
Overview of the
Mathematics of Compressive Sensing

Simon Foucart

Reading Seminar on
“Compressive Sensing, Extensions, and Applications”

Texas A&M University
8 October 2015

Coherence-based Recovery Guarantees

Coherence

For a matrix with `2-normalized columns a1, . . . , aN , define

µ := max
i 6=j
|〈ai , aj〉| .

As a rule, the smaller the coherence, the better.

However, the Welch bound reads

µ ≥

√
N −m

m(N − 1)
.

I Welch bound achieved at and only at equiangular tight frames.

I Deterministic matrices with coherence µ ≤ c/
√
m exist.

Coherence

For a matrix with `2-normalized columns a1, . . . , aN , define

µ := max
i 6=j
|〈ai , aj〉| .

As a rule, the smaller the coherence, the better.

However, the Welch bound reads

µ ≥

√
N −m

m(N − 1)
.

I Welch bound achieved at and only at equiangular tight frames.

I Deterministic matrices with coherence µ ≤ c/
√
m exist.

Coherence

For a matrix with `2-normalized columns a1, . . . , aN , define

µ := max
i 6=j
|〈ai , aj〉| .

As a rule, the smaller the coherence, the better.

However, the Welch bound reads

µ ≥

√
N −m

m(N − 1)
.

I Welch bound achieved at and only at equiangular tight frames.

I Deterministic matrices with coherence µ ≤ c/
√
m exist.

Coherence

For a matrix with `2-normalized columns a1, . . . , aN , define

µ := max
i 6=j
|〈ai , aj〉| .

As a rule, the smaller the coherence, the better.

However, the Welch bound reads

µ ≥

√
N −m

m(N − 1)
.

I Welch bound achieved at and only at equiangular tight frames.

I Deterministic matrices with coherence µ ≤ c/
√
m exist.

Coherence

For a matrix with `2-normalized columns a1, . . . , aN , define

µ := max
i 6=j
|〈ai , aj〉| .

As a rule, the smaller the coherence, the better.

However, the Welch bound reads

µ ≥

√
N −m

m(N − 1)
.

I Welch bound achieved at and only at equiangular tight frames.

I Deterministic matrices with coherence µ ≤ c/
√
m exist.

Coherence

For a matrix with `2-normalized columns a1, . . . , aN , define

µ := max
i 6=j
|〈ai , aj〉| .

As a rule, the smaller the coherence, the better.

However, the Welch bound reads

µ ≥

√
N −m

m(N − 1)
.

I Welch bound achieved at and only at equiangular tight frames.

I Deterministic matrices with coherence µ ≤ c/
√
m exist.

Recovery Conditions using Coherence

I Every s-sparse x ∈ CN is recovered from y = Ax ∈ Cm via at
most s iterations of OMP provided

µ <
1

2s − 1
.

I Every s-sparse x ∈ CN is recovered from y = Ax ∈ Cm via
Basis Pursuit provided

µ <
1

2s − 1
.

I In fact, the Exact Recovery Condition can be rephrased as

‖A†SAS‖1→1 < 1,

and this implies the Null Space Property.

Recovery Conditions using Coherence

I Every s-sparse x ∈ CN is recovered from y = Ax ∈ Cm via at
most s iterations of OMP provided

µ <
1

2s − 1
.

I Every s-sparse x ∈ CN is recovered from y = Ax ∈ Cm via
Basis Pursuit provided

µ <
1

2s − 1
.

I In fact, the Exact Recovery Condition can be rephrased as

‖A†SAS‖1→1 < 1,

and this implies the Null Space Property.

Recovery Conditions using Coherence

I Every s-sparse x ∈ CN is recovered from y = Ax ∈ Cm via at
most s iterations of OMP provided

µ <
1

2s − 1
.

I Every s-sparse x ∈ CN is recovered from y = Ax ∈ Cm via
Basis Pursuit provided

µ <
1

2s − 1
.

I In fact, the Exact Recovery Condition can be rephrased as

‖A†SAS‖1→1 < 1,

and this implies the Null Space Property.

Recovery Conditions using Coherence

I Every s-sparse x ∈ CN is recovered from y = Ax ∈ Cm via at
most s iterations of OMP provided

µ <
1

2s − 1
.

I Every s-sparse x ∈ CN is recovered from y = Ax ∈ Cm via
Basis Pursuit provided

µ <
1

2s − 1
.

I In fact, the Exact Recovery Condition can be rephrased as

‖A†SAS‖1→1 < 1,

and this implies the Null Space Property.

Situation circa 2004

The coherence conditions for s-sparse recovery are of the type

µ ≤ c

s
,

while the Welch bound (for N ≥ 2m, say) reads

µ ≥ c√
m
.

Therefore, arguments based on coherence necessitate

m ≥ c s2.

This is far from the ideal linear scaling of m in s...

We now introduce new tools to break this quadratic barrier.

Situation circa 2004

The coherence conditions for s-sparse recovery are of the type

µ ≤ c

s
,

while the Welch bound (for N ≥ 2m, say) reads

µ ≥ c√
m
.

Therefore, arguments based on coherence necessitate

m ≥ c s2.

This is far from the ideal linear scaling of m in s...

We now introduce new tools to break this quadratic barrier.

Situation circa 2004

The coherence conditions for s-sparse recovery are of the type

µ ≤ c

s
,

while the Welch bound (for N ≥ 2m, say) reads

µ ≥ c√
m
.

Therefore, arguments based on coherence necessitate

m ≥ c s2.

This is far from the ideal linear scaling of m in s...

We now introduce new tools to break this quadratic barrier.

Situation circa 2004

The coherence conditions for s-sparse recovery are of the type

µ ≤ c

s
,

while the Welch bound (for N ≥ 2m, say) reads

µ ≥ c√
m
.

Therefore, arguments based on coherence necessitate

m ≥ c s2.

This is far from the ideal linear scaling of m in s...

We now introduce new tools to break this quadratic barrier.

Situation circa 2004

The coherence conditions for s-sparse recovery are of the type

µ ≤ c

s
,

while the Welch bound (for N ≥ 2m, say) reads

µ ≥ c√
m
.

Therefore, arguments based on coherence necessitate

m ≥ c s2.

This is far from the ideal linear scaling of m in s...

We now introduce new tools to break this quadratic barrier.

Situation circa 2004

The coherence conditions for s-sparse recovery are of the type

µ ≤ c

s
,

while the Welch bound (for N ≥ 2m, say) reads

µ ≥ c√
m
.

Therefore, arguments based on coherence necessitate

m ≥ c s2.

This is far from the ideal linear scaling of m in s...

We now introduce new tools to break this quadratic barrier.

RIP-based Recovery Guarantees

Restricted Isometry Constants

Restricted Isometry Constant δs = the smallest δ > 0 such that

(1− δ)‖z‖22 ≤ ‖Az‖22 ≤ (1 + δ)‖z‖22 for all s-sparse z ∈ CN .

Alternative form:

δs = max
card(S)≤s

‖A∗SAS − Id‖2→2.

Suitable CS matrices have small restricted isometry constants.

Typically, δs ≤ δ∗ holds for a number of random measurements

m ≈

c(δ∗)
c

δ2∗

s ln(eN/s).

In fact, δs ≤ δ∗ imposes m ≥ c

δ2∗
s.

Restricted Isometry Constants

Restricted Isometry Constant δs = the smallest δ > 0 such that

(1− δ)‖z‖22 ≤ ‖Az‖22 ≤ (1 + δ)‖z‖22 for all s-sparse z ∈ CN .

Alternative form:

δs = max
card(S)≤s

‖A∗SAS − Id‖2→2.

Suitable CS matrices have small restricted isometry constants.

Typically, δs ≤ δ∗ holds for a number of random measurements

m ≈

c(δ∗)
c

δ2∗

s ln(eN/s).

In fact, δs ≤ δ∗ imposes m ≥ c

δ2∗
s.

Restricted Isometry Constants

Restricted Isometry Constant δs = the smallest δ > 0 such that

(1− δ)‖z‖22 ≤ ‖Az‖22 ≤ (1 + δ)‖z‖22 for all s-sparse z ∈ CN .

Alternative form:

δs = max
card(S)≤s

‖A∗SAS − Id‖2→2.

Suitable CS matrices have small restricted isometry constants.

Typically, δs ≤ δ∗ holds for a number of random measurements

m ≈

c(δ∗)
c

δ2∗

s ln(eN/s).

In fact, δs ≤ δ∗ imposes m ≥ c

δ2∗
s.

Restricted Isometry Constants

Restricted Isometry Constant δs = the smallest δ > 0 such that

(1− δ)‖z‖22 ≤ ‖Az‖22 ≤ (1 + δ)‖z‖22 for all s-sparse z ∈ CN .

Alternative form:

δs = max
card(S)≤s

‖A∗SAS − Id‖2→2.

Suitable CS matrices have small restricted isometry constants.

Typically, δs ≤ δ∗ holds for a number of random measurements

m ≈

c(δ∗)
c

δ2∗

s ln(eN/s).

In fact, δs ≤ δ∗ imposes m ≥ c

δ2∗
s.

Restricted Isometry Constants

Restricted Isometry Constant δs = the smallest δ > 0 such that

(1− δ)‖z‖22 ≤ ‖Az‖22 ≤ (1 + δ)‖z‖22 for all s-sparse z ∈ CN .

Alternative form:

δs = max
card(S)≤s

‖A∗SAS − Id‖2→2.

Suitable CS matrices have small restricted isometry constants.

Typically, δs ≤ δ∗ holds for a number of random measurements

m ≈ c(δ∗)

c

δ2∗

s ln(eN/s).

In fact, δs ≤ δ∗ imposes m ≥ c

δ2∗
s.

Restricted Isometry Constants

Restricted Isometry Constant δs = the smallest δ > 0 such that

(1− δ)‖z‖22 ≤ ‖Az‖22 ≤ (1 + δ)‖z‖22 for all s-sparse z ∈ CN .

Alternative form:

δs = max
card(S)≤s

‖A∗SAS − Id‖2→2.

Suitable CS matrices have small restricted isometry constants.

Typically, δs ≤ δ∗ holds for a number of random measurements

m ≈

c(δ∗)

c

δ2∗
s ln(eN/s).

In fact, δs ≤ δ∗ imposes m ≥ c

δ2∗
s.

Restricted Isometry Constants

Restricted Isometry Constant δs = the smallest δ > 0 such that

(1− δ)‖z‖22 ≤ ‖Az‖22 ≤ (1 + δ)‖z‖22 for all s-sparse z ∈ CN .

Alternative form:

δs = max
card(S)≤s

‖A∗SAS − Id‖2→2.

Suitable CS matrices have small restricted isometry constants.

Typically, δs ≤ δ∗ holds for a number of random measurements

m ≈

c(δ∗)

c

δ2∗
s ln(eN/s).

In fact, δs ≤ δ∗ imposes m ≥ c

δ2∗
s.

Exact Sparse Recovery via `1-Minimization when δ2s < 1/3

Take v ∈ kerA \ {0}. Consider sets S0,S1, . . . of s indices ordered
by decreasing magnitude of entries of v.

‖vS0‖
2
2 ≤ 1

1− δ2s
‖A(vS0)‖22 =

1

1− δ2s

∑
k≥1
〈A(vS0),A(−vSk)〉

≤ 1

1− δ2s

∑
k≥1

δ2s‖vS0‖2‖vSk‖2.

Simplify by ‖vS0‖2 and observe that

‖vSk‖2 ≤
1√
s
‖vSk−1

‖1
to obtain

‖vS0‖2 ≤
δ2s

1− δ2s
1√
s
‖v‖1, hence ‖vS0‖1 ≤

δ2s
1− δ2s

‖v‖1.

Note that ρ := δ2s/(1− δ2s) < 1/2 whenever δ2s < 1/3.

Exact Sparse Recovery via `1-Minimization when δ2s < 1/3

Take v ∈ kerA \ {0}.

Consider sets S0,S1, . . . of s indices ordered
by decreasing magnitude of entries of v.

‖vS0‖
2
2 ≤ 1

1− δ2s
‖A(vS0)‖22 =

1

1− δ2s

∑
k≥1
〈A(vS0),A(−vSk)〉

≤ 1

1− δ2s

∑
k≥1

δ2s‖vS0‖2‖vSk‖2.

Simplify by ‖vS0‖2 and observe that

‖vSk‖2 ≤
1√
s
‖vSk−1

‖1
to obtain

‖vS0‖2 ≤
δ2s

1− δ2s
1√
s
‖v‖1, hence ‖vS0‖1 ≤

δ2s
1− δ2s

‖v‖1.

Note that ρ := δ2s/(1− δ2s) < 1/2 whenever δ2s < 1/3.

Exact Sparse Recovery via `1-Minimization when δ2s < 1/3

Take v ∈ kerA \ {0}. Consider sets S0,S1, . . . of s indices ordered
by decreasing magnitude of entries of v.

‖vS0‖
2
2 ≤ 1

1− δ2s
‖A(vS0)‖22 =

1

1− δ2s

∑
k≥1
〈A(vS0),A(−vSk)〉

≤ 1

1− δ2s

∑
k≥1

δ2s‖vS0‖2‖vSk‖2.

Simplify by ‖vS0‖2 and observe that

‖vSk‖2 ≤
1√
s
‖vSk−1

‖1
to obtain

‖vS0‖2 ≤
δ2s

1− δ2s
1√
s
‖v‖1, hence ‖vS0‖1 ≤

δ2s
1− δ2s

‖v‖1.

Note that ρ := δ2s/(1− δ2s) < 1/2 whenever δ2s < 1/3.

Exact Sparse Recovery via `1-Minimization when δ2s < 1/3

Take v ∈ kerA \ {0}. Consider sets S0,S1, . . . of s indices ordered
by decreasing magnitude of entries of v.

‖vS0‖
2
2 ≤

1

1− δ2s
‖A(vS0)‖22 =

1

1− δ2s

∑
k≥1
〈A(vS0),A(−vSk)〉

≤ 1

1− δ2s

∑
k≥1

δ2s‖vS0‖2‖vSk‖2.

Simplify by ‖vS0‖2 and observe that

‖vSk‖2 ≤
1√
s
‖vSk−1

‖1
to obtain

‖vS0‖2 ≤
δ2s

1− δ2s
1√
s
‖v‖1, hence ‖vS0‖1 ≤

δ2s
1− δ2s

‖v‖1.

Note that ρ := δ2s/(1− δ2s) < 1/2 whenever δ2s < 1/3.

Exact Sparse Recovery via `1-Minimization when δ2s < 1/3

Take v ∈ kerA \ {0}. Consider sets S0,S1, . . . of s indices ordered
by decreasing magnitude of entries of v.

‖vS0‖
2
2 ≤ 1

1− δ2s
‖A(vS0)‖22

=
1

1− δ2s

∑
k≥1
〈A(vS0),A(−vSk)〉

≤ 1

1− δ2s

∑
k≥1

δ2s‖vS0‖2‖vSk‖2.

Simplify by ‖vS0‖2 and observe that

‖vSk‖2 ≤
1√
s
‖vSk−1

‖1
to obtain

‖vS0‖2 ≤
δ2s

1− δ2s
1√
s
‖v‖1, hence ‖vS0‖1 ≤

δ2s
1− δ2s

‖v‖1.

Note that ρ := δ2s/(1− δ2s) < 1/2 whenever δ2s < 1/3.

Exact Sparse Recovery via `1-Minimization when δ2s < 1/3

Take v ∈ kerA \ {0}. Consider sets S0,S1, . . . of s indices ordered
by decreasing magnitude of entries of v.

‖vS0‖
2
2 ≤ 1

1− δ2s
‖A(vS0)‖22 =

1

1− δ2s

∑
k≥1
〈A(vS0),A(−vSk)〉

≤ 1

1− δ2s

∑
k≥1

δ2s‖vS0‖2‖vSk‖2.

Simplify by ‖vS0‖2 and observe that

‖vSk‖2 ≤
1√
s
‖vSk−1

‖1
to obtain

‖vS0‖2 ≤
δ2s

1− δ2s
1√
s
‖v‖1, hence ‖vS0‖1 ≤

δ2s
1− δ2s

‖v‖1.

Note that ρ := δ2s/(1− δ2s) < 1/2 whenever δ2s < 1/3.

Exact Sparse Recovery via `1-Minimization when δ2s < 1/3

Take v ∈ kerA \ {0}. Consider sets S0,S1, . . . of s indices ordered
by decreasing magnitude of entries of v.

‖vS0‖
2
2 ≤ 1

1− δ2s
‖A(vS0)‖22 =

1

1− δ2s

∑
k≥1
〈A(vS0),A(−vSk)〉

≤ 1

1− δ2s

∑
k≥1

δ2s‖vS0‖2‖vSk‖2.

Simplify by ‖vS0‖2 and observe that

‖vSk‖2 ≤
1√
s
‖vSk−1

‖1
to obtain

‖vS0‖2 ≤
δ2s

1− δ2s
1√
s
‖v‖1, hence ‖vS0‖1 ≤

δ2s
1− δ2s

‖v‖1.

Note that ρ := δ2s/(1− δ2s) < 1/2 whenever δ2s < 1/3.

Exact Sparse Recovery via `1-Minimization when δ2s < 1/3

Take v ∈ kerA \ {0}. Consider sets S0,S1, . . . of s indices ordered
by decreasing magnitude of entries of v.

‖vS0‖
2
2 ≤ 1

1− δ2s
‖A(vS0)‖22 =

1

1− δ2s

∑
k≥1
〈A(vS0),A(−vSk)〉

≤ 1

1− δ2s

∑
k≥1

δ2s‖vS0‖2‖vSk‖2.

Simplify by ‖vS0‖2

and observe that

‖vSk‖2 ≤
1√
s
‖vSk−1

‖1
to obtain

‖vS0‖2 ≤
δ2s

1− δ2s
1√
s
‖v‖1, hence ‖vS0‖1 ≤

δ2s
1− δ2s

‖v‖1.

Note that ρ := δ2s/(1− δ2s) < 1/2 whenever δ2s < 1/3.

Exact Sparse Recovery via `1-Minimization when δ2s < 1/3

Take v ∈ kerA \ {0}. Consider sets S0,S1, . . . of s indices ordered
by decreasing magnitude of entries of v.

‖vS0‖
2
2 ≤ 1

1− δ2s
‖A(vS0)‖22 =

1

1− δ2s

∑
k≥1
〈A(vS0),A(−vSk)〉

≤ 1

1− δ2s

∑
k≥1

δ2s‖vS0‖2‖vSk‖2.

Simplify by ‖vS0‖2 and observe that

‖vSk‖2 ≤
1√
s
‖vSk−1

‖1

to obtain

‖vS0‖2 ≤
δ2s

1− δ2s
1√
s
‖v‖1, hence ‖vS0‖1 ≤

δ2s
1− δ2s

‖v‖1.

Note that ρ := δ2s/(1− δ2s) < 1/2 whenever δ2s < 1/3.

Exact Sparse Recovery via `1-Minimization when δ2s < 1/3

Take v ∈ kerA \ {0}. Consider sets S0,S1, . . . of s indices ordered
by decreasing magnitude of entries of v.

‖vS0‖
2
2 ≤ 1

1− δ2s
‖A(vS0)‖22 =

1

1− δ2s

∑
k≥1
〈A(vS0),A(−vSk)〉

≤ 1

1− δ2s

∑
k≥1

δ2s‖vS0‖2‖vSk‖2.

Simplify by ‖vS0‖2 and observe that

‖vSk‖2 ≤
1√
s
‖vSk−1

‖1
to obtain

‖vS0‖2 ≤
δ2s

1− δ2s
1√
s
‖v‖1,

hence ‖vS0‖1 ≤
δ2s

1− δ2s
‖v‖1.

Note that ρ := δ2s/(1− δ2s) < 1/2 whenever δ2s < 1/3.

Exact Sparse Recovery via `1-Minimization when δ2s < 1/3

Take v ∈ kerA \ {0}. Consider sets S0,S1, . . . of s indices ordered
by decreasing magnitude of entries of v.

‖vS0‖
2
2 ≤ 1

1− δ2s
‖A(vS0)‖22 =

1

1− δ2s

∑
k≥1
〈A(vS0),A(−vSk)〉

≤ 1

1− δ2s

∑
k≥1

δ2s‖vS0‖2‖vSk‖2.

Simplify by ‖vS0‖2 and observe that

‖vSk‖2 ≤
1√
s
‖vSk−1

‖1
to obtain

‖vS0‖2 ≤
δ2s

1− δ2s
1√
s
‖v‖1, hence ‖vS0‖1 ≤

δ2s
1− δ2s

‖v‖1.

Note that ρ := δ2s/(1− δ2s) < 1/2 whenever δ2s < 1/3.

Exact Sparse Recovery via `1-Minimization when δ2s < 1/3

Take v ∈ kerA \ {0}. Consider sets S0,S1, . . . of s indices ordered
by decreasing magnitude of entries of v.

‖vS0‖
2
2 ≤ 1

1− δ2s
‖A(vS0)‖22 =

1

1− δ2s

∑
k≥1
〈A(vS0),A(−vSk)〉

≤ 1

1− δ2s

∑
k≥1

δ2s‖vS0‖2‖vSk‖2.

Simplify by ‖vS0‖2 and observe that

‖vSk‖2 ≤
1√
s
‖vSk−1

‖1
to obtain

‖vS0‖2 ≤
δ2s

1− δ2s
1√
s
‖v‖1, hence ‖vS0‖1 ≤

δ2s
1− δ2s

‖v‖1.

Note that ρ := δ2s/(1− δ2s) < 1/2 whenever δ2s < 1/3.

Stable and Robust Sparse Recovery via `1-Minimization

Objective: for p ∈ [1, 2], for all x ∈ CN and e ∈ Cm with ‖e‖2 ≤ η:

‖x−∆(Ax + e)‖p ≤

stability︷ ︸︸ ︷
C

s1−1/p
min

xs s−sparse
‖x− xs‖1 +

robustness︷ ︸︸ ︷
D s1/p−1/2 η,

where ∆(y) = ∆1,η(y) := argmin ‖z‖1 subject to ‖Az− y‖2 ≤ η.

Taking x = v ∈ CN , e = −Av ∈ Cm, and η = ‖Av‖2 gives

‖v‖p ≤
C

s1−1/p
‖vS‖1 + D s1/p−1/2‖Av‖2

for all S ⊆ [N] with card(S) = s.

Stable and Robust Sparse Recovery via `1-Minimization

Objective: for p ∈ [1, 2], for all x ∈ CN and e ∈ Cm with ‖e‖2 ≤ η:

‖x−∆(Ax + e)‖p ≤

stability︷ ︸︸ ︷
C

s1−1/p
min

xs s−sparse
‖x− xs‖1 +

robustness︷ ︸︸ ︷
D s1/p−1/2 η,

where ∆(y) = ∆1,η(y) := argmin ‖z‖1 subject to ‖Az− y‖2 ≤ η.

Taking x = v ∈ CN , e = −Av ∈ Cm, and η = ‖Av‖2 gives

‖v‖p ≤
C

s1−1/p
‖vS‖1 + D s1/p−1/2‖Av‖2

for all S ⊆ [N] with card(S) = s.

Stable and Robust Sparse Recovery via `1-Minimization

Objective: for p ∈ [1, 2], for all x ∈ CN and e ∈ Cm with ‖e‖2 ≤ η:

‖x−∆(Ax + e)‖p ≤

stability︷ ︸︸ ︷
C

s1−1/p
min

xs s−sparse
‖x− xs‖1 +

robustness︷ ︸︸ ︷
D s1/p−1/2 η,

where ∆(y) = ∆1,η(y) := argmin ‖z‖1 subject to ‖Az− y‖2 ≤ η.

Taking x = v ∈ CN , e = −Av ∈ Cm, and η = ‖Av‖2 gives

‖v‖p ≤
C

s1−1/p
‖vS‖1 + D s1/p−1/2‖Av‖2

for all S ⊆ [N] with card(S) = s.

Robust Null Space Property

For q ∈ [1, 2], A ∈ Cm×N has the `q-robust null space property of
order s (wrto ‖ · ‖) with constants 0 < ρ < 1 and τ > 0 if, for any
set S ⊂ [N] with card(S) ≤ s,

‖vS‖q ≤
ρ

s1−1/q
‖vS‖1 + τ ‖Av‖ for all v ∈ CN .

I `q-RNSP (wrto ‖ · ‖) ⇒ `p-RSNP (wrto s1/p−1/q‖ · ‖)
whenever 1 ≤ p ≤ q ≤ 2.

I `q-RNSP (wrto ‖ · ‖) implies that, for 1 ≤ p ≤ q,

‖z−x‖p ≤
C

s1−1/p
(
‖z‖1−‖x‖1+2σs(x)1

)
+D s1/p−1/q ‖A(z−x)‖

for all x, z ∈ CN .

The converse holds when q = 1.

I `2-RNSP (wrto ‖ · ‖2) holds when δ2s < 1/
√

2.

Robust Null Space Property

For q ∈ [1, 2], A ∈ Cm×N has the `q-robust null space property of
order s (wrto ‖ · ‖) with constants 0 < ρ < 1 and τ > 0 if, for any
set S ⊂ [N] with card(S) ≤ s,

‖vS‖q ≤
ρ

s1−1/q
‖vS‖1 + τ ‖Av‖ for all v ∈ CN .

I `q-RNSP (wrto ‖ · ‖) ⇒ `p-RSNP (wrto s1/p−1/q‖ · ‖)
whenever 1 ≤ p ≤ q ≤ 2.

I `q-RNSP (wrto ‖ · ‖) implies that, for 1 ≤ p ≤ q,

‖z−x‖p ≤
C

s1−1/p
(
‖z‖1−‖x‖1+2σs(x)1

)
+D s1/p−1/q ‖A(z−x)‖

for all x, z ∈ CN .

The converse holds when q = 1.

I `2-RNSP (wrto ‖ · ‖2) holds when δ2s < 1/
√

2.

Robust Null Space Property

For q ∈ [1, 2], A ∈ Cm×N has the `q-robust null space property of
order s (wrto ‖ · ‖) with constants 0 < ρ < 1 and τ > 0 if, for any
set S ⊂ [N] with card(S) ≤ s,

‖vS‖q ≤
ρ

s1−1/q
‖vS‖1 + τ ‖Av‖ for all v ∈ CN .

I `q-RNSP (wrto ‖ · ‖) ⇒ `p-RSNP (wrto s1/p−1/q‖ · ‖)
whenever 1 ≤ p ≤ q ≤ 2.

I `q-RNSP (wrto ‖ · ‖) implies that, for 1 ≤ p ≤ q,

‖z−x‖p ≤
C

s1−1/p
(
‖z‖1−‖x‖1+2σs(x)1

)
+D s1/p−1/q ‖A(z−x)‖

for all x, z ∈ CN .

The converse holds when q = 1.

I `2-RNSP (wrto ‖ · ‖2) holds when δ2s < 1/
√

2.

Robust Null Space Property

For q ∈ [1, 2], A ∈ Cm×N has the `q-robust null space property of
order s (wrto ‖ · ‖) with constants 0 < ρ < 1 and τ > 0 if, for any
set S ⊂ [N] with card(S) ≤ s,

‖vS‖q ≤
ρ

s1−1/q
‖vS‖1 + τ ‖Av‖ for all v ∈ CN .

I `q-RNSP (wrto ‖ · ‖) ⇒ `p-RSNP (wrto s1/p−1/q‖ · ‖)
whenever 1 ≤ p ≤ q ≤ 2.

I `q-RNSP (wrto ‖ · ‖) implies that, for 1 ≤ p ≤ q,

‖z−x‖p ≤
C

s1−1/p
(
‖z‖1−‖x‖1+2σs(x)1

)
+D s1/p−1/q ‖A(z−x)‖

for all x, z ∈ CN .

The converse holds when q = 1.

I `2-RNSP (wrto ‖ · ‖2) holds when δ2s < 1/
√

2.

Robust Null Space Property

For q ∈ [1, 2], A ∈ Cm×N has the `q-robust null space property of
order s (wrto ‖ · ‖) with constants 0 < ρ < 1 and τ > 0 if, for any
set S ⊂ [N] with card(S) ≤ s,

‖vS‖q ≤
ρ

s1−1/q
‖vS‖1 + τ ‖Av‖ for all v ∈ CN .

I `q-RNSP (wrto ‖ · ‖) ⇒ `p-RSNP (wrto s1/p−1/q‖ · ‖)
whenever 1 ≤ p ≤ q ≤ 2.

I `q-RNSP (wrto ‖ · ‖) implies that, for 1 ≤ p ≤ q,

‖z−x‖p ≤
C

s1−1/p
(
‖z‖1−‖x‖1+2σs(x)1

)
+D s1/p−1/q ‖A(z−x)‖

for all x, z ∈ CN . The converse holds when q = 1.

I `2-RNSP (wrto ‖ · ‖2) holds when δ2s < 1/
√

2.

Robust Null Space Property

For q ∈ [1, 2], A ∈ Cm×N has the `q-robust null space property of
order s (wrto ‖ · ‖) with constants 0 < ρ < 1 and τ > 0 if, for any
set S ⊂ [N] with card(S) ≤ s,

‖vS‖q ≤
ρ

s1−1/q
‖vS‖1 + τ ‖Av‖ for all v ∈ CN .

I `q-RNSP (wrto ‖ · ‖) ⇒ `p-RSNP (wrto s1/p−1/q‖ · ‖)
whenever 1 ≤ p ≤ q ≤ 2.

I `q-RNSP (wrto ‖ · ‖) implies that, for 1 ≤ p ≤ q,

‖z−x‖p ≤
C

s1−1/p
(
‖z‖1−‖x‖1+2σs(x)1

)
+D s1/p−1/q ‖A(z−x)‖

for all x, z ∈ CN . The converse holds when q = 1.

I `2-RNSP (wrto ‖ · ‖2) holds when δ2s < 1/
√

2.

Iterative Hard Thresholding and Hard Thresholding Pursuit

I solving the rectangular system Ax = y amounts to solving the
square system A∗Ax = A∗y,

I classical iterative methods suggest the iteration
xn+1 = xn + A∗(y − Axn),

I at each iteration, keep s largest absolute entries and set the
other ones to zero.

IHT: Start with an s-sparse x0 ∈ CN and iterate:

(IHT) xn+1 = Hs(xn + A∗(y − Axn))

until a stopping criterion is met.

HTP: Start with an s-sparse x0 ∈ CN and iterate:

Sn+1 =
{
s largest abs. entries of xn + A∗(y − Axn)

}
,

(HTP1)

xn+1 = argmin
{
‖y − Az‖2, supp(z) ⊆ Sn+1

}
,

(HTP2)

until a stopping criterion is met (Sn+1 = Sn is natural here).

Iterative Hard Thresholding and Hard Thresholding Pursuit

I solving the rectangular system Ax = y amounts to solving the
square system A∗Ax = A∗y,

I classical iterative methods suggest the iteration
xn+1 = xn + A∗(y − Axn),

I at each iteration, keep s largest absolute entries and set the
other ones to zero.

IHT: Start with an s-sparse x0 ∈ CN and iterate:

(IHT) xn+1 = Hs(xn + A∗(y − Axn))

until a stopping criterion is met.

HTP: Start with an s-sparse x0 ∈ CN and iterate:

Sn+1 =
{
s largest abs. entries of xn + A∗(y − Axn)

}
,

(HTP1)

xn+1 = argmin
{
‖y − Az‖2, supp(z) ⊆ Sn+1

}
,

(HTP2)

until a stopping criterion is met (Sn+1 = Sn is natural here).

Iterative Hard Thresholding and Hard Thresholding Pursuit

I solving the rectangular system Ax = y amounts to solving the
square system A∗Ax = A∗y,

I classical iterative methods suggest the iteration
xn+1 = xn + A∗(y − Axn),

I at each iteration, keep s largest absolute entries and set the
other ones to zero.

IHT: Start with an s-sparse x0 ∈ CN and iterate:

(IHT) xn+1 = Hs(xn + A∗(y − Axn))

until a stopping criterion is met.

HTP: Start with an s-sparse x0 ∈ CN and iterate:

Sn+1 =
{
s largest abs. entries of xn + A∗(y − Axn)

}
,

(HTP1)

xn+1 = argmin
{
‖y − Az‖2, supp(z) ⊆ Sn+1

}
,

(HTP2)

until a stopping criterion is met (Sn+1 = Sn is natural here).

Iterative Hard Thresholding and Hard Thresholding Pursuit

I solving the rectangular system Ax = y amounts to solving the
square system A∗Ax = A∗y,

I classical iterative methods suggest the iteration
xn+1 = xn + A∗(y − Axn),

I at each iteration, keep s largest absolute entries and set the
other ones to zero.

IHT: Start with an s-sparse x0 ∈ CN and iterate:

(IHT) xn+1 = Hs(xn + A∗(y − Axn))

until a stopping criterion is met.

HTP: Start with an s-sparse x0 ∈ CN and iterate:

Sn+1 =
{
s largest abs. entries of xn + A∗(y − Axn)

}
,

(HTP1)

xn+1 = argmin
{
‖y − Az‖2, supp(z) ⊆ Sn+1

}
,

(HTP2)

until a stopping criterion is met (Sn+1 = Sn is natural here).

Iterative Hard Thresholding and Hard Thresholding Pursuit

I solving the rectangular system Ax = y amounts to solving the
square system A∗Ax = A∗y,

I classical iterative methods suggest the iteration
xn+1 = xn + A∗(y − Axn),

I at each iteration, keep s largest absolute entries and set the
other ones to zero.

IHT: Start with an s-sparse x0 ∈ CN and iterate:

(IHT) xn+1 = Hs(xn + A∗(y − Axn))

until a stopping criterion is met.

HTP: Start with an s-sparse x0 ∈ CN and iterate:

Sn+1 =
{
s largest abs. entries of xn + A∗(y − Axn)

}
,

(HTP1)

xn+1 = argmin
{
‖y − Az‖2, supp(z) ⊆ Sn+1

}
,

(HTP2)

until a stopping criterion is met (Sn+1 = Sn is natural here).

Iterative Hard Thresholding and Hard Thresholding Pursuit

I solving the rectangular system Ax = y amounts to solving the
square system A∗Ax = A∗y,

I classical iterative methods suggest the iteration
xn+1 = xn + A∗(y − Axn),

I at each iteration, keep s largest absolute entries and set the
other ones to zero.

IHT: Start with an s-sparse x0 ∈ CN and iterate:

(IHT) xn+1 = Hs(xn + A∗(y − Axn))

until a stopping criterion is met.

HTP: Start with an s-sparse x0 ∈ CN and iterate:

Sn+1 =
{
s largest abs. entries of xn + A∗(y − Axn)

}
,

(HTP1)

xn+1 = argmin
{
‖y − Az‖2, supp(z) ⊆ Sn+1

}
,

(HTP2)

until a stopping criterion is met (Sn+1 = Sn is natural here).

Iterative Hard Thresholding and Hard Thresholding Pursuit

I solving the rectangular system Ax = y amounts to solving the
square system A∗Ax = A∗y,

I classical iterative methods suggest the iteration
xn+1 = xn + A∗(y − Axn),

I at each iteration, keep s largest absolute entries and set the
other ones to zero.

IHT: Start with an s-sparse x0 ∈ CN and iterate:

(IHT) xn+1 = Hs(xn + A∗(y − Axn))

until a stopping criterion is met.

HTP: Start with an s-sparse x0 ∈ CN and iterate:

Sn+1 =
{
s largest abs. entries of xn + A∗(y − Axn)

}
,

(HTP1)

xn+1 = argmin
{
‖y − Az‖2, supp(z) ⊆ Sn+1

}
,

(HTP2)

until a stopping criterion is met (Sn+1 = Sn is natural here).

Iterative Hard Thresholding and Hard Thresholding Pursuit

I solving the rectangular system Ax = y amounts to solving the
square system A∗Ax = A∗y,

I classical iterative methods suggest the iteration
xn+1 = xn + A∗(y − Axn),

I at each iteration, keep s largest absolute entries and set the
other ones to zero.

IHT: Start with an s-sparse x0 ∈ CN and iterate:

(IHT) xn+1 = Hs(xn + A∗(y − Axn))

until a stopping criterion is met.

HTP: Start with an s-sparse x0 ∈ CN and iterate:

Sn+1 =
{
s largest abs. entries of xn + A∗(y − Axn)

}
,(HTP1)

xn+1 = argmin
{
‖y − Az‖2, supp(z) ⊆ Sn+1

}
,

(HTP2)

until a stopping criterion is met (Sn+1 = Sn is natural here).

Iterative Hard Thresholding and Hard Thresholding Pursuit

I solving the rectangular system Ax = y amounts to solving the
square system A∗Ax = A∗y,

I classical iterative methods suggest the iteration
xn+1 = xn + A∗(y − Axn),

I at each iteration, keep s largest absolute entries and set the
other ones to zero.

IHT: Start with an s-sparse x0 ∈ CN and iterate:

(IHT) xn+1 = Hs(xn + A∗(y − Axn))

until a stopping criterion is met.

HTP: Start with an s-sparse x0 ∈ CN and iterate:

Sn+1 =
{
s largest abs. entries of xn + A∗(y − Axn)

}
,(HTP1)

xn+1 = argmin
{
‖y − Az‖2, supp(z) ⊆ Sn+1

}
,(HTP2)

until a stopping criterion is met (Sn+1 = Sn is natural here).

Iterative Hard Thresholding and Hard Thresholding Pursuit

I solving the rectangular system Ax = y amounts to solving the
square system A∗Ax = A∗y,

I classical iterative methods suggest the iteration
xn+1 = xn + A∗(y − Axn),

I at each iteration, keep s largest absolute entries and set the
other ones to zero.

IHT: Start with an s-sparse x0 ∈ CN and iterate:

(IHT) xn+1 = Hs(xn + A∗(y − Axn))

until a stopping criterion is met.

HTP: Start with an s-sparse x0 ∈ CN and iterate:

Sn+1 =
{
s largest abs. entries of xn + A∗(y − Axn)

}
,(HTP1)

xn+1 = argmin
{
‖y − Az‖2, supp(z) ⊆ Sn+1

}
,(HTP2)

until a stopping criterion is met (Sn+1 = Sn is natural here).

Stable and Robust Sparse Recovery via IHT and HTP

Suppose that δ3s < 1/
√

3. Then, for some ρ < 1 and τ > 0, the
following facts hold for all x ∈ CN and e ∈ Cm, where S denotes
an index set of s largest absolute entries of x:

I ‖xS − xn+1‖2 ≤ ρ‖xS − xn‖2 + (1− ρ)τ‖AxS + e‖2,

I ‖xS − xn‖2 ≤ ρn‖xS − x0‖2 + τ‖AxS + e‖2,

I The outpout x] of the algorithms satisfy

‖xS − x]‖2 ≤ τ‖AxS + e‖2,

I With 2s in place of s in the algorithms, if δ6s < 1/
√

3, then

‖x− x]‖p ≤
C

s1−1/p
σs(x)1 + D s1/p−1/2‖e‖2, 1 ≤ p ≤ 2,

I For HTP, (pseudo)robustness is achieved in ≤ c s iterations.

Stable and Robust Sparse Recovery via IHT and HTP

Suppose that δ3s < 1/
√

3.

Then, for some ρ < 1 and τ > 0, the
following facts hold for all x ∈ CN and e ∈ Cm, where S denotes
an index set of s largest absolute entries of x:

I ‖xS − xn+1‖2 ≤ ρ‖xS − xn‖2 + (1− ρ)τ‖AxS + e‖2,

I ‖xS − xn‖2 ≤ ρn‖xS − x0‖2 + τ‖AxS + e‖2,

I The outpout x] of the algorithms satisfy

‖xS − x]‖2 ≤ τ‖AxS + e‖2,

I With 2s in place of s in the algorithms, if δ6s < 1/
√

3, then

‖x− x]‖p ≤
C

s1−1/p
σs(x)1 + D s1/p−1/2‖e‖2, 1 ≤ p ≤ 2,

I For HTP, (pseudo)robustness is achieved in ≤ c s iterations.

Stable and Robust Sparse Recovery via IHT and HTP

Suppose that δ3s < 1/
√

3. Then, for some ρ < 1 and τ > 0, the
following facts hold for all x ∈ CN and e ∈ Cm, where S denotes
an index set of s largest absolute entries of x:

I ‖xS − xn+1‖2 ≤ ρ‖xS − xn‖2 + (1− ρ)τ‖AxS + e‖2,

I ‖xS − xn‖2 ≤ ρn‖xS − x0‖2 + τ‖AxS + e‖2,

I The outpout x] of the algorithms satisfy

‖xS − x]‖2 ≤ τ‖AxS + e‖2,

I With 2s in place of s in the algorithms, if δ6s < 1/
√

3, then

‖x− x]‖p ≤
C

s1−1/p
σs(x)1 + D s1/p−1/2‖e‖2, 1 ≤ p ≤ 2,

I For HTP, (pseudo)robustness is achieved in ≤ c s iterations.

Stable and Robust Sparse Recovery via IHT and HTP

Suppose that δ3s < 1/
√

3. Then, for some ρ < 1 and τ > 0, the
following facts hold for all x ∈ CN and e ∈ Cm, where S denotes
an index set of s largest absolute entries of x:

I ‖xS − xn+1‖2 ≤ ρ‖xS − xn‖2 + (1− ρ)τ‖AxS + e‖2,

I ‖xS − xn‖2 ≤ ρn‖xS − x0‖2 + τ‖AxS + e‖2,

I The outpout x] of the algorithms satisfy

‖xS − x]‖2 ≤ τ‖AxS + e‖2,

I With 2s in place of s in the algorithms, if δ6s < 1/
√

3, then

‖x− x]‖p ≤
C

s1−1/p
σs(x)1 + D s1/p−1/2‖e‖2, 1 ≤ p ≤ 2,

I For HTP, (pseudo)robustness is achieved in ≤ c s iterations.

Stable and Robust Sparse Recovery via IHT and HTP

Suppose that δ3s < 1/
√

3. Then, for some ρ < 1 and τ > 0, the
following facts hold for all x ∈ CN and e ∈ Cm, where S denotes
an index set of s largest absolute entries of x:

I ‖xS − xn+1‖2 ≤ ρ‖xS − xn‖2 + (1− ρ)τ‖AxS + e‖2,

I ‖xS − xn‖2 ≤ ρn‖xS − x0‖2 + τ‖AxS + e‖2,

I The outpout x] of the algorithms satisfy

‖xS − x]‖2 ≤ τ‖AxS + e‖2,

I With 2s in place of s in the algorithms, if δ6s < 1/
√

3, then

‖x− x]‖p ≤
C

s1−1/p
σs(x)1 + D s1/p−1/2‖e‖2, 1 ≤ p ≤ 2,

I For HTP, (pseudo)robustness is achieved in ≤ c s iterations.

Stable and Robust Sparse Recovery via IHT and HTP

Suppose that δ3s < 1/
√

3. Then, for some ρ < 1 and τ > 0, the
following facts hold for all x ∈ CN and e ∈ Cm, where S denotes
an index set of s largest absolute entries of x:

I ‖xS − xn+1‖2 ≤ ρ‖xS − xn‖2 + (1− ρ)τ‖AxS + e‖2,

I ‖xS − xn‖2 ≤ ρn‖xS − x0‖2 + τ‖AxS + e‖2,

I The outpout x] of the algorithms satisfy

‖xS − x]‖2 ≤ τ‖AxS + e‖2,

I With 2s in place of s in the algorithms, if δ6s < 1/
√

3, then

‖x− x]‖p ≤
C

s1−1/p
σs(x)1 + D s1/p−1/2‖e‖2, 1 ≤ p ≤ 2,

I For HTP, (pseudo)robustness is achieved in ≤ c s iterations.

Stable and Robust Sparse Recovery via IHT and HTP

Suppose that δ3s < 1/
√

3. Then, for some ρ < 1 and τ > 0, the
following facts hold for all x ∈ CN and e ∈ Cm, where S denotes
an index set of s largest absolute entries of x:

I ‖xS − xn+1‖2 ≤ ρ‖xS − xn‖2 + (1− ρ)τ‖AxS + e‖2,

I ‖xS − xn‖2 ≤ ρn‖xS − x0‖2 + τ‖AxS + e‖2,

I The outpout x] of the algorithms satisfy

‖xS − x]‖2 ≤ τ‖AxS + e‖2,

I With 2s in place of s in the algorithms, if δ6s < 1/
√

3, then

‖x− x]‖p ≤
C

s1−1/p
σs(x)1 + D s1/p−1/2‖e‖2, 1 ≤ p ≤ 2,

I For HTP, (pseudo)robustness is achieved in ≤ c s iterations.

Stable and Robust Sparse Recovery via IHT and HTP

Suppose that δ3s < 1/
√

3. Then, for some ρ < 1 and τ > 0, the
following facts hold for all x ∈ CN and e ∈ Cm, where S denotes
an index set of s largest absolute entries of x:

I ‖xS − xn+1‖2 ≤ ρ‖xS − xn‖2 + (1− ρ)τ‖AxS + e‖2,

I ‖xS − xn‖2 ≤ ρn‖xS − x0‖2 + τ‖AxS + e‖2,

I The outpout x] of the algorithms satisfy

‖xS − x]‖2 ≤ τ‖AxS + e‖2,

I With 2s in place of s in the algorithms, if δ6s < 1/
√

3, then

‖x− x]‖p ≤
C

s1−1/p
σs(x)1 + D s1/p−1/2‖e‖2, 1 ≤ p ≤ 2,

I For HTP, (pseudo)robustness is achieved in ≤ c s iterations.

Recovery by Orthogonal Matching Pursuit

OMP: Start with S0 = ∅ and x0 = 0, and iterate:

Sn = Sn−1 ∪
{
jn := argmaxj

∣∣(A∗(y − Axn−1)
)
j

∣∣},
xn = argminz

{
‖y − Az‖2, supp(z) ⊆ Sn

}
.

If A has `2-normalized columns a1, . . . , aN , then

‖y − Axn‖22 = ‖y − Axn−1‖22 −

∣∣(A∗(y − Axn−1)
)
jn

∣∣2
d(ajn , span[aj , j ∈ Sn−1])2

≤ ‖y − Axn−1‖22 −
∣∣(A∗(y − Axn−1)

)
jn

∣∣2.

I Suppose that δ13s < 1/6. Then s-sparse recovery via 12s
iterations of OMP is stable and robust.

I Challenge: natural proof of OMP success in c s iterations?

Recovery by Orthogonal Matching Pursuit

OMP: Start with S0 = ∅ and x0 = 0, and iterate:

Sn = Sn−1 ∪
{
jn := argmaxj

∣∣(A∗(y − Axn−1)
)
j

∣∣},
xn = argminz

{
‖y − Az‖2, supp(z) ⊆ Sn

}
.

If A has `2-normalized columns a1, . . . , aN , then

‖y − Axn‖22 = ‖y − Axn−1‖22 −

∣∣(A∗(y − Axn−1)
)
jn

∣∣2
d(ajn , span[aj , j ∈ Sn−1])2

≤ ‖y − Axn−1‖22 −
∣∣(A∗(y − Axn−1)

)
jn

∣∣2.

I Suppose that δ13s < 1/6. Then s-sparse recovery via 12s
iterations of OMP is stable and robust.

I Challenge: natural proof of OMP success in c s iterations?

Recovery by Orthogonal Matching Pursuit

OMP: Start with S0 = ∅ and x0 = 0, and iterate:

Sn = Sn−1 ∪
{
jn := argmaxj

∣∣(A∗(y − Axn−1)
)
j

∣∣},
xn = argminz

{
‖y − Az‖2, supp(z) ⊆ Sn

}
.

If A has `2-normalized columns a1, . . . , aN , then

‖y − Axn‖22 = ‖y − Axn−1‖22 −

∣∣(A∗(y − Axn−1)
)
jn

∣∣2
d(ajn , span[aj , j ∈ Sn−1])2

≤ ‖y − Axn−1‖22 −
∣∣(A∗(y − Axn−1)

)
jn

∣∣2.
I Suppose that δ13s < 1/6. Then s-sparse recovery via 12s

iterations of OMP is stable and robust.

I Challenge: natural proof of OMP success in c s iterations?

Recovery by Orthogonal Matching Pursuit

OMP: Start with S0 = ∅ and x0 = 0, and iterate:

Sn = Sn−1 ∪
{
jn := argmaxj

∣∣(A∗(y − Axn−1)
)
j

∣∣},
xn = argminz

{
‖y − Az‖2, supp(z) ⊆ Sn

}
.

If A has `2-normalized columns a1, . . . , aN , then

‖y − Axn‖22 = ‖y − Axn−1‖22 −

∣∣(A∗(y − Axn−1)
)
jn

∣∣2
d(ajn , span[aj , j ∈ Sn−1])2

≤ ‖y − Axn−1‖22 −
∣∣(A∗(y − Axn−1)

)
jn

∣∣2.

I Suppose that δ13s < 1/6. Then s-sparse recovery via 12s
iterations of OMP is stable and robust.

I Challenge: natural proof of OMP success in c s iterations?

Recovery by Orthogonal Matching Pursuit

OMP: Start with S0 = ∅ and x0 = 0, and iterate:

Sn = Sn−1 ∪
{
jn := argmaxj

∣∣(A∗(y − Axn−1)
)
j

∣∣},
xn = argminz

{
‖y − Az‖2, supp(z) ⊆ Sn

}
.

If A has `2-normalized columns a1, . . . , aN , then

‖y − Axn‖22 = ‖y − Axn−1‖22 −

∣∣(A∗(y − Axn−1)
)
jn

∣∣2
d(ajn , span[aj , j ∈ Sn−1])2

≤ ‖y − Axn−1‖22 −
∣∣(A∗(y − Axn−1)

)
jn

∣∣2.
I Suppose that δ13s < 1/6. Then s-sparse recovery via 12s

iterations of OMP is stable and robust.

I Challenge: natural proof of OMP success in c s iterations?

Recovery by Orthogonal Matching Pursuit

OMP: Start with S0 = ∅ and x0 = 0, and iterate:

Sn = Sn−1 ∪
{
jn := argmaxj

∣∣(A∗(y − Axn−1)
)
j

∣∣},
xn = argminz

{
‖y − Az‖2, supp(z) ⊆ Sn

}
.

If A has `2-normalized columns a1, . . . , aN , then

‖y − Axn‖22 = ‖y − Axn−1‖22 −

∣∣(A∗(y − Axn−1)
)
jn

∣∣2
d(ajn , span[aj , j ∈ Sn−1])2

≤ ‖y − Axn−1‖22 −
∣∣(A∗(y − Axn−1)

)
jn

∣∣2.
I Suppose that δ13s < 1/6. Then s-sparse recovery via 12s

iterations of OMP is stable and robust.

I Challenge: natural proof of OMP success in c s iterations?

