What Is Vacuum Energy,
That Mathematicians Should be Mindful of It?

I shall discuss vacuum energy as a purely mathemati-
cal problem, suppressing or postponing physics issues.

THE SETTING

Let H be a second-order, elliptic, self-adjoint PDO,
on scalar functions, in a d-dimensional region {2.

Prototype: A billiard. H = —-V?, Q c R?, bound-
ary conditions (say Dirichlet, u = 0 on 02).

Generalizations:

e clectromagnetic field (vector functions) (other talks
today)

e other boundary conditions

e Riemannian manifold (Laplace-Beltrami operator)

e potential: —V? + V(x)

Technical assumptions:

e smoothness as needed

e self-adjointness (spectral decomposition of L?(Q))

e positivity (H > 0; 0 is not an eigenvalue) for sim-

plicity



TOTAL ENERGY

A finite total energy is expected when
e Spectrum is discrete.
e ()is compact (or V is confining).

Example 1: The (Dirichlet) interval

d2

Q=(0,L H=—-—
(0,1), =5

u(0) =0 = u(L).

Spectral decomposition
(eigenvalues and normalized eigenvectors)

HSOn — LnPn , HSOnHQ — /Q ‘QOn(ZC)‘QdZB = 1.
U@) = 3 enpn(@), n = (o) = [ Gal@ula) do.

Define w,, = \/ E,, .

Ex. 1: Fourier sine series.



Functional calculus and integral kernels

Z Spna

At least formally, f(H)u(z) = / G(x, Z)u(x) dz,
Q

G(z,y) =Y F(En)pn(x)en(y).

If f is sufficiently rapidly decreasing, this converges to
a smooth function.

Trace: TrG = / G(z,z)dr = Z f(E
0 n=1

Cylinder (Poisson) kernel
Let fi(F) = e IVE, f:(H)ug is the solution of

0%u

ol Hu, u(0, ) = ug(x),

that 1s well-behaved as t — +o0.



Kernel T(t,z,y) =) e "“"pn(x)en(y).

Trace TrT:/ (t, x,x) Z wn
Q

n=1
Asymptotics (¢ l 0)
TrT ~ Zest_d+s - Z fot~9tsInt.

s=d+1
s—d odd

e Gilkey & Grubb, Commun. PDEs 23 (1998), 777.
e Fulling & Gustafson, Electr. J. DEs 1999, # 6.
e Bir & Moroianu, Internat. J. Math. 14 (2003), 397.

Define the vacuum energy as FE = —%€1+d
(modulo “local” terms to be determined by physical
considerations).

Formally, F is the “finite part” of

I 3
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Ex. 1:  (case L =)

T(t,x,y) Zsm (kx)sin(ky)e™
T =1

f — 1 1
_;N;OO [(x—y—ZNW)Q—I—t2 N (:1:—|—y—2N7T)2—|—t2]

(image sum = sum over classical paths)
1 [ sinh ¢ sinh ¢ ]

:27T B

cosht —cos(x —y) cosht — cos(z + y)

So (reverting to general L)

sinh(7t/L) 1

1
2 cosh(mt/L) —1 2
L 1 il

L 3
il 2+12L+O(t)

TrT =

Y

Thus F=— ﬁ (O(t) term times —1).

(There are no logarithms in this problem.)



ENERGY DENSITY

(remains meaningful when € is noncompact and H
has some continuous spectrum)

Leave out the integration in the trace:

T(t,x,w):/ e_t\/EdP(E,x,az)
0

o0

~ Y e@tT T+ Y fu(a)tm e Int.

s=0 s=d+1
s—d odd

Define FE(z)= —%61+d(ﬂ3)-
In quantum field theory (with £ = )

1| [ou\?
E(z) = fini R Hu| .
() nite part o 5 [( (975) + u u]

Example 2: The (Dirichlet) half-line

d2
VE 9
P(E,xz,y) = / — sin(kx) sin(ky) dk
0 v

(Fourier sine transform).



Tt ) t 1 1
X = — -
) 7y T (:C—y)2—|—t2 (x_|_y)2_|_t2 )

T(tx:v)wl— t i(—l)k - ) ast | 0
o Tt w(22)? 2 ’

k=0

1
so FE(zx)= -

Contrast heat kernel:  K(t,z, ) ~ (4nt) =2 +0(t>)
(for fixed = ¢ 0N2) regardless of boundary conditions!

A8 A8 T
EX. 1: E(Qﬁ) = — 24L2 + 8? CSC2 (T)

1
87% csc? (%x) ™~ Sra? as x — 0, similar as x — L.

E(x) = bulk (true Casimir) energy 4+ boundary energy.

L
/ E(zx)dr=F + !
0

The physicist says: Two kinds of renormalization.
The mathematician says: Nonuniform convergence.
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E(t,z) = — % %T(t, 7, 7) =

This regularization method has no special physical
significance. But similar results are found by physical
modeling of “softer” boundaries.

e Ford & Svaiter, Phys. Rev. D 58 (1998) 065007.

e Graham & Olum, Phys. Rev. D 67 (2003) 085014.



SPECTRAL DENSITY, COUNTING FUNCTION, ETC.

TrT:/ e "™ dN, T(t,x,x) :/ e " dP(x, 1),

0 0

Tr K :/ e P dN, K(t,z,x) :/ e "M dP(x,x).
0 0

N(E) = N(w?) = number of eigenvalues < F,
P(FE,x,y) = projection kernel onto spectrum < F.

TrT ~ iest_d+s+ i fot= 95 Int,
s=0

s=d+1
s—d odd

Tk~ 3 bt +)/2
s=0

and similarly for the local quantities.

Recall: Semiclassical approximation reveals oscillatory
structures in /N and P correlated with periodic and
closed classical orbits.

e Schaden & Spruch, Phys. Rev. A 58 (1998) 935.

e Mazzitelli et al., Phys. Rev. A 67 (2003) 013807.

e Jaffe & Scardicchio, Nucl. Phys. B 704 (2005) 552.



Theorem. The b, are proportional to coefficients
in the high-frequency asymptotics of Riesz means of
N (or P) with respect to E. The es and fs are pro-
portional to coefficients in the asymptotics of Riesz
means with respect to w. If d — s is even or positive,

es = 22975T((d — s + 1) /2)bs .

If d — s is odd and negative,
(_1)(s—d—|—1)/22d—8—|—1

~ /Al((s—d+1)/2)

but e is undetermined by the b, .

fS b87

These new e (of which the first is the vacuum en-
ergy) are a new set of moments of the spectral dis-
tribution. What are they good for, mathematically?
Unlike the old ones, they are nonlocal in their de-
pendence on the geometry of 2 (and the coefficients
of H). Thus they embody (at least partially) the
global dynamical structure of the system; they are a
half-way house between the heat-kernel coefficients
and a full semiclassical closed-orbit analysis.
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BUT WHAT ABOUT THE ZETA FUNCTION?

Let fs(H)=H"*° ((s,H)="Tr fs(H). Then
C(s,H) =¢(2s,VH).
Zeta functions are related to integral kernels by

/OO YTt H) dt = T'(s)C(s,VH), etc.

Thus b,, and e,, are residues at poles of I'(s)((s, H)
(at s = 2(d —n)) and I'(s)((s,VH) (at s = d — n),

2
respectively. So (when there’s no logarithm)

['(d — n) may have a pole where I'(1(d — n)) does not;
the information in the corresponding e,, is thereby
expunged from the heat-kernel expansion. That quan-
tity is not a residue of the zeta function but a value
of zeta at a regular point — a more subtle object to
calculate. (Logarithmic terms give rise to coinciding
poles of ¢ and I'.)

e Gilkey, Duke Math. J. 47 (1980), 511.
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(QUESTIONS FOR INVESTIGATION

1. How (if at all) is chaos reflected in vacuum en-
ergy’?
2. What determines the sign of vacuum energy in

each situation? (seems to be related to the phase
of the periodic-orbit oscillations)

3. Do other spectral functions give new geometrical
information? (e_tEl/3 7 (et —-1)7t ?)

4. What is the boundary behavior of regularized vac-
uum energy density in generic, multidimensional
situations?

5. What is the behavior of vacuum energy density
near edges and corners; how does it contribute to
renormalized total energy? (exterior of a cube?)

6. Is the prediction of low-lying spectrum (and long-
time dynamics) more accurate than stationary-
phase proofs suggest? (quantum graphs?)

7. How does vacuum energy depend on mass (in
Klein—Gordon sense)?

© proposed Focused Research Group of Estrada, Fulling,
Kaplan, Kirsten, and Milton
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MASS DEPENDENCE OF VACUUM ENERGY

Let H= Hy+p  (p=m? in usual notation).
Let T'(u,t) stand for either TrT or T'(t,x,x);
K (u,t) similarly for the heat kernel.

Mass dependence of K is trivial:

0K

K(u,t) = K(0,t)e H (% = —tK) .

T:Ze_tVE”+“ or /e_tvE+“dP(E).

b . 92 [T\ T
roposition:. — = —.
P pot\t) 2

Let F'(s,t) be the Laplace transform of T'(u,t)/t with
respect to p.

iF 0 T0,)
ar _'r
a0t ¢ 2

dF _t . 0 T(0,1)
dt 2s Ot st
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dv.

t
E' 2 2 5

t ov  sv

Since 1" and hence F' — 0 as t — 0o, we may choose
to = oo and conclude C'(s) = 0.

Theorem:

F(s,t) = —et2/48/ /45 9 (0, v) dv.

. ov  sv

Thus, in principle, T'(u,t) can be calculated from
T(0,v).
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