Applied/Numerical Analysis Qualifying Exam

August 13, 2014

Cover Sheet – Applied Analysis Part

Policy on misprints: The qualifying exam committee tries to proofread exams as carefully as possible. Nevertheless, the exam may contain a few misprints. If you are convinced a problem has been stated incorrectly, indicate your interpretation in writing your answer. In such cases, do *not* interpret the problem so that it becomes trivial.

N.T.			
Name			

Combined Applied Analysis/Numerical Analysis Qualifier Applied Analysis Part August 13, 2014

Instructions: Do any 3 of the 4 problems in this part of the exam. Show all of your work clearly. Please indicate which of the 4 problems you are skipping.

Problem 1. Let f be a 2π -periodic function.

(a) Sketch a proof of the following: If f is a piecewise $C^{(1)}$ (i.e., can have jumps), and if $S_N = \sum_{n=-N}^N c_n e^{inx}$ is the N^{th} partial sum of the Fourier series for f, then, for every $x \in \mathbb{R}$,

$$\lim_{N \to \infty} S_N(x) = \frac{f(x^+) + f(x^-)}{2}.$$

(b) Show that if f is $C^{(1)}$, then the convergence is uniform.

Problem 2. Consider the boundary value problem

$$u'' = f, \ u(0) - u'(0) = 0, \ u(1) + u'(1) = 0.$$
 (2.1)

- (a) Find the Green's function, G(x, y), for (2.1).
- (b) Show that $Gf(x) = \int_0^1 G(x, y) f(y) dy$ is compact and self adjoint on $L^2[0, 1]$.
- (c) State the spectral theorem for compact, self-adjoint operators. Use it to show that the (normalized) eigenfunctions of the eigenvalue problem $u'' + \lambda u = 0$, u(0) u'(0) = 0, u(1) + u'(1) = 0 form a complete orthonormal set in $L^2[0,1]$. (Hint: How are the eigenfunctions of G related to those of $u'' + \lambda u = 0$, u(0) u'(0) = 0, u(1) + u'(1) = 0?)

Problem 3. Let $k(x,y) = x^2y^3$, $Ku(x) = \int_0^1 k(x,y)u(y)dy$, and $Lu = u - \lambda Ku$.

- (a) Show that L has closed range.
- (b) Determine the values of λ for which Lu = f has a solution for all f. Solve Lu = f for these values of λ .
- (c) For the remaining values of λ , find a condition on f that guarantees a solution to Lu = f exists. When f satisfies this condition, solve Lu = f.

Problem 4. Let $p \in C^{(2)}[0,1]$, and $q,w \in C[0,1]$, with p,q,w > 0. Consider the Sturm-Liouville (SL) eigenvalue problem, $(p\phi')' - q\phi + \lambda w\phi = 0$, subject to $\phi(0) = 0$ and either (A) $\phi(1) = 0$ or (B) $\phi'(1) + \phi(1) = 0$. In addition, for $\phi \in C^{(1)}[0,1]$, let $D[\phi] := \int_0^1 (p\phi'^2 + q\phi^2) dx$ and $H[\phi] := \int_0^1 w\phi^2 dx$.

- (a) Show that minimizing the functional $D[\phi]$, subject to the constraint $H[\phi] = 1$ and boundary conditions $\phi(0) = \phi(1) = 0$, yields the SL problem (A).
- (b) State the variational problem that will yield the SL problem (B). Verify that your answer is correct by calculating the variational (Fréchet) derivative and setting it equal to 0.
- (c) State the Courant MINIMAX Principle. (Eigenvalues increase: $\lambda_1 < \lambda_2 < \lambda_3 \cdots$.) Use it to show that the n^{th} eigenvalue of the SL problem (A) is larger than or equal to the n^{th} eigenvalue of the SL problem (B).