
Lecture 9

7.6

A numeric version of the Chinese Remainder Theorem was known to the
ancient Chinese - pre-common era - and used for computing troop supplies.
It is useful for all sorts of problems.

Suppose we want to solve the pair of congruences x ≡ 4 (mod 7) and x ≡ 14
(mod 30) for x. (This could be asking to find a day of the week and a time
of the month in terms of the entire year.) Is there a solution? What is a
good way to find it? The ancient Chinese worked out a method that is still
computationally viable.

Theorem (Chinese Remainder Theorem)

Every system of congruences

x ≡ a1 (mod m1)

x ≡ a2 (mod m2)

...

x ≡ ak (mod mk),

where the mi are pairwise relatively prime, has a solution. Furthermore,
every two solutions are congruent mod M , where M = m1m2 . . .mk.

We prove the Chinese Remainder Theorem constructively as follows.

1. If Mi = M/mi, then the gcd(Mi,mi) = 1 since the mi are pairwise
relatively prime.

2. We need to find a way to determine ci so that ciMi ≡ 1 (mod mi). But
we already know that, for each i, we can use the Euclidean algorithm
to find integers ci and fi such that ciMi + fimi = 1. Then ciMi ≡ 1
(mod mi). For small numbers, it is often easier to use guess and check,
but the Euclidean algorithm always works and this is a proof.
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3. We can use the ai, ci, and Mi to get a formula for a solution x0, namely,
set

x0 = a1c1M1 + a2c2M2 + · · ·+ akckMk.

Since Mj ≡ 0 (mod mi) when i 6= j, and aiciMi ≡ ai (mod mi) by the
choice of ci, we have x0 ≡ ai (mod mi) for all i.

4. Now we need to show that if x1 ≡ ai (mod mi) for all i, then x1 ≡ x0
(mod M). Let x1 be any other solution to the system of congruences.
Then x1 ≡ ai ≡ x0 (mod mi) for every i, which means that x0 − x1 is
divisible by mi for each i. Since the mi are pairwise relatively prime,
M = m1m2 . . .mk divides x0 − x1. Therefore, x1 ≡ x0 (mod M).

Let’s see how this works out in practice. Let’s use the Chinese Remainder
Theorem to solve the following pair of congruences for x.

x ≡ 4 (mod 7)

x ≡ 14 (mod 30)

We use the procedure of the Theorem with m1 = 7 and m2 = 30. Then
M = 210, M1 = 30, and M2 = 7. We use the Euclidean algorithm to write 1
as a linear combination of 7 and 30:

30 = 4 · 7 + 2 1 = 7− 3 · 2
7 = 3 · 2 + 1 = 7− 3 · (30− 4 · 7)

= 13 · 7− 3 · 30.

Therefore c1 = −3 and c2 = 13. Hence x0 = 4 · (−3) · 30 + 14 · 13 · 7 =
−360 + 1274 = 914 is a solution. For a smaller solution, we may take x0
(mod 210) to get x′ = 74.

Notice that this version of the Chinese Remainder Theorem has R = Z and
the Aj = njZ. This completes 7.6.5a and b. I’m leaving part c for you to
practice on.

7.6.1: Let R be a ring with identity 1 6= 0. An element e ∈ R is called
idempotent if e2 = e. Assume that e is an idempotent in R and the er = re
for all r ∈ R. Then Re and R(1− e) are left ideals by definition. If r, s ∈ R,
then (re)s = r(es) = r(se) = (rs)e ∈ Re. Similarly, r(1− e)s = r(s− es) =

2



r(s − se) = rs(1 − e) ∈ R(1 − e). Therefore both Re and R(1 − e) are
two-sided ideals.

(re)e = re2 = re and ere = e2r = er. Therefore e is the identity of Re. Note
that (1−e)2 = 1−2e+e2 = 1−2e+e = 1−e, so 1−e is also idempotent. Then,
(r(1−e))(1−e) = r(1−e)2 = r(1−e) and (1−e)r(1−e) = (1−e)(r−re) =
(1 − e)(r − er) = (1 − e)2r = (1 − e)r. Therefore (1 − e) is the identity of
R(1− e).

Overview

We have now studied the basic algebraic objects and connections between
them. The rest of the course will be on special topics.

Chapter 8 We know from high school and undergraduate studies that the
integers have many special properties. For example, there is the Euclidean
algorithm by which we can find the greatest common divisor of two integers
and write it as a linear combination of the original integers. We learned in this
class that every ideal of the integers is principal, namely, nZ = (n). Lastly, we
have the Fundamental Theorem of Arithmetic that every positive integer at
least 2 can be written uniquely as pn1

1 · · · pns
s where p1 < · · · < ps. In chapter

8 we investigate these properties for other rings and discover that fields are a
proper subset of Euclidean Rings, i.e., rings with a Euclidean algorithm, that
Euclidean Rings are a proper subset of Principal Ideal Domains, i.e., integral
domains in which every ideal is principal. And lastly, that Principal Ideal
Domains are a proper subset of Unique Factorization Domains in which every
element can be written as a unit times a product of irreducible elements.

Mostly we need the concepts and some of the computational parts of this
chapter, so we will do a quick overview with a few homework problems to set
the concepts and computational aspects. We’d skip the chapter except that
we need the concepts to make sense of the next big topic.
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Information on Chapter 8

In Chapter 8, all rings are commutative and integral domains. One basic
measure of size is a generalization of the usual absolute value on the integers.
You need to read the section to understand the rest of the chapter. I’ll hit
the high points.

Definition: Any function N : R → Z+ ∪ {0} with N(0) = 0 is called a
norm on R. Mostly we work with positive norms, namely, that, if a 6= 0,
then N(a) > 0, i.e. 0 is the only element whose norm is 0.

8.1 An integral domain R is said to be a Euclidean Domain if there is a
norm N on R such that, for any two elements a, b ∈ R with b 6= 0, there
exist q, r ∈ R such that a = qb+ r with r = 0 or N(r) < N(b). As usual q is
called the quotient and r the remainder.

This definition is enough to produce the Euclidean Algorithm in any Eu-
clidean domain (see page 271) and is the generalization of the Euclidean
Algorithm on the integers (page 5). The proof that the last non-zero remain-
der in the Euclidean Algorithm is the greatest common divisor and can be
written as a linear combination of the original a, b is again identical to the
proof for the integers.

One consequence is that every ideal in a Euclidean Domain is principal, i.e.,
I = (d) for some d ∈ R. We will see that there are rings in which every ideal
is principal but are not Euclidean domains.
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Just as there is a generalization of gcd, we can define the least common
multiple (lcm) of a, b to be e ∈ R such that a|e, b|e and if a|e′, b|e′, then
e|e′ where a|e is notation for a divides e. In a Euclidean domain, any two
elements a, b ∈ R, b 6= 0 have a lcm(a, b) = ab/(a, b) just as in the integers.

An important example of a Euclidean domain that is not the integers is F [x],
polynomials over a field F where the norm is the degree of the polynomial.
Notice that this norm is not positive since the norm of any constant is 0. In
this book, the degree of 0 is 0 but in many others it is undefined or −∞.

8.2 A Principal Ideal Domain (PID) is an integral domain in which every
ideal is principal. In section 8.1, it was shown that every Euclidean domain is
a PID. In particular, F [x] is a PID. Note that Z[x] is not a PID because (2, x)
is not principal but requires the two generators. To see this, suppose (2, x) =
(f(x)). Then 2 = f(x)g(x). Since Z is an integral domain, deg(fg) =
deg(f) + deg(g) = 0. Therefore, deg(f) = deg(g) = 0, so f = c ∈ Z. By
unique factorization, f = 2 or f = −2. Then x = 2g(x), when g = x/2 /∈
Z[x]. Therefore, (2, x) is not principal. We will see in 8.3 that Z[x] is a
unique factorization domain (UFD).

A PID still has greatest common divisors which are linear combinations of
the original elements and least common multiples, but there isn’t a Euclidean
algorithm so they are harder to find.

The biggest result of the section is that, in a PID, every non-zero prime ideal
is maximal. As a corollary, we see that R[x] is a PID implies that R is a
field.

8.2.1: Let R be a PID. Then (a) and (b) are comaximal, i.e., (a) + (b) = R
if and only if 1 = xa+ yb for some x, y ∈ R if an only if (a, b) = 1.

8.2.2 Suppose R is a PID and a, b be non-zero elements in R. Let (e) =
(a) ∩ (b). Then e ∈ (a), so a|e and, similarly, b|e. If a|f and b|f , then
f ∈ (a) ∩ (b) = (e), whence e|f . Therefore e = lcm(a, b).

8.2.3: Suppose R is a PID and that (p) is a prime ideal. Then R/I is
an integral domain. Let π : R → R/I be the usual projection surjective
homomorphism. By exercise 7.3.24 I = π−1J is an ideal for J an ideal of
R/I. But R is a PID, so I = (a) for some a ∈ R. Thus, since π is surjective,
J = π(I) = π((d)) = (d) is principal.
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8.3 We are now ready for the third least restrictive integral domain, a unique
factorization domain or UFD. To understand what is going on, we need to
make a distinction between prime and irreducible as we are used to using
prime for positive integers and irreducible for real polynomial such as x2 + 1.
Please note that these definitions hold in an integral domain.

A non-zero, non-unit element r ∈ R is irreducible in R if, whenever r =
ab, a, b ∈ R at least one of a, b must be a unit in R. Otherwise r is said to
be reducible. Please notice that this looks very like our definition of a prime
number in the positive integers since 1 is the only unit in Z+. We will see
why in a moment.

A nonzero element p ∈ R is called prime in R if the ideal (p) generated by p
is a prime ideal. In other words, a nonzero element p is a prime if it is not
a unit and whenever p|ab, p|a or p|b. In the positive integers, we used the
definition for irreducible for prime and then proved the condition for prime
listed here. The reason it doesn’t matter is, that in a PID every non-zero
element is prime if and only if it is irreducible and Z is a PID.

Please notice the theorem that says that prime implies irreducible. Also, note
that it depends on the ring whether or not something is prime or irreducible.
For example x2 + 1 is irreducible in R[x] but reducible in C[x].

A last definition is that a, b ∈ R are associates if and only if a = ub for some
unit u ∈ R.

We now can state that an integral domain R is a Unique Factorization Do-
main (UFD) if every nonzero element r ∈ R which is not a unit can be
written uniquely up to order of irreducibles and associates as R = p1p2 · · · pn
where the pi are irreducible in R.

For example, Z[x] is a UFD but we saw it was not a PID. However, in a UFD
r is prime if and only if it is irreducible, just as was true for a PID. Since we
will see in chapter 9 that, if R is a UFD, then R[x] is a UFD, almost all the
integral domains we know are UFDs, which is why the distinction between
irreducible and prime seems so odd.

One nice thing about a UFD is that we can find the greatest common divi-
sor and least common multiple the same way we do from the fundamental
theorem of arithmetic, i.e., from the factorizations. See Proposition 13.
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I leave it to you to read the rest of the chapter. I find the number theory
theorems interesting.

8.3.3: Let n = 2130797 = 172 · 73 · 101. Then, in the notation of Corollary
19, a1 = 2, a2 = 1, a3 = 1. So the number of ways of representing n as the
sum of two squares is 4(2 + 1)(1 + 1)(1 + 1) = 48, which is too many to list
them all.

8.3.4: Suppose an integer n is the sum of two rational squares, i.e., n =
a2/b2 + c2/d2 where (a, b) = 1 = (c, d). Then n = (a2d2 + c2b2)/b2d2. Since
n is an integer, if p|b for p a prime, then p2|(a2d2 + c2b2), so p2|a2d2. But
(a, b) = 1 implies that (a, p) = 1, whence p2|d2 and p|d. It follows that |b|||d|.
By reversing the roles of b and d, see that b2 = d2, so n = (a2 + c2)/b2.
Therefore, nb2 = a2 + c2. Since all the exponents of the primes dividing b2

are even, by Corollary 19 all the primes of n which are congruent to 3 mod 4
have even degree in the factorization of n. Thus, n can be written as the
sum of two integer squares.
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