Overview of the
 Mathematics of Compressive Sensing

Simon Foucart

Reading Seminar on
"Compressive Sensing, Extensions, and Applications"
Texas A\&M University
8 October 2015

Coherence-based Recovery Guarantees

Coherence

Coherence

For a matrix with ℓ_{2}-normalized columns $\mathbf{a}_{1}, \ldots, \mathbf{a}_{N}$, define

$$
\mu:=\max _{i \neq j}\left|\left\langle\mathbf{a}_{i}, \mathbf{a}_{j}\right\rangle\right| .
$$

Coherence

For a matrix with ℓ_{2}-normalized columns $\mathbf{a}_{1}, \ldots, \mathbf{a}_{N}$, define

$$
\mu:=\max _{i \neq j}\left|\left\langle\mathbf{a}_{i}, \mathbf{a}_{j}\right\rangle\right| .
$$

As a rule, the smaller the coherence, the better.

Coherence

For a matrix with ℓ_{2}-normalized columns $\mathbf{a}_{1}, \ldots, \mathbf{a}_{N}$, define

$$
\mu:=\max _{i \neq j}\left|\left\langle\mathbf{a}_{i}, \mathbf{a}_{j}\right\rangle\right| .
$$

As a rule, the smaller the coherence, the better.
However, the Welch bound reads

$$
\mu \geq \sqrt{\frac{N-m}{m(N-1)}}
$$

Coherence

For a matrix with ℓ_{2}-normalized columns $\mathbf{a}_{1}, \ldots, \mathbf{a}_{N}$, define

$$
\mu:=\max _{i \neq j}\left|\left\langle\mathbf{a}_{i}, \mathbf{a}_{j}\right\rangle\right| .
$$

As a rule, the smaller the coherence, the better.
However, the Welch bound reads

$$
\mu \geq \sqrt{\frac{N-m}{m(N-1)}}
$$

- Welch bound achieved at and only at equiangular tight frames.

Coherence

For a matrix with ℓ_{2}-normalized columns $\mathbf{a}_{1}, \ldots, \mathbf{a}_{N}$, define

$$
\mu:=\max _{i \neq j}\left|\left\langle\mathbf{a}_{i}, \mathbf{a}_{j}\right\rangle\right| .
$$

As a rule, the smaller the coherence, the better.
However, the Welch bound reads

$$
\mu \geq \sqrt{\frac{N-m}{m(N-1)}}
$$

- Welch bound achieved at and only at equiangular tight frames.
- Deterministic matrices with coherence $\mu \leq c / \sqrt{m}$ exist.

Recovery Conditions using Coherence

Recovery Conditions using Coherence

- Every s-sparse $\mathbf{x} \in \mathbb{C}^{N}$ is recovered from $\mathbf{y}=A \mathbf{x} \in \mathbb{C}^{m}$ via at most s iterations of OMP provided

$$
\mu<\frac{1}{2 s-1} .
$$

Recovery Conditions using Coherence

- Every s-sparse $\mathbf{x} \in \mathbb{C}^{N}$ is recovered from $\mathbf{y}=A \mathbf{x} \in \mathbb{C}^{m}$ via at most s iterations of OMP provided

$$
\mu<\frac{1}{2 s-1}
$$

- Every s-sparse $\mathbf{x} \in \mathbb{C}^{N}$ is recovered from $\mathbf{y}=A \mathbf{x} \in \mathbb{C}^{m}$ via Basis Pursuit provided

$$
\mu<\frac{1}{2 s-1}
$$

Recovery Conditions using Coherence

- Every s-sparse $\mathbf{x} \in \mathbb{C}^{N}$ is recovered from $\mathbf{y}=A \mathbf{x} \in \mathbb{C}^{m}$ via at most s iterations of OMP provided

$$
\mu<\frac{1}{2 s-1}
$$

- Every s-sparse $\mathbf{x} \in \mathbb{C}^{N}$ is recovered from $\mathbf{y}=A \mathbf{x} \in \mathbb{C}^{m}$ via Basis Pursuit provided

$$
\mu<\frac{1}{2 s-1}
$$

- In fact, the Exact Recovery Condition can be rephrased as

$$
\left\|A_{S}^{\dagger} A_{\bar{S}}\right\|_{1 \rightarrow 1}<1
$$

and this implies the Null Space Property.

Situation circa 2004

Situation circa 2004

The coherence conditions for s-sparse recovery are of the type

$$
\mu \leq \frac{c}{s}
$$

Situation circa 2004

The coherence conditions for s-sparse recovery are of the type

$$
\mu \leq \frac{c}{s},
$$

while the Welch bound (for $N \geq 2 m$, say) reads

$$
\mu \geq \frac{c}{\sqrt{m}}
$$

Situation circa 2004

The coherence conditions for s-sparse recovery are of the type

$$
\mu \leq \frac{c}{s},
$$

while the Welch bound (for $N \geq 2 m$, say) reads

$$
\mu \geq \frac{c}{\sqrt{m}}
$$

Therefore, arguments based on coherence necessitate

$$
m \geq c s^{2}
$$

Situation circa 2004

The coherence conditions for s-sparse recovery are of the type

$$
\mu \leq \frac{c}{s},
$$

while the Welch bound (for $N \geq 2 m$, say) reads

$$
\mu \geq \frac{c}{\sqrt{m}}
$$

Therefore, arguments based on coherence necessitate

$$
m \geq c s^{2}
$$

This is far from the ideal linear scaling of m in $s \ldots$

Situation circa 2004

The coherence conditions for s-sparse recovery are of the type

$$
\mu \leq \frac{c}{s},
$$

while the Welch bound (for $N \geq 2 m$, say) reads

$$
\mu \geq \frac{c}{\sqrt{m}}
$$

Therefore, arguments based on coherence necessitate

$$
m \geq c s^{2}
$$

This is far from the ideal linear scaling of m in $s \ldots$
We now introduce new tools to break this quadratic barrier.

RIP-based Recovery Guarantees

Restricted Isometry Constants

Restricted Isometry Constants

Restricted Isometry Constant $\delta_{s}=$ the smallest $\delta>0$ such that

$$
(1-\delta)\|\mathbf{z}\|_{2}^{2} \leq\|A \mathbf{z}\|_{2}^{2} \leq(1+\delta)\|\mathbf{z}\|_{2}^{2} \quad \text { for all } s \text {-sparse } \mathbf{z} \in \mathbb{C}^{N}
$$

Restricted Isometry Constants

Restricted Isometry Constant $\delta_{s}=$ the smallest $\delta>0$ such that

$$
(1-\delta)\|\mathbf{z}\|_{2}^{2} \leq\|A \mathbf{z}\|_{2}^{2} \leq(1+\delta)\|\mathbf{z}\|_{2}^{2} \quad \text { for all } s \text {-sparse } \mathbf{z} \in \mathbb{C}^{N}
$$

Alternative form:

$$
\delta_{s}=\max _{\operatorname{card}(S) \leq s}\left\|A_{S}^{*} A_{S}-\mathrm{Id}\right\|_{2 \rightarrow 2}
$$

Restricted Isometry Constants

Restricted Isometry Constant $\delta_{s}=$ the smallest $\delta>0$ such that

$$
(1-\delta)\|\mathbf{z}\|_{2}^{2} \leq\|A \mathbf{z}\|_{2}^{2} \leq(1+\delta)\|\mathbf{z}\|_{2}^{2} \quad \text { for all } s \text {-sparse } \mathbf{z} \in \mathbb{C}^{N}
$$

Alternative form:

$$
\delta_{s}=\max _{\operatorname{card}(S) \leq s}\left\|A_{S}^{*} A_{S}-\operatorname{Id}\right\|_{2 \rightarrow 2}
$$

Suitable CS matrices have small restricted isometry constants.

Restricted Isometry Constants

Restricted Isometry Constant $\delta_{s}=$ the smallest $\delta>0$ such that

$$
(1-\delta)\|\mathbf{z}\|_{2}^{2} \leq\|A \mathbf{z}\|_{2}^{2} \leq(1+\delta)\|\mathbf{z}\|_{2}^{2} \quad \text { for all } s \text {-sparse } \mathbf{z} \in \mathbb{C}^{N}
$$

Alternative form:

$$
\delta_{s}=\max _{\operatorname{card}(S) \leq s}\left\|A_{S}^{*} A_{S}-\operatorname{Id}\right\|_{2 \rightarrow 2}
$$

Suitable CS matrices have small restricted isometry constants.
Typically, $\delta_{s} \leq \delta_{*}$ holds for a number of random measurements

$$
m \approx c\left(\delta_{*}\right) s \ln (e N / s)
$$

Restricted Isometry Constants

Restricted Isometry Constant $\delta_{s}=$ the smallest $\delta>0$ such that

$$
(1-\delta)\|\mathbf{z}\|_{2}^{2} \leq\|A \mathbf{z}\|_{2}^{2} \leq(1+\delta)\|\mathbf{z}\|_{2}^{2} \quad \text { for all } s \text {-sparse } \mathbf{z} \in \mathbb{C}^{N}
$$

Alternative form:

$$
\delta_{s}=\max _{\operatorname{card}(S) \leq s}\left\|A_{S}^{*} A_{S}-\operatorname{Id}\right\|_{2 \rightarrow 2}
$$

Suitable CS matrices have small restricted isometry constants.
Typically, $\delta_{s} \leq \delta_{*}$ holds for a number of random measurements

$$
m \approx \frac{c}{\delta_{*}^{2}} s \ln (e N / s)
$$

Restricted Isometry Constants

Restricted Isometry Constant $\delta_{s}=$ the smallest $\delta>0$ such that

$$
(1-\delta)\|\mathbf{z}\|_{2}^{2} \leq\|A \mathbf{z}\|_{2}^{2} \leq(1+\delta)\|\mathbf{z}\|_{2}^{2} \quad \text { for all } s \text {-sparse } \mathbf{z} \in \mathbb{C}^{N}
$$

Alternative form:

$$
\delta_{s}=\max _{\operatorname{card}(S) \leq s}\left\|A_{S}^{*} A_{S}-\operatorname{Id}\right\|_{2 \rightarrow 2}
$$

Suitable CS matrices have small restricted isometry constants.
Typically, $\delta_{s} \leq \delta_{*}$ holds for a number of random measurements

$$
m \approx \frac{c}{\delta_{*}^{2}} s \ln (e N / s)
$$

In fact, $\delta_{s} \leq \delta_{*}$ imposes $m \geq \frac{c}{\delta_{*}^{2}} s$.

Exact Sparse Recovery via ℓ_{1}-Minimization when $\delta_{2 s}<1 / 3$

Exact Sparse Recovery via ℓ_{1}-Minimization when $\delta_{2 s}<1 / 3$

Take $\mathbf{v} \in \operatorname{ker} A \backslash\{\mathbf{0}\}$.

Exact Sparse Recovery via ℓ_{1}-Minimization when $\delta_{2 s}<1 / 3$

Take $\mathbf{v} \in \operatorname{ker} A \backslash\{\mathbf{0}\}$. Consider sets S_{0}, S_{1}, \ldots of s indices ordered by decreasing magnitude of entries of \mathbf{v}.

Exact Sparse Recovery via ℓ_{1}-Minimization when $\delta_{2 s}<1 / 3$

Take $\mathbf{v} \in \operatorname{ker} A \backslash\{\mathbf{0}\}$. Consider sets S_{0}, S_{1}, \ldots of s indices ordered by decreasing magnitude of entries of \mathbf{v}.

$$
\left\|\mathbf{v}_{S_{0}}\right\|_{2}^{2} \leq
$$

Exact Sparse Recovery via ℓ_{1}-Minimization when $\delta_{2 s}<1 / 3$

Take $\mathbf{v} \in \operatorname{ker} A \backslash\{\mathbf{0}\}$. Consider sets S_{0}, S_{1}, \ldots of s indices ordered by decreasing magnitude of entries of \mathbf{v}.

$$
\left\|\mathbf{v}_{S_{0}}\right\|_{2}^{2} \leq \frac{1}{1-\delta_{2 s}}\left\|A\left(\mathbf{v}_{S_{0}}\right)\right\|_{2}^{2}
$$

Exact Sparse Recovery via ℓ_{1}-Minimization when $\delta_{2 s}<1 / 3$

Take $\mathbf{v} \in \operatorname{ker} A \backslash\{\mathbf{0}\}$. Consider sets S_{0}, S_{1}, \ldots of s indices ordered by decreasing magnitude of entries of \mathbf{v}.

$$
\left\|\mathbf{v}_{S_{0}}\right\|_{2}^{2} \leq \frac{1}{1-\delta_{2 s}}\left\|A\left(\mathbf{v}_{S_{0}}\right)\right\|_{2}^{2}=\frac{1}{1-\delta_{2 s}} \sum_{k \geq 1}\left\langle A\left(\mathbf{v}_{S_{0}}\right), A\left(-\mathbf{v}_{S_{k}}\right)\right\rangle
$$

Exact Sparse Recovery via ℓ_{1}-Minimization when $\delta_{2 s}<1 / 3$

Take $\mathbf{v} \in \operatorname{ker} A \backslash\{\mathbf{0}\}$. Consider sets S_{0}, S_{1}, \ldots of s indices ordered by decreasing magnitude of entries of \mathbf{v}.

$$
\begin{aligned}
\left\|\mathbf{v}_{S_{0}}\right\|_{2}^{2} & \leq \frac{1}{1-\delta_{2 s}}\left\|A\left(\mathbf{v}_{S_{0}}\right)\right\|_{2}^{2}=\frac{1}{1-\delta_{2 s}} \sum_{k \geq 1}\left\langle A\left(\mathbf{v}_{S_{0}}\right), A\left(-\mathbf{v}_{S_{k}}\right)\right\rangle \\
& \leq \frac{1}{1-\delta_{2 s}} \sum_{k \geq 1} \delta_{2 s}\left\|\mathbf{v}_{S_{0}}\right\|_{2}\left\|\mathbf{v}_{S_{k}}\right\|_{2} .
\end{aligned}
$$

Exact Sparse Recovery via ℓ_{1}-Minimization when $\delta_{2 s}<1 / 3$

Take $\mathbf{v} \in \operatorname{ker} A \backslash\{\mathbf{0}\}$. Consider sets S_{0}, S_{1}, \ldots of s indices ordered by decreasing magnitude of entries of \mathbf{v}.

$$
\begin{aligned}
\left\|\mathbf{v}_{S_{0}}\right\|_{2}^{2} & \leq \frac{1}{1-\delta_{2 s}}\left\|A\left(\mathbf{v}_{S_{0}}\right)\right\|_{2}^{2}=\frac{1}{1-\delta_{2 s}} \sum_{k \geq 1}\left\langle A\left(\mathbf{v}_{S_{0}}\right), A\left(-\mathbf{v}_{S_{k}}\right)\right\rangle \\
& \leq \frac{1}{1-\delta_{2 s}} \sum_{k \geq 1} \delta_{2 s}\left\|\mathbf{v}_{S_{0}}\right\|_{2}\left\|\mathbf{v}_{S_{k}}\right\|_{2} .
\end{aligned}
$$

Simplify by $\left\|\mathbf{v}_{S_{0}}\right\|_{2}$

Exact Sparse Recovery via ℓ_{1}-Minimization when $\delta_{2 s}<1 / 3$

Take $\mathbf{v} \in \operatorname{ker} A \backslash\{\mathbf{0}\}$. Consider sets S_{0}, S_{1}, \ldots of s indices ordered by decreasing magnitude of entries of \mathbf{v}.

$$
\begin{aligned}
\left\|\mathbf{v}_{S_{0}}\right\|_{2}^{2} & \leq \frac{1}{1-\delta_{2 s}}\left\|A\left(\mathbf{v}_{S_{0}}\right)\right\|_{2}^{2}=\frac{1}{1-\delta_{2 s}} \sum_{k \geq 1}\left\langle A\left(\mathbf{v}_{S_{0}}\right), A\left(-\mathbf{v}_{S_{k}}\right)\right\rangle \\
& \leq \frac{1}{1-\delta_{2 s}} \sum_{k \geq 1} \delta_{2 s}\left\|\mathbf{v}_{S_{0}}\right\|_{2}\left\|\mathbf{v}_{S_{k}}\right\|_{2} .
\end{aligned}
$$

Simplify by $\left\|\mathbf{v}_{S_{0}}\right\|_{2}$ and observe that

$$
\left\|\mathbf{v}_{S_{k}}\right\|_{2} \leq \frac{1}{\sqrt{s}}\left\|\mathbf{v}_{S_{k-1}}\right\|_{1}
$$

Exact Sparse Recovery via ℓ_{1}-Minimization when $\delta_{2 s}<1 / 3$

Take $\mathbf{v} \in \operatorname{ker} A \backslash\{\mathbf{0}\}$. Consider sets S_{0}, S_{1}, \ldots of s indices ordered by decreasing magnitude of entries of \mathbf{v}.

$$
\begin{aligned}
\left\|\mathbf{v}_{S_{0}}\right\|_{2}^{2} & \leq \frac{1}{1-\delta_{2 s}}\left\|A\left(\mathbf{v}_{S_{0}}\right)\right\|_{2}^{2}=\frac{1}{1-\delta_{2 s}} \sum_{k \geq 1}\left\langle A\left(\mathbf{v}_{S_{0}}\right), A\left(-\mathbf{v}_{S_{k}}\right)\right\rangle \\
& \leq \frac{1}{1-\delta_{2 s}} \sum_{k \geq 1} \delta_{2 s}\left\|\mathbf{v}_{S_{0}}\right\|_{2}\left\|\mathbf{v}_{S_{k}}\right\|_{2} .
\end{aligned}
$$

Simplify by $\left\|\mathbf{v}_{S_{0}}\right\|_{2}$ and observe that

$$
\left\|\mathbf{v}_{S_{k}}\right\|_{2} \leq \frac{1}{\sqrt{s}}\left\|\mathbf{v}_{S_{k-1}}\right\|_{1}
$$

to obtain

$$
\left\|\mathbf{v}_{s_{0}}\right\|_{2} \leq \frac{\delta_{2 s}}{1-\delta_{2 s}} \frac{1}{\sqrt{s}}\|\mathbf{v}\|_{1}
$$

Exact Sparse Recovery via ℓ_{1}-Minimization when $\delta_{2 s}<1 / 3$

Take $\mathbf{v} \in \operatorname{ker} A \backslash\{\mathbf{0}\}$. Consider sets S_{0}, S_{1}, \ldots of s indices ordered by decreasing magnitude of entries of \mathbf{v}.

$$
\begin{aligned}
\left\|\mathbf{v}_{S_{0}}\right\|_{2}^{2} & \leq \frac{1}{1-\delta_{2 s}}\left\|A\left(\mathbf{v}_{S_{0}}\right)\right\|_{2}^{2}=\frac{1}{1-\delta_{2 s}} \sum_{k \geq 1}\left\langle A\left(\mathbf{v}_{S_{0}}\right), A\left(-\mathbf{v}_{S_{k}}\right)\right\rangle \\
& \leq \frac{1}{1-\delta_{2 s}} \sum_{k \geq 1} \delta_{2 s}\left\|\mathbf{v}_{S_{0}}\right\|_{2}\left\|\mathbf{v}_{S_{k}}\right\|_{2} .
\end{aligned}
$$

Simplify by $\left\|\mathbf{v}_{S_{0}}\right\|_{2}$ and observe that

$$
\left\|\mathbf{v}_{s_{k}}\right\|_{2} \leq \frac{1}{\sqrt{s}}\left\|\mathbf{v}_{S_{k-1}}\right\|_{1}
$$

to obtain

$$
\left\|\mathbf{v}_{S_{0}}\right\|_{2} \leq \frac{\delta_{2 s}}{1-\delta_{2 s}} \frac{1}{\sqrt{s}}\|\mathbf{v}\|_{1}, \quad \text { hence }\left\|\mathbf{v}_{S_{0}}\right\|_{1} \leq \frac{\delta_{2 s}}{1-\delta_{2 s}}\|\mathbf{v}\|_{1}
$$

Exact Sparse Recovery via ℓ_{1}-Minimization when $\delta_{2 s}<1 / 3$

Take $\mathbf{v} \in \operatorname{ker} A \backslash\{\mathbf{0}\}$. Consider sets S_{0}, S_{1}, \ldots of s indices ordered by decreasing magnitude of entries of \mathbf{v}.

$$
\begin{aligned}
\left\|\mathbf{v}_{S_{0}}\right\|_{2}^{2} & \leq \frac{1}{1-\delta_{2 s}}\left\|A\left(\mathbf{v}_{S_{0}}\right)\right\|_{2}^{2}=\frac{1}{1-\delta_{2 s}} \sum_{k \geq 1}\left\langle A\left(\mathbf{v}_{S_{0}}\right), A\left(-\mathbf{v}_{S_{k}}\right)\right\rangle \\
& \leq \frac{1}{1-\delta_{2 s}} \sum_{k \geq 1} \delta_{2 s}\left\|\mathbf{v}_{S_{0}}\right\|_{2}\left\|\mathbf{v}_{S_{k}}\right\|_{2}
\end{aligned}
$$

Simplify by $\left\|\mathbf{v}_{S_{0}}\right\|_{2}$ and observe that

$$
\left\|\mathbf{v}_{s_{k}}\right\|_{2} \leq \frac{1}{\sqrt{s}}\left\|\mathbf{v}_{s_{k-1}}\right\|_{1}
$$

to obtain

$$
\left\|\mathbf{v}_{S_{0}}\right\|_{2} \leq \frac{\delta_{2 s}}{1-\delta_{2 s}} \frac{1}{\sqrt{s}}\|\mathbf{v}\|_{1}, \quad \text { hence }\left\|\mathbf{v}_{S_{0}}\right\|_{1} \leq \frac{\delta_{2 s}}{1-\delta_{2 s}}\|\mathbf{v}\|_{1} .
$$

Note that $\rho:=\delta_{2 s} /\left(1-\delta_{2 s}\right)<1 / 2$ whenever $\delta_{2 s}<1 / 3$.

Stable and Robust Sparse Recovery via ℓ_{1}-Minimization

Stable and Robust Sparse Recovery via ℓ_{1}-Minimization

Objective: for $p \in[1,2]$, for all $\mathbf{x} \in \mathbb{C}^{N}$ and $\mathbf{e} \in \mathbb{C}^{m}$ with $\|\mathbf{e}\|_{2} \leq \eta$:
$\|\mathbf{x}-\Delta(A \mathbf{x}+\mathbf{e})\|_{p} \leq \overbrace{\frac{C}{s^{1-1 / p}} \min _{\mathbf{x}_{s} s-\text { sparse }}\left\|\mathbf{x}-\mathbf{x}_{s}\right\|_{1}}^{\text {stability }}+\overbrace{D s^{1 / p-1 / 2} \eta}^{\text {robustness }}$,
where $\Delta(\mathbf{y})=\Delta_{1, \eta}(\mathbf{y}):=\operatorname{argmin}\|\mathbf{z}\|_{1} \quad$ subject to $\|A \mathbf{z}-\mathbf{y}\|_{2} \leq \eta$.

Stable and Robust Sparse Recovery via ℓ_{1}-Minimization

Objective: for $p \in[1,2]$, for all $\mathbf{x} \in \mathbb{C}^{N}$ and $\mathbf{e} \in \mathbb{C}^{m}$ with $\|\mathbf{e}\|_{2} \leq \eta$:
$\|\mathbf{x}-\Delta(A \mathbf{x}+\mathbf{e})\|_{p} \leq \overbrace{\frac{C}{s^{1-1 / p}} \min _{\mathbf{x}_{s} s-\text { sparse }}\left\|\mathbf{x}-\mathbf{x}_{s}\right\|_{1}}^{\text {stability }}+\overbrace{D s^{1 / p-1 / 2} \eta}^{\text {robustness }}$,
where $\Delta(\mathbf{y})=\Delta_{1, \eta}(\mathbf{y}):=\operatorname{argmin}\|\mathbf{z}\|_{1} \quad$ subject to $\|A \mathbf{z}-\mathbf{y}\|_{2} \leq \eta$.

Taking $\mathbf{x}=\mathbf{v} \in \mathbb{C}^{N}, \mathbf{e}=-A \mathbf{v} \in \mathbb{C}^{m}$, and $\eta=\|A \mathbf{v}\|_{2}$ gives

$$
\|\mathbf{v}\|_{p} \leq \frac{C}{s^{1-1 / p}}\left\|\mathbf{v}_{\bar{s}}\right\|_{1}+D s^{1 / p-1 / 2}\|A \mathbf{v}\|_{2}
$$

for all $S \subseteq[N]$ with $\operatorname{card}(S)=s$.

Robust Null Space Property

Robust Null Space Property

For $q \in[1,2], A \in \mathbb{C}^{m \times N}$ has the ℓ_{q}-robust null space property of order s (wrto $\|\cdot\|$) with constants $0<\rho<1$ and $\tau>0$ if, for any set $S \subset[N]$ with $\operatorname{card}(S) \leq s$,

$$
\left\|\mathbf{v}_{S}\right\|_{a} \leq \frac{\rho}{s^{1-1 / q}}\left\|\mathbf{v}_{\bar{S}}\right\|_{1}+\tau\|A \mathbf{v}\| \quad \text { for all } \mathbf{v} \in \mathbb{C}^{N}
$$

Robust Null Space Property

For $q \in[1,2], A \in \mathbb{C}^{m \times N}$ has the ℓ_{q}-robust null space property of order s (wrto $\|\cdot\|$) with constants $0<\rho<1$ and $\tau>0$ if, for any set $S \subset[N]$ with $\operatorname{card}(S) \leq s$,

$$
\left\|\mathbf{v}_{S}\right\|_{a} \leq \frac{\rho}{s^{1-1 / q}}\left\|\mathbf{v}_{\bar{S}}\right\|_{1}+\tau\|A \mathbf{v}\| \quad \text { for all } \mathbf{v} \in \mathbb{C}^{N}
$$

- ℓ_{q}-RNSP (wrto $\|\cdot\|$) $\Rightarrow \ell_{p}$-RSNP (wrto $s^{1 / p-1 / q}\|\cdot\|$) whenever $1 \leq p \leq q \leq 2$.

Robust Null Space Property

For $q \in[1,2], A \in \mathbb{C}^{m \times N}$ has the ℓ_{q}-robust null space property of order s (wrto $\|\cdot\|$) with constants $0<\rho<1$ and $\tau>0$ if, for any set $S \subset[N]$ with $\operatorname{card}(S) \leq s$,

$$
\left\|\mathbf{v}_{S}\right\|_{a} \leq \frac{\rho}{s^{1-1 / q}}\left\|\mathbf{v}_{\bar{S}}\right\|_{1}+\tau\|A \mathbf{v}\| \quad \text { for all } \mathbf{v} \in \mathbb{C}^{N}
$$

- ℓ_{q}-RNSP (wrto $\|\cdot\|$) $\Rightarrow \ell_{p}$-RSNP (wrto $s^{1 / p-1 / q}\|\cdot\|$) whenever $1 \leq p \leq q \leq 2$.
- ℓ_{q}-RNSP (wrto $\|\cdot\|$) implies that, for $1 \leq p \leq q$,

$$
\|\mathbf{z}-\mathbf{x}\|_{p} \leq \frac{C}{s^{1-1 / p}}\left(\|\mathbf{z}\|_{1}-\|\mathbf{x}\|_{1}+2 \sigma_{s}(\mathbf{x})_{1}\right)+D s^{1 / p-1 / q}\|A(\mathbf{z}-\mathbf{x})\|
$$

for all $\mathbf{x}, \mathbf{z} \in \mathbb{C}^{N}$.

Robust Null Space Property

For $q \in[1,2], A \in \mathbb{C}^{m \times N}$ has the ℓ_{q}-robust null space property of order s (wrto $\|\cdot\|$) with constants $0<\rho<1$ and $\tau>0$ if, for any set $S \subset[N]$ with $\operatorname{card}(S) \leq s$,

$$
\left\|\mathbf{v}_{S}\right\|_{q} \leq \frac{\rho}{s^{1-1 / q}}\left\|\mathbf{v}_{\bar{S}}\right\|_{1}+\tau\|A \mathbf{v}\| \quad \text { for all } \mathbf{v} \in \mathbb{C}^{N}
$$

- ℓ_{q}-RNSP (wrto $\|\cdot\|$) $\Rightarrow \ell_{p}$-RSNP (wrto $s^{1 / p-1 / q}\|\cdot\|$) whenever $1 \leq p \leq q \leq 2$.
- ℓ_{q}-RNSP (wrto $\|\cdot\|$) implies that, for $1 \leq p \leq q$,

$$
\|\mathbf{z}-\mathbf{x}\|_{p} \leq \frac{C}{s^{1-1 / p}}\left(\|\mathbf{z}\|_{1}-\|\mathbf{x}\|_{1}+2 \sigma_{s}(\mathbf{x})_{1}\right)+D s^{1 / p-1 / q}\|A(\mathbf{z}-\mathbf{x})\|
$$

for all $\mathbf{x}, \mathbf{z} \in \mathbb{C}^{N}$. The converse holds when $q=1$.

Robust Null Space Property

For $q \in[1,2], A \in \mathbb{C}^{m \times N}$ has the ℓ_{q}-robust null space property of order s (wrto $\|\cdot\|$) with constants $0<\rho<1$ and $\tau>0$ if, for any set $S \subset[N]$ with $\operatorname{card}(S) \leq s$,

$$
\left\|\mathbf{v}_{S}\right\|_{q} \leq \frac{\rho}{s^{1-1 / q}}\left\|\mathbf{v}_{\bar{S}}\right\|_{1}+\tau\|A \mathbf{v}\| \quad \text { for all } \mathbf{v} \in \mathbb{C}^{N}
$$

- ℓ_{q}-RNSP (wrto $\|\cdot\|$) $\Rightarrow \ell_{p}$-RSNP (wrto $s^{1 / p-1 / q}\|\cdot\|$) whenever $1 \leq p \leq q \leq 2$.
- ℓ_{q}-RNSP (wrto $\|\cdot\|$) implies that, for $1 \leq p \leq q$,

$$
\|\mathbf{z}-\mathbf{x}\|_{p} \leq \frac{C}{s^{1-1 / p}}\left(\|\mathbf{z}\|_{1}-\|\mathbf{x}\|_{1}+2 \sigma_{s}(\mathbf{x})_{1}\right)+D s^{1 / p-1 / q}\|A(\mathbf{z}-\mathbf{x})\|
$$

for all $\mathbf{x}, \mathbf{z} \in \mathbb{C}^{N}$. The converse holds when $q=1$.

- ℓ_{2}-RNSP (wrto $\|\cdot\|_{2}$) holds when $\delta_{2 s}<1 / \sqrt{2}$.

Iterative Hard Thresholding and Hard Thresholding Pursuit

Iterative Hard Thresholding and Hard Thresholding Pursuit

- solving the rectangular system $A \mathbf{x}=\mathbf{y}$ amounts to solving the square system $A^{*} A \mathbf{x}=A^{*} \mathbf{y}$,

Iterative Hard Thresholding and Hard Thresholding Pursuit

- solving the rectangular system $A \mathbf{x}=\mathbf{y}$ amounts to solving the square system $A^{*} A \mathbf{x}=A^{*} \mathbf{y}$,
- classical iterative methods suggest the iteration $\mathbf{x}^{n+1}=\mathbf{x}^{n}+A^{*}\left(\mathbf{y}-A \mathbf{x}^{n}\right)$,

Iterative Hard Thresholding and Hard Thresholding Pursuit

- solving the rectangular system $A \mathbf{x}=\mathbf{y}$ amounts to solving the square system $A^{*} A \mathbf{x}=A^{*} \mathbf{y}$,
- classical iterative methods suggest the iteration $\mathbf{x}^{n+1}=\mathbf{x}^{n}+A^{*}\left(\mathbf{y}-A \mathbf{x}^{n}\right)$,
- at each iteration, keep s largest absolute entries and set the other ones to zero.

Iterative Hard Thresholding and Hard Thresholding Pursuit

- solving the rectangular system $A \mathbf{x}=\mathbf{y}$ amounts to solving the square system $A^{*} A \mathbf{x}=A^{*} \mathbf{y}$,
- classical iterative methods suggest the iteration $\mathbf{x}^{n+1}=\mathbf{x}^{n}+A^{*}\left(\mathbf{y}-A \mathbf{x}^{n}\right)$,
- at each iteration, keep s largest absolute entries and set the other ones to zero.

IHT: Start with an s-sparse $\mathbf{x}^{0} \in \mathbb{C}^{N}$ and iterate:

$$
\begin{equation*}
\mathbf{x}^{n+1}=H_{s}\left(\mathbf{x}^{n}+A^{*}\left(\mathbf{y}-A \mathbf{x}^{n}\right)\right) \tag{IHT}
\end{equation*}
$$

until a stopping criterion is met.

Iterative Hard Thresholding and Hard Thresholding Pursuit

- solving the rectangular system $A \mathbf{x}=\mathbf{y}$ amounts to solving the square system $A^{*} A \mathbf{x}=A^{*} \mathbf{y}$,
- classical iterative methods suggest the iteration $\mathbf{x}^{n+1}=\mathbf{x}^{n}+A^{*}\left(\mathbf{y}-A \mathbf{x}^{n}\right)$,
- at each iteration, keep s largest absolute entries and set the other ones to zero.

IHT: Start with an s-sparse $\mathbf{x}^{0} \in \mathbb{C}^{N}$ and iterate:
(IHT)

$$
\mathbf{x}^{n+1}=H_{s}\left(\mathbf{x}^{n}+A^{*}\left(\mathbf{y}-A \mathbf{x}^{n}\right)\right)
$$

until a stopping criterion is met.
HTP: Start with an s-sparse $\mathbf{x}^{0} \in \mathbb{C}^{N}$ and iterate:

Iterative Hard Thresholding and Hard Thresholding Pursuit

- solving the rectangular system $A \mathbf{x}=\mathbf{y}$ amounts to solving the square system $A^{*} A \mathbf{x}=A^{*} \mathbf{y}$,
- classical iterative methods suggest the iteration $\mathbf{x}^{n+1}=\mathbf{x}^{n}+A^{*}\left(\mathbf{y}-A \mathbf{x}^{n}\right)$,
- at each iteration, keep s largest absolute entries and set the other ones to zero.

IHT: Start with an s-sparse $\mathbf{x}^{0} \in \mathbb{C}^{N}$ and iterate:
(IHT)

$$
\mathbf{x}^{n+1}=H_{s}\left(\mathbf{x}^{n}+A^{*}\left(\mathbf{y}-A \mathbf{x}^{n}\right)\right)
$$

until a stopping criterion is met.
HTP: Start with an s-sparse $\mathbf{x}^{0} \in \mathbb{C}^{N}$ and iterate:
(HTP_{1})
$\left(\mathrm{HTP}_{2}\right)$

Iterative Hard Thresholding and Hard Thresholding Pursuit

- solving the rectangular system $A \mathbf{x}=\mathbf{y}$ amounts to solving the square system $A^{*} A \mathbf{x}=A^{*} \mathbf{y}$,
- classical iterative methods suggest the iteration $\mathbf{x}^{n+1}=\mathbf{x}^{n}+A^{*}\left(\mathbf{y}-A \mathbf{x}^{n}\right)$,
- at each iteration, keep s largest absolute entries and set the other ones to zero.

IHT: Start with an s-sparse $\mathbf{x}^{0} \in \mathbb{C}^{N}$ and iterate:
(IHT)

$$
\mathbf{x}^{n+1}=H_{s}\left(\mathbf{x}^{n}+A^{*}\left(\mathbf{y}-A \mathbf{x}^{n}\right)\right)
$$

until a stopping criterion is met.
HTP: Start with an s-sparse $\mathbf{x}^{0} \in \mathbb{C}^{N}$ and iterate:
$\left(\mathrm{HTP}_{1}\right) \quad S^{n+1}=\left\{s\right.$ largest abs. entries of $\left.\mathbf{x}^{n}+A^{*}\left(\mathbf{y}-A \mathbf{x}^{n}\right)\right\}$,
$\left(\mathrm{HTP}_{2}\right)$

Iterative Hard Thresholding and Hard Thresholding Pursuit

- solving the rectangular system $A \mathbf{x}=\mathbf{y}$ amounts to solving the square system $A^{*} A \mathbf{x}=A^{*} \mathbf{y}$,
- classical iterative methods suggest the iteration $\mathbf{x}^{n+1}=\mathbf{x}^{n}+A^{*}\left(\mathbf{y}-A \mathbf{x}^{n}\right)$,
- at each iteration, keep s largest absolute entries and set the other ones to zero.

IHT: Start with an s-sparse $\mathbf{x}^{0} \in \mathbb{C}^{N}$ and iterate:

$$
\begin{equation*}
\mathbf{x}^{n+1}=H_{s}\left(\mathbf{x}^{n}+A^{*}\left(\mathbf{y}-A \mathbf{x}^{n}\right)\right) \tag{IHT}
\end{equation*}
$$

until a stopping criterion is met.
HTP: Start with an s-sparse $\mathbf{x}^{0} \in \mathbb{C}^{N}$ and iterate:
$\left(\mathrm{HTP}_{1}\right) \quad S^{n+1}=\left\{s\right.$ largest abs. entries of $\left.\mathbf{x}^{n}+A^{*}\left(\mathbf{y}-A \mathbf{x}^{n}\right)\right\}$,
$\left(\mathrm{HTP}_{2}\right) \quad \mathbf{x}^{n+1}=\operatorname{argmin}\left\{\|\mathbf{y}-A \mathbf{z}\|_{2}, \operatorname{supp}(\mathbf{z}) \subseteq S^{n+1}\right\}$,

Iterative Hard Thresholding and Hard Thresholding Pursuit

- solving the rectangular system $A \mathbf{x}=\mathbf{y}$ amounts to solving the square system $A^{*} A \mathbf{x}=A^{*} \mathbf{y}$,
- classical iterative methods suggest the iteration $\mathbf{x}^{n+1}=\mathbf{x}^{n}+A^{*}\left(\mathbf{y}-A \mathbf{x}^{n}\right)$,
- at each iteration, keep s largest absolute entries and set the other ones to zero.

IHT: Start with an s-sparse $\mathbf{x}^{0} \in \mathbb{C}^{N}$ and iterate:

$$
\begin{equation*}
\mathbf{x}^{n+1}=H_{s}\left(\mathbf{x}^{n}+A^{*}\left(\mathbf{y}-A \mathbf{x}^{n}\right)\right) \tag{IHT}
\end{equation*}
$$

until a stopping criterion is met.
HTP: Start with an s-sparse $\mathbf{x}^{0} \in \mathbb{C}^{N}$ and iterate:
$\left(\mathrm{HTP}_{1}\right) \quad S^{n+1}=\left\{s\right.$ largest abs. entries of $\left.\mathbf{x}^{n}+A^{*}\left(\mathbf{y}-A \mathbf{x}^{n}\right)\right\}$,
$\left(\mathrm{HTP}_{2}\right) \quad \mathbf{x}^{n+1}=\operatorname{argmin}\left\{\|\mathbf{y}-A \mathbf{z}\|_{2}, \operatorname{supp}(\mathbf{z}) \subseteq S^{n+1}\right\}$,
until a stopping criterion is met $\left(S^{n+1}=S^{n}\right.$ is natural here)

Stable and Robust Sparse Recovery via IHT and HTP

Stable and Robust Sparse Recovery via IHT and HTP

Suppose that $\delta_{3 s}<1 / \sqrt{3}$.

Stable and Robust Sparse Recovery via IHT and HTP

Suppose that $\delta_{3 s}<1 / \sqrt{3}$. Then, for some $\rho<1$ and $\tau>0$, the following facts hold for all $\mathbf{x} \in \mathbb{C}^{N}$ and $\mathbf{e} \in \mathbb{C}^{m}$, where S denotes an index set of s largest absolute entries of \mathbf{x} :

Stable and Robust Sparse Recovery via IHT and HTP

Suppose that $\delta_{3 s}<1 / \sqrt{3}$. Then, for some $\rho<1$ and $\tau>0$, the following facts hold for all $\mathbf{x} \in \mathbb{C}^{N}$ and $\mathbf{e} \in \mathbb{C}^{m}$, where S denotes an index set of s largest absolute entries of \mathbf{x} :

$$
\left\|\mathbf{x}_{S}-\mathbf{x}^{n+1}\right\|_{2} \leq \rho\left\|\mathbf{x}_{S}-\mathbf{x}^{n}\right\|_{2}+(1-\rho) \tau\left\|A \mathbf{x}_{\bar{S}}+\mathbf{e}\right\|_{2}
$$

Stable and Robust Sparse Recovery via IHT and HTP

Suppose that $\delta_{3 s}<1 / \sqrt{3}$. Then, for some $\rho<1$ and $\tau>0$, the following facts hold for all $\mathbf{x} \in \mathbb{C}^{N}$ and $\mathbf{e} \in \mathbb{C}^{m}$, where S denotes an index set of s largest absolute entries of \mathbf{x} :

$$
\begin{aligned}
& -\left\|\mathbf{x}_{S}-\mathbf{x}^{n+1}\right\|_{2} \leq \rho\left\|\mathbf{x}_{S}-\mathbf{x}^{n}\right\|_{2}+(1-\rho) \tau\left\|A \mathbf{x}_{\bar{S}}+\mathbf{e}\right\|_{2} \\
& -\left\|\mathbf{x}_{S}-\mathbf{x}^{n}\right\|_{2} \leq \rho^{n}\left\|\mathbf{x}_{S}-\mathbf{x}^{0}\right\|_{2}+\tau\left\|A \mathbf{x}_{\bar{S}}+\mathbf{e}\right\|_{2}
\end{aligned}
$$

Stable and Robust Sparse Recovery via IHT and HTP

Suppose that $\delta_{3 s}<1 / \sqrt{3}$. Then, for some $\rho<1$ and $\tau>0$, the following facts hold for all $\mathbf{x} \in \mathbb{C}^{N}$ and $\mathbf{e} \in \mathbb{C}^{m}$, where S denotes an index set of s largest absolute entries of \mathbf{x} :

- $\left\|\mathbf{x}_{S}-\mathbf{x}^{n+1}\right\|_{2} \leq \rho\left\|\mathbf{x}_{S}-\mathbf{x}^{n}\right\|_{2}+(1-\rho) \tau\left\|A \mathbf{x}_{\bar{S}}+\mathbf{e}\right\|_{2}$,
- $\left\|\mathbf{x}_{S}-\mathbf{x}^{n}\right\|_{2} \leq \rho^{n}\left\|\mathbf{x}_{S}-\mathbf{x}^{0}\right\|_{2}+\tau\left\|A \mathbf{x}_{\bar{S}}+\mathbf{e}\right\|_{2}$,
- The outpout \mathbf{x}^{\sharp} of the algorithms satisfy

$$
\left\|\mathbf{x}_{S}-\mathbf{x}^{\sharp}\right\|_{2} \leq \tau\left\|A \mathbf{x}_{\bar{S}}+\mathbf{e}\right\|_{2},
$$

Stable and Robust Sparse Recovery via IHT and HTP

Suppose that $\delta_{3 s}<1 / \sqrt{3}$. Then, for some $\rho<1$ and $\tau>0$, the following facts hold for all $\mathbf{x} \in \mathbb{C}^{N}$ and $\mathbf{e} \in \mathbb{C}^{m}$, where S denotes an index set of s largest absolute entries of \mathbf{x} :

- $\left\|\mathbf{x}_{S}-\mathbf{x}^{n+1}\right\|_{2} \leq \rho\left\|\mathbf{x}_{S}-\mathbf{x}^{n}\right\|_{2}+(1-\rho) \tau\left\|A \mathbf{x}_{\bar{S}}+\mathbf{e}\right\|_{2}$,
- $\left\|\mathbf{x}_{S}-\mathbf{x}^{n}\right\|_{2} \leq \rho^{n}\left\|\mathbf{x}_{S}-\mathbf{x}^{0}\right\|_{2}+\tau\left\|A \mathbf{x}_{\bar{S}}+\mathbf{e}\right\|_{2}$,
- The outpout \mathbf{x}^{\sharp} of the algorithms satisfy

$$
\left\|\mathbf{x}_{S}-\mathbf{x}^{\sharp}\right\|_{2} \leq \tau\left\|A \mathbf{x}_{\bar{S}}+\mathbf{e}\right\|_{2},
$$

- With $2 s$ in place of s in the algorithms, if $\delta_{6 s}<1 / \sqrt{3}$, then

$$
\left\|\mathbf{x}-\mathbf{x}^{\sharp}\right\|_{p} \leq \frac{C}{s^{1-1 / p}} \sigma_{s}(\mathbf{x})_{1}+D s^{1 / p-1 / 2}\|\mathbf{e}\|_{2}, \quad 1 \leq p \leq 2,
$$

Stable and Robust Sparse Recovery via IHT and HTP

Suppose that $\delta_{3 s}<1 / \sqrt{3}$. Then, for some $\rho<1$ and $\tau>0$, the following facts hold for all $\mathbf{x} \in \mathbb{C}^{N}$ and $\mathbf{e} \in \mathbb{C}^{m}$, where S denotes an index set of s largest absolute entries of \mathbf{x} :

- $\left\|\mathbf{x}_{S}-\mathbf{x}^{n+1}\right\|_{2} \leq \rho\left\|\mathbf{x}_{S}-\mathbf{x}^{n}\right\|_{2}+(1-\rho) \tau\left\|A \mathbf{x}_{\bar{S}}+\mathbf{e}\right\|_{2}$,
- $\left\|\mathbf{x}_{S}-\mathbf{x}^{n}\right\|_{2} \leq \rho^{n}\left\|\mathbf{x}_{S}-\mathbf{x}^{0}\right\|_{2}+\tau\left\|A \mathbf{x}_{\bar{S}}+\mathbf{e}\right\|_{2}$,
- The outpout \mathbf{x}^{\sharp} of the algorithms satisfy

$$
\left\|\mathbf{x}_{S}-\mathbf{x}^{\sharp}\right\|_{2} \leq \tau\left\|A \mathbf{x}_{\bar{S}}+\mathbf{e}\right\|_{2},
$$

- With $2 s$ in place of s in the algorithms, if $\delta_{6 s}<1 / \sqrt{3}$, then

$$
\left\|\mathbf{x}-\mathbf{x}^{\sharp}\right\|_{p} \leq \frac{C}{s^{1-1 / p}} \sigma_{s}(\mathbf{x})_{1}+D s^{1 / p-1 / 2}\|\mathbf{e}\|_{2}, \quad 1 \leq p \leq 2
$$

- For HTP, (pseudo)robustness is achieved in $\leq c s$ iterations.

Recovery by Orthogonal Matching Pursuit

Recovery by Orthogonal Matching Pursuit

OMP: Start with $S^{0}=\emptyset$ and $\mathbf{x}^{0}=\mathbf{0}$, and iterate:

$$
\begin{aligned}
& S^{n}=S^{n-1} \cup\left\{j^{n}:=\operatorname{argmax}_{j}\left|\left(A^{*}\left(\mathbf{y}-A \mathbf{x}^{n-1}\right)\right)_{j}\right|\right\} \\
& \mathbf{x}^{\mathbf{n}}=\operatorname{argmin}_{\mathbf{z}}\left\{\|\mathbf{y}-A \mathbf{z}\|_{2}, \operatorname{supp}(\mathbf{z}) \subseteq S^{n}\right\}
\end{aligned}
$$

Recovery by Orthogonal Matching Pursuit

OMP: Start with $S^{0}=\emptyset$ and $\mathbf{x}^{0}=\mathbf{0}$, and iterate:

$$
\begin{aligned}
& S^{n}=S^{n-1} \cup\left\{j^{n}:=\operatorname{argmax}_{j}\left|\left(A^{*}\left(\mathbf{y}-A \mathbf{x}^{n-1}\right)\right)_{j}\right|\right\} \\
& \mathbf{x}^{\mathbf{n}}=\operatorname{argmin}_{\mathbf{z}}\left\{\|\mathbf{y}-A \mathbf{z}\|_{2}, \operatorname{supp}(\mathbf{z}) \subseteq S^{n}\right\}
\end{aligned}
$$

If A has ℓ_{2}-normalized columns $\mathbf{a}_{1}, \ldots, \mathbf{a}_{N}$, then

$$
\left\|\mathbf{y}-A \mathbf{x}^{n}\right\|_{2}^{2}=\left\|\mathbf{y}-A \mathbf{x}^{n-1}\right\|_{2}^{2}-\frac{\left|\left(A^{*}\left(\mathbf{y}-A \mathbf{x}^{n-1}\right)\right)_{j^{n}}\right|^{2}}{d\left(\mathbf{a}_{j^{n}}, \operatorname{span}\left[\mathbf{a}_{j}, j \in S^{n-1}\right]\right)^{2}}
$$

Recovery by Orthogonal Matching Pursuit

OMP: Start with $S^{0}=\emptyset$ and $\mathbf{x}^{0}=\mathbf{0}$, and iterate:

$$
\begin{aligned}
& S^{n}=S^{n-1} \cup\left\{j^{n}:=\operatorname{argmax}_{j}\left|\left(A^{*}\left(\mathbf{y}-A \mathbf{x}^{n-1}\right)\right)_{j}\right|\right\} \\
& \mathbf{x}^{\mathbf{n}}=\operatorname{argmin}_{\mathbf{z}}\left\{\|\mathbf{y}-A \mathbf{z}\|_{2}, \operatorname{supp}(\mathbf{z}) \subseteq S^{n}\right\}
\end{aligned}
$$

If A has ℓ_{2}-normalized columns $\mathbf{a}_{1}, \ldots, \mathbf{a}_{N}$, then

$$
\begin{aligned}
\left\|\mathbf{y}-A \mathbf{x}^{n}\right\|_{2}^{2} & =\left\|\mathbf{y}-A \mathbf{x}^{n-1}\right\|_{2}^{2}-\frac{\left|\left(A^{*}\left(\mathbf{y}-A \mathbf{x}^{n-1}\right)\right)_{j^{n}}\right|^{2}}{d\left(\mathbf{a}_{j^{n}}, \operatorname{span}\left[\mathbf{a}_{j}, j \in S^{n-1}\right]\right)^{2}} \\
& \leq\left\|\mathbf{y}-A \mathbf{x}^{n-1}\right\|_{2}^{2}-\left|\left(A^{*}\left(\mathbf{y}-A \mathbf{x}^{n-1}\right)\right)_{j^{n}}\right|^{2}
\end{aligned}
$$

Recovery by Orthogonal Matching Pursuit

OMP: Start with $S^{0}=\emptyset$ and $\mathbf{x}^{0}=\mathbf{0}$, and iterate:

$$
\begin{aligned}
& S^{n}=S^{n-1} \cup\left\{j^{n}:=\operatorname{argmax}_{j}\left|\left(A^{*}\left(\mathbf{y}-A \mathbf{x}^{n-1}\right)\right)_{j}\right|\right\} \\
& \mathbf{x}^{\mathbf{n}}=\operatorname{argmin}_{\mathbf{z}}\left\{\|\mathbf{y}-A \mathbf{z}\|_{2}, \operatorname{supp}(\mathbf{z}) \subseteq S^{n}\right\}
\end{aligned}
$$

If A has ℓ_{2}-normalized columns $\mathbf{a}_{1}, \ldots, \mathbf{a}_{N}$, then

$$
\begin{aligned}
\left\|\mathbf{y}-A \mathbf{x}^{n}\right\|_{2}^{2} & =\left\|\mathbf{y}-A \mathbf{x}^{n-1}\right\|_{2}^{2}-\frac{\left|\left(A^{*}\left(\mathbf{y}-A \mathbf{x}^{n-1}\right)\right)_{j^{n}}\right|^{2}}{d\left(\mathbf{a}_{j^{n}}, \operatorname{span}\left[\mathbf{a}_{j}, j \in S^{n-1}\right]\right)^{2}} \\
& \leq\left\|\mathbf{y}-A \mathbf{x}^{n-1}\right\|_{2}^{2}-\left|\left(A^{*}\left(\mathbf{y}-A \mathbf{x}^{n-1}\right)\right)_{j^{n}}\right|^{2}
\end{aligned}
$$

- Suppose that $\delta_{13 s}<1 / 6$. Then s-sparse recovery via $12 s$ iterations of OMP is stable and robust.

Recovery by Orthogonal Matching Pursuit

OMP: Start with $S^{0}=\emptyset$ and $\mathbf{x}^{0}=\mathbf{0}$, and iterate:

$$
\begin{aligned}
& S^{n}=S^{n-1} \cup\left\{j^{n}:=\operatorname{argmax}_{j}\left|\left(A^{*}\left(\mathbf{y}-A \mathbf{x}^{n-1}\right)\right)_{j}\right|\right\} \\
& \mathbf{x}^{\mathbf{n}}=\operatorname{argmin}_{\mathbf{z}}\left\{\|\mathbf{y}-A \mathbf{z}\|_{2}, \operatorname{supp}(\mathbf{z}) \subseteq S^{n}\right\}
\end{aligned}
$$

If A has ℓ_{2}-normalized columns $\mathbf{a}_{1}, \ldots, \mathbf{a}_{N}$, then

$$
\begin{aligned}
\left\|\mathbf{y}-A \mathbf{x}^{n}\right\|_{2}^{2} & =\left\|\mathbf{y}-A \mathbf{x}^{n-1}\right\|_{2}^{2}-\frac{\left|\left(A^{*}\left(\mathbf{y}-A \mathbf{x}^{n-1}\right)\right)_{j^{n}}\right|^{2}}{d\left(\mathbf{a}_{j^{n}}, \operatorname{span}\left[\mathbf{a}_{j}, j \in S^{n-1}\right]\right)^{2}} \\
& \leq\left\|\mathbf{y}-A \mathbf{x}^{n-1}\right\|_{2}^{2}-\left|\left(A^{*}\left(\mathbf{y}-A \mathbf{x}^{n-1}\right)\right)_{j^{n}}\right|^{2}
\end{aligned}
$$

- Suppose that $\delta_{13 s}<1 / 6$. Then s-sparse recovery via $12 s$ iterations of OMP is stable and robust.
- Challenge: natural proof of OMP success in $c s$ iterations?

