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Coherence

For a matrix with £>-normalized columns ay,...,ap, define

= a;,a;)|.
1 r;.;gleI( i aj)|

As a rule, the smaller the coherence, the better.

However, the Welch bound reads

» Welch bound achieved at and only at equiangular tight frames.

» Deterministic matrices with coherence p < c¢//m exist.
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» Every s-sparse x € CV is recovered from y = Ax € C™ via at
most s iterations of OMP provided

1
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» Every s-sparse x € CV is recovered from y = Ax € C™ via
Basis Pursuit provided

1
2s —1°
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» In fact, the Exact Recovery Condition can be rephrased as
|ALAgllisn < 1,

and this implies the Null Space Property.
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Situation circa 2004

The coherence conditions for s-sparse recovery are of the type

p<

Uw\n

while the Welch bound (for N > 2m, say) reads

=

Bk

Therefore, arguments based on coherence necessitate

N

m> cs”.

This is far from the ideal linear scaling of m in s...

We now introduce new tools to break this quadratic barrier.
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Restricted Isometry Constants

Restricted Isometry Constant s = the smallest 6 > 0 such that
(1—9)|zl3 < ||Az||I3 < (1+0)||z]|3 for all s-sparse z € CV.
Alternative form:

0s = AtAs — 1Id .
s car?(%))(gs H 57 H2_>2

Suitable CS matrices have small restricted isometry constants.

Typically, s < d, holds for a number of random measurements

m = ? sin(eN/s).

In fact, 45 < 4, imposes m > 52
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Exact Sparse Recovery via ¢1-Minimization when &, < 1/3

Take v € ker A\ {0}. Consider sets Sp, Si, ... of s indices ordered
by decreasing magnitude of entries of v.

Ivs[I3 <

At vs,)lI3 = 1_5 > (Alvs,), A(-vs,))

k>1

lvss ll2[lvs, 2
S k>1

Simplify by |lvs,||2 and observe that

1
[vs, ll2 < \fHVSH\h
to obtain
0o 1
HV50H2 < 1— 3 \[ ”VHlv

hence |Jvs, |1 <

Note that p := d2s/(1 — d25) < 1/2 whenever 625 < 1/3.
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Objective: for p € [1,2], for all x € CN and e € C™ with ||e[[> < #:

stabilit
J robustness

C . ’ - \
Ix — A(Ax + e)||, < ey AL Ix —xs||1 + D s*/P E

where A(y) = A1,(y) := argmin||z||; subject to [|[Az —y|]> < 7.
Takingx=v € CN, e = —Av € C™, and 1 = ||Av> gives

C _
vllp = =75 llvslla + DsY/P2| Av|l2

for all S C [N] with card(S) = s.
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Robust Null Space Property

For g € [1,2], A € C™N has the £4-robust null space property of
order s (wrto || - ||) with constants 0 < p < 1 and 7 > 0 if, for any
set S C [N] with card(S) <,

14 N
lvsllg < a1/q ||v§||1 + 7 [|Av|| for all v e C".

> £4-RNSP (wrto || - ||) = £,-RSNP (wrto s¥/P~1/4| .|
whenever 1 < p < g <2.

» (4-RNSP (wrto || - ||) implies that, for 1 < p < gq,

lz—xllp < 7 (lzla—[xl+204(x)1) + D 54779 | Az—x)|

51_1/P

for all x,z € CN. The converse holds when g = 1.
> (2-RNSP (wrto || - ||2) holds when 6,5 < 1//2.
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Iterative Hard Thresholding and Hard Thresholding Pursuit

» solving the rectangular system Ax =y amounts to solving the
square system A*Ax = A%y,

» classical iterative methods suggest the iteration
xn+1 — x" _|_A*(y _ AX”),

> at each iteration, keep s largest absolute entries and set the
other ones to zero.

IHT: Start with an s-sparse x° € CV and iterate:

(IHT) X" = Hy(x" + A*(y — Ax"))

until a stopping criterion is met.

HTP: Start with an s-sparse x° € CV and iterate:

(HTPy) S"*! = {s largest abs. entries of x" + A*(y — Ax")},
(HTP2) x"*! = argmin{|ly — Az||2, supp(z) C S"**},

until a stopping criterion is met (S"*1 = S" is natural here).
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Suppose that 435 < 1/\/§ Then, for some p < 1 and 7 > 0, the
following facts hold for all x € CN and e € C™, where S denotes
an index set of s largest absolute entries of x:

> lxs = x"l2 < plxs — x"[l2 + (1 = p)7| Axs + €],

Ixs = x"l2 < p"l|xs — x°||2 + 7| Axg + e]|2,
The outpout x* of the algorithms satisfy

v

v

Ixs —xF||2 < 7| Axs +ell2,

v

With 2s in place of s in the algorithms, if dgs < 1/\/§ then

C
Ix — %[l < sio17p Os(X)1 Ds'/P 1 ef, 1<p<2,

v

For HTP, (pseudo)robustness is achieved in < ¢ s iterations.
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Recovery by Orthogonal Matching Pursuit

OMP: Start with S° = () and x° = 0, and iterate:

s" S”IU{_/ '= argmax ‘( (y — Ax"™ ))J’},
x" = argmin, {|ly — Az||2,supp(z) C S"}.

If A has />-normalized columns aq,...,ay, then

‘(A*(y - Axn_l))jn 2
d(ajn, spanfa;,j € S"1])2
2

ly — Ax"||3 = [ly — Ax" 1|3 —

<lly — Ax"H5 — | (A*(y — AX"H)).

Jn

» Suppose that d13s < 1/6. Then s-sparse recovery via 12s
iterations of OMP is stable and robust.

» Challenge: natural proof of OMP success in c's iterations?



