Overview of the
Mathematics of Compressive Sensing

Simon Foucart

Reading Seminar on
“Compressive Sensing, Extensions, and Applications”
Texas A&M University
8 October 2015

Coherence-based Recovery Guarantees

Coherence

Coherence

For a matrix with £>-normalized columns ay,...,ap, define

= a;,aj)|.
1 T;Jxl(:)|

Coherence

For a matrix with £>-normalized columns ay,...,ap, define

= a;,aj)|.
1 T;Jxl(:)|

As a rule, the smaller the coherence, the better.

Coherence

For a matrix with £>-normalized columns ay,...,ap, define

= a;.a;)| .
1 r;.;gleI(i aj)|

As a rule, the smaller the coherence, the better.

However, the Welch bound reads

Coherence

For a matrix with £>-normalized columns ay,...,ap, define

= a;,a;)|.
1 r;.;gleI(i aj)|

As a rule, the smaller the coherence, the better.

However, the Welch bound reads

» Welch bound achieved at and only at equiangular tight frames.

Coherence

For a matrix with £>-normalized columns ay,...,ap, define

= a;,a;)|.
1 r;.;gleI(i aj)|

As a rule, the smaller the coherence, the better.

However, the Welch bound reads

» Welch bound achieved at and only at equiangular tight frames.

» Deterministic matrices with coherence p < c¢//m exist.

Recovery Conditions using Coherence

Recovery Conditions using Coherence

» Every s-sparse x € CV is recovered from y = Ax € C™ via at
most s iterations of OMP provided

1
2s —1°

p<

Recovery Conditions using Coherence

» Every s-sparse x € CV is recovered from y = Ax € C™ via at
most s iterations of OMP provided

1
2s —1°

p<

» Every s-sparse x € CV is recovered from y = Ax € C™ via
Basis Pursuit provided

< .
H=5s_1

Recovery Conditions using Coherence

» Every s-sparse x € CV is recovered from y = Ax € C™ via at
most s iterations of OMP provided

1
2s —1°

<
» Every s-sparse x € CV is recovered from y = Ax € C™ via
Basis Pursuit provided

1
2s —1°

<
» In fact, the Exact Recovery Condition can be rephrased as
|ALAgllisn < 1,

and this implies the Null Space Property.

Situation circa 2004

Situation circa 2004

The coherence conditions for s-sparse recovery are of the type

p<

9

w0

Situation circa 2004

The coherence conditions for s-sparse recovery are of the type

Uw\n

p<

while the Welch bound (for N > 2m, say) reads

=

Bk

Situation circa 2004

The coherence conditions for s-sparse recovery are of the type

p<

Uw\n

while the Welch bound (for N > 2m, say) reads

=

Bk

Therefore, arguments based on coherence necessitate

N

m>cs

Situation circa 2004

The coherence conditions for s-sparse recovery are of the type

p<

Uw\n

while the Welch bound (for N > 2m, say) reads

=

Bk

Therefore, arguments based on coherence necessitate

N

m>cs

This is far from the ideal linear scaling of m in s...

Situation circa 2004

The coherence conditions for s-sparse recovery are of the type

p<

Uw\n

while the Welch bound (for N > 2m, say) reads

=

Bk

Therefore, arguments based on coherence necessitate

N

m> cs”.

This is far from the ideal linear scaling of m in s...

We now introduce new tools to break this quadratic barrier.

RIP-based Recovery Guarantees

Restricted Isometry Constants

Restricted Isometry Constants

Restricted Isometry Constant s = the smallest 6 > 0 such that

(1—9)|zlI3 < ||Az|]3 < (1+0)||z||3 for all s-sparse z € CV.

Restricted Isometry Constants

Restricted Isometry Constant s = the smallest 6 > 0 such that
(1—9)|zl3 < ||Az||I3 < (1+0)||z]|3 for all s-sparse z € CV.
Alternative form:

0s = AtAs — 1Id .
s car@(?)(gs H 57 H2_>2

Restricted Isometry Constants

Restricted Isometry Constant s = the smallest 6 > 0 such that
(1—9)|zl3 < ||Az||I3 < (1+0)||z]|3 for all s-sparse z € CV.
Alternative form:

0s = AtAs — 1Id .
s car@(?)(gs H 57 H2_>2

Suitable CS matrices have small restricted isometry constants.

Restricted Isometry Constants

Restricted Isometry Constant s = the smallest 6 > 0 such that
(1—9)|zl3 < ||Az||I3 < (1+0)||z]|3 for all s-sparse z € CV.
Alternative form:

0s = AtAs — 1Id .
s car?(%))(gs H 57 H2_>2

Suitable CS matrices have small restricted isometry constants.

Typically, s < d, holds for a number of random measurements

m =~ ¢(d,) sIn(eN/s).

Restricted Isometry Constants

Restricted Isometry Constant s = the smallest 6 > 0 such that
(1—9)|zl3 < ||Az||I3 < (1+0)||z]|3 for all s-sparse z € CV.
Alternative form:

0s = AtAs — 1Id .
s car?(%))(gs H 57 H2_>2

Suitable CS matrices have small restricted isometry constants.
Typically, s < d, holds for a number of random measurements

m = (5% sin(eN/s).

Restricted Isometry Constants

Restricted Isometry Constant s = the smallest 6 > 0 such that
(1—9)|zl3 < ||Az||I3 < (1+0)||z]|3 for all s-sparse z € CV.
Alternative form:

0s = AtAs — 1Id .
s car?(%))(gs H 57 H2_>2

Suitable CS matrices have small restricted isometry constants.

Typically, s < d, holds for a number of random measurements

m = ? sin(eN/s).

In fact, 45 < 4, imposes m > 52

Exact Sparse Recovery via ¢1-Minimization when dp5 < 1/3

Exact Sparse Recovery via ¢1-Minimization when dp5 < 1/3

Take v € ker A\ {0}.

Exact Sparse Recovery via ¢1-Minimization when &, < 1/3

Take v € ker A\ {0}. Consider sets Sp, Si, ... of s indices ordered
by decreasing magnitude of entries of v.

Exact Sparse Recovery via ¢1-Minimization when &, < 1/3

Take v € ker A\ {0}. Consider sets Sp, Si, ... of s indices ordered
by decreasing magnitude of entries of v.

Ivs[I3 <

Exact Sparse Recovery via ¢1-Minimization when &, < 1/3

Take v € ker A\ {0}. Consider sets Sp, Si, ... of s indices ordered
by decreasing magnitude of entries of v.

1

A3

Ivs[I3 <

Exact Sparse Recovery via ¢1-Minimization when &, < 1/3

Take v € ker A\ {0}. Consider sets Sp, Si, ... of s indices ordered
by decreasing magnitude of entries of v.

1
2
<
s i3 < =5

AWS)IE = 15 D (AWs). A(-vs,)
* k>1

Exact Sparse Recovery via ¢1-Minimization when &, < 1/3

Take v € ker A\ {0}. Consider sets Sp, Si, ... of s indices ordered
by decreasing magnitude of entries of v.

1
2
<
s i3 < =5

1

< d2s||vs, ||2]|vs, ||2-
5 2 sl

AWS)IE = 15 D (AWs). A(-vs,)
* k>1

Exact Sparse Recovery via ¢1-Minimization when &, < 1/3

Take v € ker A\ {0}. Consider sets Sp, Si, ... of s indices ordered
by decreasing magnitude of entries of v.

1
2
<
s i3 < =5

1

< d2s||vs, ||2]|vs, ||2-
5 2 sl

AWS)IE = 15 D (AWs). A(-vs,)
* k>1

Simplify by [|vs,||2

Exact Sparse Recovery via ¢1-Minimization when &, < 1/3

Take v € ker A\ {0}. Consider sets Sp, Si, ... of s indices ordered
by decreasing magnitude of entries of v.

1
2
<
s i3 < =5

1

< d2s||vs, ||2]|vs, ||2-
5 2 sl

AWS)IE = 15 D (AWs). A(-vs,)
* k>1

Simplify by |lvs,||2 and observe that

1
lvs,ll2 < \fHVSkﬂHl

Exact Sparse Recovery via ¢1-Minimization when &, < 1/3

Take v € ker A\ {0}. Consider sets Sp, Si, ... of s indices ordered
by decreasing magnitude of entries of v.

Ivs[I3 < At vs,)lI3 = 1_5 > (Alvs,), A(-vs,))
k>1

lvss ll2[lvs, 2
S k>1

Simplify by |lvs,||2 and observe that

1
[vs, ll2 < \fllvsm\h
to obtain
525
<
vl < 125 =

vz,

Exact Sparse Recovery via ¢1-Minimization when &, < 1/3

Take v € ker A\ {0}. Consider sets Sp, Si, ... of s indices ordered
by decreasing magnitude of entries of v.

Ivs[I3 < At vs,)lI3 = 1_5 > (Alvs,), A(-vs,))
k>1

lvss ll2[lvs, 2
S k>1

Simplify by |lvs,||2 and observe that

1
[vs, ll2 < \fHVSH\h
to obtain
0o 1
HV50H2 < 1— 3 \[”VHlv

hence |Jvs, |1 <

Exact Sparse Recovery via ¢1-Minimization when &, < 1/3

Take v € ker A\ {0}. Consider sets Sp, Si, ... of s indices ordered
by decreasing magnitude of entries of v.

Ivs[I3 <

At vs,)lI3 = 1_5 > (Alvs,), A(-vs,))

k>1

lvss ll2[lvs, 2
S k>1

Simplify by |lvs,||2 and observe that

1
[vs, ll2 < \fHVSH\h
to obtain
0o 1
HV50H2 < 1— 3 \[”VHlv

hence |Jvs, |1 <

Note that p := d2s/(1 — d25) < 1/2 whenever 625 < 1/3.

Stable and Robust Sparse Recovery via ¢1-Minimization

Stable and Robust Sparse Recovery via ¢1-Minimization

Objective: for p € [1,2], for all x € CN and e € C™ with ||e[[> < #:

stability robustness
C . -
Ix—A(Ax+e)l, < o min x—xsly + DsP 2y,

51—1/P Xs S—sparse

where A(y) = A1,(y) := argmin||z||; subject to [|[Az —y|]> < 7.

Stable and Robust Sparse Recovery via ¢1-Minimization

Objective: for p € [1,2], for all x € CN and e € C™ with ||e[[> < #:

stabilit
J robustness

C . ’ - \
Ix — A(Ax + e)||, < ey AL Ix —xs||1 + D s*/P E

where A(y) = A1,(y) := argmin||z||; subject to [|[Az —y|]> < 7.
Takingx=v € CN, e = —Av € C™, and 1 = ||Av> gives

C _
vllp = =75 llvslla + DsY/P2| Av|l2

for all S C [N] with card(S) = s.

Robust Null Space Property

Robust Null Space Property

For g € [1,2], A € C™N has the £4-robust null space property of
order s (wrto || - ||) with constants 0 < p < 1 and 7 > 0 if, for any
set S C [N] with card(S) <,

14 N
lvsllg < a1/q ||v§||1 + 7 [|Av|| for all v e C".

Robust Null Space Property

For g € [1,2], A € C™N has the £4-robust null space property of
order s (wrto || - ||) with constants 0 < p < 1 and 7 > 0 if, for any
set S C [N] with card(S) <,

14 N
lvsllg < a1/q ||v§||1 + 7 [|Av|| for all v e C".

> £4-RNSP (wrto || - ||) = £,-RSNP (wrto s¥/P~1/4| .|
whenever 1 < p < g <2.

Robust Null Space Property

For g € [1,2], A € C™N has the £4-robust null space property of
order s (wrto || - ||) with constants 0 < p < 1 and 7 > 0 if, for any
set S C [N] with card(S) <,

14 N
lvsllg < a1/q ||v§||1 + 7 [|Av|| for all v e C".

> £4-RNSP (wrto || - ||) = £,-RSNP (wrto s¥/P~1/4| .|
whenever 1 < p < g <2.

» (4-RNSP (wrto || - ||) implies that, for 1 < p < gq,

lz—xllp < 7 (lzla—[xl+204(x)1) + D 54779 | Az—x)|

51_1/P

for all x,z € CN.

Robust Null Space Property

For g € [1,2], A € C™N has the £4-robust null space property of
order s (wrto || - ||) with constants 0 < p < 1 and 7 > 0 if, for any
set S C [N] with card(S) <,

14 N
lvsllg < a1/q ||v§||1 + 7 [|Av|| for all v e C".

> £4-RNSP (wrto || - ||) = £,-RSNP (wrto s¥/P~1/4| .|
whenever 1 < p < g <2.

» (4-RNSP (wrto || - ||) implies that, for 1 < p < gq,

lz—xllp < 7 (lzla—[xl+204(x)1) + D 54779 | Az—x)|

51_1/P

for all x,z € CN. The converse holds when g = 1.

Robust Null Space Property

For g € [1,2], A € C™N has the £4-robust null space property of
order s (wrto || - ||) with constants 0 < p < 1 and 7 > 0 if, for any
set S C [N] with card(S) <,

14 N
lvsllg < a1/q ||v§||1 + 7 [|Av|| for all v e C".

> £4-RNSP (wrto || - ||) = £,-RSNP (wrto s¥/P~1/4| .|
whenever 1 < p < g <2.

» (4-RNSP (wrto || - ||) implies that, for 1 < p < gq,

lz—xllp < 7 (lzla—[xl+204(x)1) + D 54779 | Az—x)|

51_1/P

for all x,z € CN. The converse holds when g = 1.
> (2-RNSP (wrto || - ||2) holds when 6,5 < 1//2.

Iterative Hard Thresholding and Hard Thresholding Pursuit

Iterative Hard Thresholding and Hard Thresholding Pursuit

» solving the rectangular system Ax =y amounts to solving the
square system A*Ax = A%y,

Iterative Hard Thresholding and Hard Thresholding Pursuit

» solving the rectangular system Ax =y amounts to solving the
square system A*Ax = A%y,

» classical iterative methods suggest the iteration
xn+1 — x" _|_A*(y _ Axn),

Iterative Hard Thresholding and Hard Thresholding Pursuit

» solving the rectangular system Ax =y amounts to solving the
square system A*Ax = A%y,

» classical iterative methods suggest the iteration
xn+1 — x" _|_A*(y _ Axn),

> at each iteration, keep s largest absolute entries and set the
other ones to zero.

Iterative Hard Thresholding and Hard Thresholding Pursuit

» solving the rectangular system Ax =y amounts to solving the
square system A*Ax = A%y,

» classical iterative methods suggest the iteration
xn+1 — x" _|_A*(y _ Axn),

> at each iteration, keep s largest absolute entries and set the
other ones to zero.

IHT: Start with an s-sparse x° € CV and iterate:
(IHT) X" = Hy(x" + A*(y — Ax"))

until a stopping criterion is met.

Iterative Hard Thresholding and Hard Thresholding Pursuit

» solving the rectangular system Ax =y amounts to solving the
square system A*Ax = A%y,

» classical iterative methods suggest the iteration
xn+1 — x" _|_A*(y _ Axn),

> at each iteration, keep s largest absolute entries and set the
other ones to zero.

IHT: Start with an s-sparse x° € CV and iterate:
(IHT) X" = Hy(x" + A*(y — Ax"))

until a stopping criterion is met.

HTP: Start with an s-sparse x° € CV and iterate:

Iterative Hard Thresholding and Hard Thresholding Pursuit

» solving the rectangular system Ax =y amounts to solving the
square system A*Ax = A%y,

» classical iterative methods suggest the iteration
xn+1 — x" _|_A*(y _ Axn),

> at each iteration, keep s largest absolute entries and set the
other ones to zero.

IHT: Start with an s-sparse x° € CV and iterate:

(IHT) X" = Hy(x" + A*(y — Ax"))

until a stopping criterion is met.

HTP: Start with an s-sparse x° € CV and iterate:

(HTP,)
(HTP2)

Iterative Hard Thresholding and Hard Thresholding Pursuit

» solving the rectangular system Ax =y amounts to solving the
square system A*Ax = A%y,

» classical iterative methods suggest the iteration
xn+1 — x" _|_A*(y _ AX”),

> at each iteration, keep s largest absolute entries and set the
other ones to zero.

IHT: Start with an s-sparse x° € CV and iterate:

(IHT) X" = Hy(x" + A*(y — Ax"))

until a stopping criterion is met.

HTP: Start with an s-sparse x° € CV and iterate:

(HTP;) S = {s largest abs. entries of x" + A*(y — Ax”)},
(HTP2)

Iterative Hard Thresholding and Hard Thresholding Pursuit

» solving the rectangular system Ax =y amounts to solving the
square system A*Ax = A%y,

» classical iterative methods suggest the iteration
xn+1 — x" _|_A*(y _ AX”),

> at each iteration, keep s largest absolute entries and set the
other ones to zero.

IHT: Start with an s-sparse x° € CV and iterate:

(IHT) X" = Hy(x" + A*(y — Ax"))

until a stopping criterion is met.

HTP: Start with an s-sparse x° € CV and iterate:

(HTP;) S = {s largest abs. entries of x" + A*(y — Ax”)},
(HTP2) x"*! = argmin{|ly — Az||>,supp(z) C S"*'},

Iterative Hard Thresholding and Hard Thresholding Pursuit

» solving the rectangular system Ax =y amounts to solving the
square system A*Ax = A%y,

» classical iterative methods suggest the iteration
xn+1 — x" _|_A*(y _ AX”),

> at each iteration, keep s largest absolute entries and set the
other ones to zero.

IHT: Start with an s-sparse x° € CV and iterate:

(IHT) X" = Hy(x" + A*(y — Ax"))

until a stopping criterion is met.

HTP: Start with an s-sparse x° € CV and iterate:

(HTPy) S"*! = {s largest abs. entries of x" + A*(y — Ax")},
(HTP2) x"*! = argmin{|ly — Az||2, supp(z) C S"**},

until a stopping criterion is met (S"*1 = S" is natural here).

Stable and Robust Sparse Recovery via IHT and HTP

Stable and Robust Sparse Recovery via IHT and HTP

Suppose that 435 < 1/\/§

Stable and Robust Sparse Recovery via IHT and HTP

Suppose that 435 < 1/\/§ Then, for some p < 1 and 7 > 0, the
following facts hold for all x € CN and e € C™, where S denotes
an index set of s largest absolute entries of x:

Stable and Robust Sparse Recovery via IHT and HTP

Suppose that 435 < 1/\/§ Then, for some p < 1 and 7 > 0, the
following facts hold for all x € CN and e € C™, where S denotes
an index set of s largest absolute entries of x:

> lxs = x"l2 < plxs — x"[l2 + (1 = p)7| Axs + €],

Stable and Robust Sparse Recovery via IHT and HTP

Suppose that 435 < 1/\/§ Then, for some p < 1 and 7 > 0, the
following facts hold for all x € CN and e € C™, where S denotes
an index set of s largest absolute entries of x:

> lxs = x"l2 < plxs — x"[l2 + (1 = p)7| Axs + €],
> lxs = x"[l2 < p"llxs —x°||2 + 7| Axs + e |2,

Stable and Robust Sparse Recovery via IHT and HTP

Suppose that 435 < 1/\/§ Then, for some p < 1 and 7 > 0, the
following facts hold for all x € CN and e € C™, where S denotes
an index set of s largest absolute entries of x:

> [Ixs = x> < pllxs — x"[[2 + (1 — p)7[|Axg + e]l2,
> Jxs = x"||l2 < p"[Ixs = X°|l2 + 7| Axz + e]l2,
» The outpout x! of the algorithms satisfy

Ixs —xF||2 < 7| Axs +ell2,

Stable and Robust Sparse Recovery via IHT and HTP

Suppose that 435 < 1/\/§ Then, for some p < 1 and 7 > 0, the
following facts hold for all x € CN and e € C™, where S denotes
an index set of s largest absolute entries of x:

> [Ixs = x> < pllxs — x"[[2 + (1 — p)7[|Axg + e]l2,
> Jxs = x"||l2 < p"[Ixs = X°|l2 + 7| Axz + e]l2,
» The outpout x! of the algorithms satisfy

Ixs —xF||2 < 7| Axs +ell2,

» With 2s in place of s in the algorithms, if dgs < 1/\/§ then

C
Ix — %[l < sio17p Os(X)1 Ds'/P 1 ef, 1<p<2,

Stable and Robust Sparse Recovery via IHT and HTP

Suppose that 435 < 1/\/§ Then, for some p < 1 and 7 > 0, the
following facts hold for all x € CN and e € C™, where S denotes
an index set of s largest absolute entries of x:

> lxs = x"l2 < plxs — x"[l2 + (1 = p)7| Axs + €],

Ixs = x"l2 < p"l|xs — x°||2 + 7| Axg + e]|2,
The outpout x* of the algorithms satisfy

v

v

Ixs —xF||2 < 7| Axs +ell2,

v

With 2s in place of s in the algorithms, if dgs < 1/\/§ then

C
Ix — %[l < sio17p Os(X)1 Ds'/P 1 ef, 1<p<2,

v

For HTP, (pseudo)robustness is achieved in < ¢ s iterations.

Recovery by Orthogonal Matching Pursuit

Recovery by Orthogonal Matching Pursuit

OMP: Start with S° = () and x° = 0, and iterate:

s" S”IU{_/ '= argmax ‘((y — Ax"™))J’},
x" = argmin, {|ly — Az||2,supp(z) C S"}.

Recovery by Orthogonal Matching Pursuit

OMP: Start with S° = () and x° = 0, and iterate:

s" S”IU{_/ '= argmax ‘((y — Ax"™))J’},
x" = argmin, {|ly — Az||2,supp(z) C S"}.

If A has />-normalized columns aq,...,ay, then

2

‘ (A*(y - Axn_l))jn

— Ax" 2 _ _Axn—l 2
||y ||2 ||y ||2 d(ajn,span[aj,j c Sn_l])2

Recovery by Orthogonal Matching Pursuit

OMP: Start with S° = () and x° = 0, and iterate:

s" S”IU{_/ '= argmax ‘((y — Ax"™))J’},
x" = argmin, {|ly — Az||2,supp(z) C S"}.

If A has />-normalized columns aq,...,ay, then

2

‘ (A*(y - Axn_l))jn

— Ax" 2 _ _Axn—l 2
||y ||2 ||y ||2 d(ajn,span[aj,j c Sn_l])2

< ly — Ax" 3 — [(A*(y — A7), |7

Jn

Recovery by Orthogonal Matching Pursuit

OMP: Start with S° = () and x° = 0, and iterate:

s" S”IU{_/ '= argmax ‘((y — Ax"™))J’},
x" = argmin, {|ly — Az||2,supp(z) C S"}.

If A has />-normalized columns aq,...,ay, then

2

‘ (A*(y - Axn_l))jn

_Axn 2: _Axn—l 2
”y ||2 Hy ||2 d(ajn,span[aj,j c Sn_l])2

< ly — Ax" 3 — [(A*(y — A7), |7

Jn

» Suppose that d13s < 1/6. Then s-sparse recovery via 12s
iterations of OMP is stable and robust.

Recovery by Orthogonal Matching Pursuit

OMP: Start with S° = () and x° = 0, and iterate:

s" S”IU{_/ '= argmax ‘((y — Ax"™))J’},
x" = argmin, {|ly — Az||2,supp(z) C S"}.

If A has />-normalized columns aq,...,ay, then

‘(A*(y - Axn_l))jn 2
d(ajn, spanfa;,j € S"1])2
2

ly — Ax"||3 = [ly — Ax" 1|3 —

<lly — Ax"H5 — | (A*(y — AX"H)).

Jn

» Suppose that d13s < 1/6. Then s-sparse recovery via 12s
iterations of OMP is stable and robust.

» Challenge: natural proof of OMP success in c's iterations?

