y}$,
- classical iterative methods suggest the iteration $\mathbf{x}^{n+1}=\mathbf{x}^{n}+A^{*}\left(\mathbf{y}-A \mathbf{x}^{n}\right)$,
- at each iteration, keep s largest absolute entries and set the other ones to zero.

IHT: Start with an s-sparse $\mathbf{x}^{0} \in \mathbb{C}^{N}$ and iterate:

$$
\begin{equation*}
\mathbf{x}^{n+1}=H_{s}\left(\mathbf{x}^{n}+A^{*}\left(\mathbf{y}-A \mathbf{x}^{n}\right)\right) \tag{IHT}
\end{equation*}
$$

until a stopping criterion is met.

Iterative Hard Thresholding and Hard Thresholding Pursuit

- solving the rectangular system $A \mathbf{x}=\mathbf{y}$ amounts to solving the square system $A^{*} A \mathbf{x}=A^{*} \mathbf{y}$,
- classical iterative methods suggest the iteration $\mathbf{x}^{n+1}=\mathbf{x}^{n}+A^{*}\left(\mathbf{y}-A \mathbf{x}^{n}\right)$,
- at each iteration, keep s largest absolute entries and set the other ones to zero.

IHT: Start with an s-sparse $\mathbf{x}^{0} \in \mathbb{C}^{N}$ and iterate:
(IHT)

$$
\mathbf{x}^{n+1}=H_{s}\left(\mathbf{x}^{n}+A^{*}\left(\mathbf{y}-A \mathbf{x}^{n}\right)\right)
$$

until a stopping criterion is met.
HTP: Start with an s-sparse $\mathbf{x}^{0} \in \mathbb{C}^{N}$ and iterate:

Iterative Hard Thresholding and Hard Thresholding Pursuit

- solving the rectangular system $A \mathbf{x}=\mathbf{y}$ amounts to solving the square system $A^{*} A \mathbf{x}=A^{*} \mathbf{y}$,
- classical iterative methods suggest the iteration $\mathbf{x}^{n+1}=\mathbf{x}^{n}+A^{*}\left(\mathbf{y}-A \mathbf{x}^{n}\right)$,
- at each iteration, keep s largest absolute entries and set the other ones to zero.

IHT: Start with an s-sparse $\mathbf{x}^{0} \in \mathbb{C}^{N}$ and iterate:
(IHT)

$$
\mathbf{x}^{n+1}=H_{s}\left(\mathbf{x}^{n}+A^{*}\left(\mathbf{y}-A \mathbf{x}^{n}\right)\right)
$$

until a stopping criterion is met.
HTP: Start with an s-sparse $\mathbf{x}^{0} \in \mathbb{C}^{N}$ and iterate:
(HTP_{1})
$\left(\mathrm{HTP}_{2}\right)$

Iterative Hard Thresholding and Hard Thresholding Pursuit

- solving the rectangular system $A \mathbf{x}=\mathbf{y}$ amounts to solving the square system $A^{*} A \mathbf{x}=A^{*} \mathbf{y}$,
- classical iterative methods suggest the iteration $\mathbf{x}^{n+1}=\mathbf{x}^{n}+A^{*}\left(\mathbf{y}-A \mathbf{x}^{n}\right)$,
- at each iteration, keep s largest absolute entries and set the other ones to zero.

IHT: Start with an s-sparse $\mathbf{x}^{0} \in \mathbb{C}^{N}$ and iterate:
(IHT)

$$
\mathbf{x}^{n+1}=H_{s}\left(\mathbf{x}^{n}+A^{*}\left(\mathbf{y}-A \mathbf{x}^{n}\right)\right)
$$

until a stopping criterion is met.
HTP: Start with an s-sparse $\mathbf{x}^{0} \in \mathbb{C}^{N}$ and iterate:
$\left(\mathrm{HTP}_{1}\right) \quad S^{n+1}=\left\{s\right.$ largest abs. entries of $\left.\mathbf{x}^{n}+A^{*}\left(\mathbf{y}-A \mathbf{x}^{n}\right)\right\}$,
$\left(\mathrm{HTP}_{2}\right)$

Iterative Hard Thresholding and Hard Thresholding Pursuit

- solving the rectangular system $A \mathbf{x}=\mathbf{y}$ amounts to solving the square system $A^{*} A \mathbf{x}=A^{*} \mathbf{y}$,
- classical iterative methods suggest the iteration $\mathbf{x}^{n+1}=\mathbf{x}^{n}+A^{*}\left(\mathbf{y}-A \mathbf{x}^{n}\right)$,
- at each iteration, keep s largest absolute entries and set the other ones to zero.

IHT: Start with an s-sparse $\mathbf{x}^{0} \in \mathbb{C}^{N}$ and iterate:

$$
\begin{equation*}
\mathbf{x}^{n+1}=H_{s}\left(\mathbf{x}^{n}+A^{*}\left(\mathbf{y}-A \mathbf{x}^{n}\right)\right) \tag{IHT}
\end{equation*}
$$

until a stopping criterion is met.
HTP: Start with an s-sparse $\mathbf{x}^{0} \in \mathbb{C}^{N}$ and iterate:
$\left(\mathrm{HTP}_{1}\right) \quad S^{n+1}=\left\{s\right.$ largest abs. entries of $\left.\mathbf{x}^{n}+A^{*}\left(\mathbf{y}-A \mathbf{x}^{n}\right)\right\}$,
$\left(\mathrm{HTP}_{2}\right) \quad \mathbf{x}^{n+1}=\operatorname{argmin}\left\{\|\mathbf{y}-A \mathbf{z}\|_{2}, \operatorname{supp}(\mathbf{z}) \subseteq S^{n+1}\right\}$,

Iterative Hard Thresholding and Hard Thresholding Pursuit

- solving the rectangular system $A \mathbf{x}=\mathbf{y}$ amounts to solving the square system $A^{*} A \mathbf{x}=A^{*} \mathbf{y}$,
- classical iterative methods suggest the iteration $\mathbf{x}^{n+1}=\mathbf{x}^{n}+A^{*}\left(\mathbf{y}-A \mathbf{x}^{n}\right)$,
- at each iteration, keep s largest absolute entries and set the other ones to zero.

IHT: Start with an s-sparse $\mathbf{x}^{0} \in \mathbb{C}^{N}$ and iterate:

$$
\begin{equation*}
\mathbf{x}^{n+1}=H_{s}\left(\mathbf{x}^{n}+A^{*}\left(\mathbf{y}-A \mathbf{x}^{n}\right)\right) \tag{IHT}
\end{equation*}
$$

until a stopping criterion is met.
HTP: Start with an s-sparse $\mathbf{x}^{0} \in \mathbb{C}^{N}$ and iterate:
$\left(\mathrm{HTP}_{1}\right) \quad S^{n+1}=\left\{s\right.$ largest abs. entries of $\left.\mathbf{x}^{n}+A^{*}\left(\mathbf{y}-A \mathbf{x}^{n}\right)\right\}$,
$\left(\mathrm{HTP}_{2}\right) \quad \mathbf{x}^{n+1}=\operatorname{argmin}\left\{\|\mathbf{y}-A \mathbf{z}\|_{2}, \operatorname{supp}(\mathbf{z}) \subseteq S^{n+1}\right\}$,
until a stopping criterion is met $\left(S^{n+1}=S^{n}\right.$ is natural here)

