Some Mathematical and Physical Background

LINEAR PARTIAL DIFFERENTIAL OPERATORS

Let H be a second-order, elliptic, seltf-adjoint PDO,
on scalar functions, in a d-dimensional region {2.

Prototypical categories

e Billiard: H = —V?, Q Cc R¢,
boundary conditions (say Dirichlet, v = 0 on 992).

Example: ) = rectangular parallelepiped in R?
(“brick”),

0? 0? 0?

g =2
Ox? i Oy? T 022"’

u(0,y,2) =u(Ll1,y,2) = u(z,0,2) = u(x, Ls, 2)
— ’LL(.I’, Y, O) — ’U,(x, Y, LS) = 0.



e Laplace—Beltrami operator: () = d-dimensional
Riemannian manifold (without boundary),

1 0 [ 1 Ou
Hu=—-A,u=— —— (V9 ¢’ —]
i j,%:% \/§ O O
Example: ) = 2-sphere,
1 0 ou 1 O%u
Hu = — — [ sinf — | — :
4T T Sing a0 (Sm ae) sin? f 9>

e Schrédinger operator: () = R? (say),
H=-V*+V(x).
Example: Harmonic oscillator (d = 1),

d? 5

Ignoring: external magnetic potential
Neumann and Robin boundary conditions
fourth-order operators, etc.
pseudodifferential operators
vector field u (electromagnetism)
first-order elliptic system (Dirac field)
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SPECTRAL DECOMPOSITION

All the examples so far have discrete spectrum.
Eigenvalues and normalized eigenvectors:

Hpn = Enpn H%HQZ/Q\%(Q;)\%:L
u@) = 3 capn@). n = () = | pal@u(z)da,

F(Hu=>" f(E.)cnpn -

In other words, H is diagonal in this basis.

EXAMPLES

Brick 23 . mmxr . nwy . PTZ
e Brick: ©,,,, = sin sin —= sin ——,
pmnp LiLoLs Ly Lo L3

2 2 2
mi nm P N
Emn —\ 7 - T s Ty 7).
g <L1)%«¥é)_+<&) m,m.p € 27)
e Sphere: F;=1(l+1),le Nm=—-1,...,1—1, 1

20+1 (I —m)!
A7 (l—|—m)!]

1

P (cos 6)e'™?

pm =Y, (0,0) = [

(spherical harmonic).



e Harmonic oscillator: £, =2n+1 (n € N),

on(x) = (VT 2"0) 2”3 H,(x)

(Hermite function).
e Stadium (classically chaotic billiard):

O<Ey<bEi<Ey<E3<.--<E, - — +o00.

Eigenfunctions ¢,, have been computed numerically
up to n > 10°.




INTEGRAL KERNELS (GREEN FUNCTIONS) AND THEIR TRACES

Zf ){@n, u

n=1

At least formally, f(H)u(z) = [, G(z, T)u(Z) dz,

G(z,y) =Y _ [(En)pn(x)pn(y).

If f is sufficiently rapidly decreasing, this converges to
a smooth function.

Trace: / G(x,x)dxr = i f(E
Q n=1

Classic example: Heat kernel, f;(H) = e,

u(t,x):/K(t,x,y)uo(y) dy solves
Q

ou
i —H;yu, u(0,x) = ug(x).

oo

K(t,z,y) = Z e tn n(T)on(y)-

n=1




Theorem 1: For compact manifolds and compact
billiards, with H = —A, + V(z) (and assuming all
E, > 0), there is an asymptotic expansion as t | 0,

/ K(t,z,z)dx ~ (4mt) =42 Z - tm/2,
Q

m=0

where ag is an integral of geometrical data over 2 or
its boundary. (When s is half-integral (m odd), as
comes entirely from the boundary.) In particular, for
Dirichlet boundary conditions,

ag = |€2| = d-dimensional volume of 2,

— _ \/7% X (surface area, |09|),

alzf(%R—v)der%/ kdo
Q o1

(R = Ricci scalar curvature, K = extrinsic curvature
(trace of second fundamental form)).

This theorem assumes all the geometrical functions
are smooth. For the brick we will find directly instead
the same ag and a 1 as above, but

a

N[~

a1 =7n(Ll1+ Lo+ L3), a



Implications:
1. Inverse problem: From K (hence from {F,})
we can deduce aspects of the geometry of 2.

2. Tauberian problem: From K (hence from 2
and V') we can deduce aspects of the spectrum
{E,} by taking the inverse Laplace transform.

Theorem 2 (Weyl’s Law): Let N(F) be the num-
ber of eigenvalues < FE. Under conditions of Theo-
rem 1, as £ — o0

(47) /2 d/2
N(E) ~ EY7=1Q].
(E) I'(1+d/2) €]
Formal check:
Z e thn — / e "M AN (E)
n=1 0
o0 4 —d/2
I B G e olTs)
o I(14+d/2) 2
—d/2
_p (4 U d)
2) T(1+d/2) 2

= (4m)~Y2|Q N/QK(t,:U,x) dx.



EXAMPLES

(47)~ /2
I'(1+d/2)
Brick: Theorem 2 predicts N(E) ~ fiizbs E3/2,

T

N(E) EY2|Q).

n

In fact, by counting lattice points (m,n, p) in octant
of an ellipsoid (handling the coordinate planes by
inclusion-exclusion principle) one approximates

where
V = volume = L1L5L3,
S = surface area = 2(L1 Lo + L1 L3 + LoL3),
L = total edge length = 4(Ly + Ly + L3),
C' = number of corners = 8.

Laplace transform agrees exactly with (promised)
heat kernel expansion!



e Sphere: Theorem 2 predicts N(E) ~ E. Well,

L
=) (20+1) ~ L?, where E = L(L+1) ~ L*.
[=0

e Harmonic oscillator: Theorem 2 predicts N (F) o

E %, but the eigenvalues are equally spaced, so actu-
ally N(E) ~ £. The region is not compact, so The-
orem 1 and the simplest version of Weyl’s formula
do not apply!

The inverse Laplace transform of the heat-kernel ex-
pansion cannot be evaluated term-by-term beyond the
leading (Weyl) term. N(FE) is a step function (and
N'(FE) a series of delta functions), so the expansion

—d/2

Ed/2 E—m/Qam 5
Z m)/2) /

must be literally false beyond order m = d at best.
However, it is correct in some averaged sense. (I tac-
itly averaged N (F) for the brick by not counting lat-
tice points carefully near the ellipsoidal surface.)



Some popular averaging methods

1. Riesz means: Integrate N(FE) p times , then
divide by the volume of the p-simplex you inte-
grated over.

9 E E4
0 0

(Related to Cesaro summation of series.)

Then the first p + 1 terms of the formal series in
1/vE (for this new object) are rigorously asymp-
totic.

2. Lorentzian smoothing: (p= N')

N E/OO p(E1) dE)

4 ):; o (E—FE1)2+¢€2

(Equivalent to analytically continuing the resol-
vent kernel into the complex plane.)

For sufficiently large €, p has a valid asymptotic
expansion in 1/ VE.

3. Gaussian smoothing (better in high dimen-
sions).
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CONTINUOUS SPECTRUM

Example: Half-line 0 < x < oo with Dirichlet BC.
Here we have a generalized eigenfunction expansion,
the Fourier sine transform:

uw) = | " oon(@) dk, ok = / " @) da.

k() = \/g sin(kx) ¢ L*(0,00).

For general operators it may be more convenient to
start with the heat kernel (which exists by abstract
PDE or operator theory) and consider its (exact) in-
verse Laplace transform, which will be the integral
kernel of the spectral projection operator. That is, if

K(t,z,y) :/ et dP(E,z,y),
0

then P(FE,x,y) is the integral kernel of P(F), the or-
thogonal projection onto the part of L? corresponding
to spectrum < FE. (If you don’t know Stieltjes in-
tegration, think of dP(F) as P'(E)dE.) When the
spectrum is discrete, we just have

Exy Z%pn

n:kE,<FE
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In the half-line example,
VE 9
P(E,xz,y) = / — sin(kx) sin(ky) dk,

0 70
equivalent to

K(t,z,y) = (4nt) "1/ [e—<x—y>2/4t _ €—<x+y>2/4t} _

P(E,x,x) is a local spectral density. Analogs of
Theorems 1 and 2 hold for it and K (¢, x,x), but the
expansions are nonuniform in xr and can’t be inte-
grated up to the boundary to recover the integrated
quantities ag etc.

For a billiard, at any interior point

K(t,x,x) ~ (4mt) Y2 + O(t™),
but we know the integral fQ K dx contains a boundary
term O(t~(4=1)/2), For the half-line,

L L ,
/ K(t,z,z)dr = (47Tt)_1/2/ {1 —e 7 /t} dx
0 0
~ (4rt) 2 (L - §V/wt) .

3
So for the brick, we get H(47Tt)_1/2 (Lj — \/E) =
j=1

S/t N Lt C(t)3/?
2 4 8

(4t)~3/2 [V — ] , as claimed.
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THE MAIN GAME

the operator: potentials
geometry
classical mechanics

integral kernels

spectral apparatus: eigenvalues
eigenfunctions
spectral projections
local spectral densities
vacuum energy

Old spectral asymptotics: (this talk)
gross geometry < heat trace at small ¢

«— average eigenvalue density at high frequency
New spectral asymptotics: (rest of workshop)

classical mechanics < kernels «<» details of spectrum
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A VARIETY OF KERNELS
Heat: f;(H) = e tH;

0K
Quantum: f;(H) = e "H,; i%—[t] =HU,U(0)=4¢
(analytic continuation of K)

Resolvent: f.(H) = 7—; (H—2)G=0(z—y)

1
N'(E) = p(E) = —/ ImG(E + ie, z, x) dz.
T Ja
Zeta: f(H) = H~° (meromorphic function of s)

Wave:
o D’Alembert: f;(H) = cos(tv H);

2
D
o°D =—HD, D(0,z,y)=0dz—1y), %—?(O) =0

ot?
e Wightman: f;,(H) = e;%ﬁ

(positive frequency solution)
Cylinder: f,(H) = e tVH.

0T

ot?

(related to wave kernels by analytic continuation)

=+4+HT, TO,z,y)=6, T —0ast— x
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PHYSICAL INTERPRETATIONS AND PHYSICAL QUANTITIES

(What happened to h, m, ¢, and all that?)

0 5
Schrédinger equation:  ih AL v £ AV (x)u
ot 2m
1 9? 2
Klein—Gordon equation: C—Qa—tg = Vu — (%) U

(Nonrelativistic and relativistic meanings of m are dif-

ferent!) Wave equation is case m = 0; instead, could

2
generalize to (%) V(x)u.

Can choose time unit and redefine constants so

_Pu
o2

z@ = —V?u+ A\Vu = Hu,

5 — —Vu+ \Vu.

—iEt/h
Y

Separation of variables (respectively, u = pe or

u = pe WP with E = w?), leads always to

Hy,, = E,0, .

There are two independent constants, A and E. But it
is customary and convenient to reintroduce A, as we’ll
see.

15



THE HIERARCHY OF PHYSICAL THEORIES

classical mechanics geometrical optics
(ODE systems)

semiclassical approximation

nonrelativistic quantum mechanics

(Schrodinger equation) classical field theory
(wave equation)

large mas any particles

relativistic quantum field theory
(Fock space, etc.)

superstrings or something
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SEMICLASSICAL AND HIGH-FREQUENCY LIMITS

Let’s set Schrodinger m = % and Klein—-Gordon ¢ = 1,

but leave h visible. In either case,
—h*V2p + \Vp = Fo.

There are two similar limits:
e High frequency: FE — 400, h and X fixed.

e Semiclassical: h |0 —
equivalent to &/ — oo and A — oo simultaneously.

In a billiard (V' = 0) these are the same!

Underlying classical system: p < —iV, so

H =p® + \V(x).

dx OH dp OH
— = — =2 — =—— = \VV(x).
dt  Op LT Ox VV(x)
Thus, Newton’s law of motion:
2
F
CchT); = —2\VV(x) = = (recall m = 1).

Semiclassical approximation is built on the classical
trajectories.

High-frequency approximation is built on force-free
classical trajectories (straight rays).
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FIELD QUANTIZATION AND VACUUM ENERGY

Consider the wave equation in a billiard,

0% u

ﬁ:v%, u =0 on VQ.

Expand in the normal modes:

u(tv X) — Z Cn(t)gpn(X% Ho, = wn290n .
n=1

Now treat each mode amplitude ¢, as a quantum
system. It behaves as a harmonic oscillator: 4 state
|N,,) with N,, quanta (N,, = 0,1,...) whose energy is
(Ny, + 3)hwy, .

Vacuum state is N,, = 0 Vn.

1 @)
Set h = 1. Total energy F = §W;wn =00 7

Z(s) =) (wa)~,

E = %Z (—%), defined by analytic continuation.
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One-dimensional billiard yields Riemann zeta func-
, nm
tion: Wy = T

Z - L — 2F.

dE 7
L — =
dependence = T = 9412

[\le—‘
hl s

> (, attractive force.
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