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Testing a Series
∞∑
an for Convergence or Divergence

I. Do the terms tend to zero? [That is, an → 0 as n→∞.] If not, the series diverges.

II. Is the series recognizable as one for which the answer is known? Examples:

(a)
∞∑
n=1

2
3n

=
2
3

∞∑
n=0

1
3n

converges to
2
3

1
1− 1

3

= 1 (geometric series with |r| < 1).

(b)
∞∑
n=0

10n

n!
x2n converges to e10x2

(Maclaurin (Taylor) series of ez with z = 10x2).

(c)
∞∑
n=1

3
n2

converges (p-series with p > 1).

(d)
∞∑
n=0

1
n+ 2

=
∞∑
m=2

1
m

[let m = n+ 2] diverges (harmonic series).

III. Are all the terms positive? If so, go to IV. If not, try the following strategies:

A. Are all the hypotheses of the alternating series theorem satisfied?

an = (−1)n|an| ; |an| is decreasing ; |an| → 0 .

If so, the series converges (and the error is bounded by the magnitude of the first
term omitted).

B. Try to show that the series is absolutely convergent [that is,
∑
|an| converges] by

one of the methods under IV.

IV. If an ≥ 0 (at least for all sufficiently large n), try the following strategies:

A. If the terms contain factorials, or n in an exponent, try the ratio or root test. (In
particular, these methods are used to find the radius of convergence of a power
series.)

1. If an contains factorials, the ratio test works best. Example: an =
3nn2

n!
.

2. If n appears in both an exponent and its base, the root test works best.

Example: an =
2n

nn
.

B. If an is a rational function [for example, an = n2+3
n3−4 ], the ratio and root tests won’t

work, because the limit involved turns out to be 1. Try the following strategies:
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1. Use the comparison test or limit comparison test to replace the series by one
for which you know the answer (see II) or can find the answer by the integral
test (see below). In choosing a comparison series

∑
bn , keep (at least as a

first step) from each factor in an the term that grows fastest as n → ∞.
Examples:

(a) If an = 1
n2+1 , take bn = 1

n2 . Since an < bn and
∑
bn is a convergent

p-series,
∑
an converges by the comparison test. Alternatively, since

an/bn → 1 (a finite, nonzero limit) as n→∞, and
∑
bn converges, the

limit comparison test shows that
∑
an converges.

(b) If an =
√
n

n− 1
2
, take (as a first step) bn =

√
n
n

. We have an > bn . Further-

more, bn ≥ cn , where cn = 1
n , and the harmonic series

∑
cn diverges.

Therefore,
∑
an diverges, by the comparison test. Alternatively, try

the limit comparison test: an/cn =
√
n n
n− 1

2
approaches infinity, and

the harmonic series diverges, so
∑
an diverges.

(c) The signs of the constant terms in the two previous examples were chosen
to make the comparison test easy to apply. For an = 1

n2−1 or an =
√
n

n+ 1
2

,
a suitable comparison series, with the inequalities running in the right
direction, is not so obvious; therefore, the limit comparison test is more
convenient in those cases.

(d) If an = (2 + cosn)/n2, neither term in the numerator dominates as
n→∞, so the limit comparison test is hard to use. But an ≤ bn = 3/n2,
so the comparison test shows that

∑
an converges.

2. Use the integral test if an = f(n), where f(x) is positive and decreasing and∫∞
1 f(x) dx can be evaluated. Example:∫ a

1

lnx
xp

dx

can be evaluated by the substitution u = lnx. (This integrand isn’t decreas-
ing at first, but it is for sufficiently large x, which is all that matters.) The
integral converges if and only if p > 1, so

∞∑
n=1

lnn
np

converges or diverges just like a p-series without the logarithmic factor. (This
conclusion can also be reached by comparison or limit comparison argu-
ments.)
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