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Abstract. We determine the border ranks of tensors that could potentially advance the known
upper bound for the exponent ω of matrix multiplication. The Kronecker square of the small
q = 2 Coppersmith-Winograd tensor equals the 3 × 3 permanent, and could potentially be used
to show ω = 2. We prove the negative result for complexity theory that its border rank is 16,
resolving a longstanding problem. Regarding its q = 4 skew cousin in C5⊗C5⊗C5, which could
potentially be used to prove ω ≤ 2.11, we show the border rank of its Kronecker square is at
most 42, a remarkable sub-multiplicativity result, as the square of its border rank is 64. We
also determine moduli spaces V SP for the small Coppersmith-Winograd tensors.

1. Introduction

This paper advances both upper and lower bound techniques in the study of the complexity of
tensors and applies these advances to tensors that may be used to upper bound the exponent ω
of matrix multiplication.

The exponent ω of matrix multiplication is defined as

ω ∶= inf{τ ∣ two n × n matrices may be multiplied using O(nτ) arithmetic operations}.
It is a fundamental constant governing the complexity of the basic operations in linear algebra.
It is generally conjectured that ω = 2. It has been known since 1988 that ω ≤ 2.38 [22] which was
slightly improved upon 2011-2014 [49, 56, 38], and again in 2021 [3]. All new upper bounds on
ω since 1987 have been obtained using Strassen’s laser method, which bounds ω via auxiliary
tensors, see any of [22, 7, 30] for a discussion. The bounds of 2.38 and below were obtained
using the big Coppersmith-Winograd tensor as the auxiliary tensor. In [5] it was shown the big
Coppersmith-Winograd tensor could not be used to prove ω < 2.3 in the usual laser method.

In this paper we examine 6 tensors that potentially could be used to prove ω < 2.3 with the
laser method. Our approach is via algebraic geometry and representation theory, building on
the recent advances in [11, 20]. We solve the longstanding problem (e.g., [7, Problem 9.8], [13,
Rem. 15.44]) of determining the border rank of the Kronecker square of the only Coppersmith-
Winograd tensor that could potentially prove ω = 2 (the q = 2 small Coppersmith-Winograd
tensor). The answer is a negative result for the advance of upper bounds, as it is 16, the
maximum possible value. On the positive side, we show that a tensor that could potentially
be used to prove ω < 2.11 has border rank of its Kronecker square significantly smaller than
the square of its border rank. While this result alone does not give a new upper bound on the
exponent, it opens a promising new direction for upper bounds. We also develop new lower and
upper bound techniques, and present directions for future research.
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The tensors we study are the small Coppersmith-Winograd tensor [21] Tcw,q for q = 2 and its
skew cousin [18] Tskewcw,q for even q ≤ 10 (five such). These tensors are defined for even q > 10
but they are only useful for the laser method when q ≤ 10. The tensors Tcw,2 and Tskewcw,2
potentially could be used to prove ω = 2. Explicitly, the small Coppersmith-Winograd tensors
[22] are

Tcw,q =
q

∑
j=1

a0⊗bj⊗cj + aj⊗b0⊗cj + aj⊗bj⊗c0

and, for q = 2p even, its skew cousins [18] are

Tskewcw,q =
p

∑
ξ=1

a0⊗bξ⊗cξ+p − a0⊗bξ+p⊗cξ − aξ⊗b0⊗cξ+p + aξ+p⊗b0⊗cξ + aξ⊗bξ+p⊗c0 − aξ+p⊗bξ⊗c0.

The small Coppersmith-Winograd tensors are symmetric tensors and their skew cousins are
skew-symmetric tensors. When q = 2, after a change of basis Tcw,2 is just a monomial written as
a tensor, Tcw,2 = ∑σ∈S3

aσ(1)⊗bσ(2)⊗cσ(3) and Tskewcw,2 = ∑σ∈S3
sgn(σ)aσ(1)⊗bσ(2)⊗cσ(3). Here

S3 denotes the permutation group on three elements.

We need the following definitions to state our results:

A tensor T ∈ A⊗B⊗C = Cm⊗Cm⊗Cm has rank one if T = a⊗b⊗c for some a ∈ A, b ∈ B, c ∈ C,
and the rank of T , denoted R(T ), is the smallest r such that T may be written as a sum of
r rank one tensors. The border rank of T , denoted R(T ), is the smallest r such that T may
be written as a limit of rank r tensors. In geometric language, the border rank is smallest r
such that [T ] ∈ σr(Seg(PA×PB ×PC)), where σr(Seg(PA×PB ×PC)) denotes the r-th secant
variety of the Segre variety of rank one tensors.

For symmetric tensors T ∈ S3A ⊂ A⊗A⊗A we may also consider the Waring or symmetric rank
of T , RS(T ), the smallest r such that T = ∑rs=1 vs⊗vs⊗vs for some vs ∈ A, and the Waring border
rank RS(T ), the smallest r such that T may be written as a limit of Waring rank r symmetric
tensors.

For tensors T ∈ A⊗B⊗C and T ′ ∈ A′⊗B′⊗C ′, the Kronecker product of T and T ′ is the tensor
T ⊠ T ′ ∶= T⊗T ′ ∈ (A⊗A′)⊗(B⊗B′)⊗(C⊗C ′), regarded as 3-way tensor. Given T ∈ A ⊗B ⊗ C,
the Kronecker powers of T are T⊠N ∈ A⊗N ⊗B⊗N ⊗C⊗N , defined iteratively. Rank and border
rank are submultiplicative under Kronecker product: R(T ⊠ T ′) ≤ R(T )R(T ′), R(T ⊠ T ′) ≤
R(T )R(T ′), and both inequalities may be strict.

Strassen’s laser method [51, 21] obtains upper bounds on ω by showing a random degeneration
of a large Kronecker power of a simple tensor degenerates further to a sum of disjoint matrix
multiplication tensors, and then applying Schönhage’s asymptotic sum inequality [44]. The
relevant results for this paper are:

For all k and q, [22]

(1) ω ≤ logq(
4

27
(R(T⊠kcw,q))

3
k ).

For all k and even q, [18]

(2) ω ≤ logq(
4

27
(R(T⊠kskewcw,q))

3
k ).

Coppersmith-Winograd [22] showed R(Tcw,q) = q + 2. Applied to (1) with k = 1 and q = 8 gives
ω ≤ 2.41, which was the previous record before 2.38.
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The most natural way to upper bound the exponent of matrix multiplication would be to upper
bound the border rank of the matrix multiplication tensor directly. There are very few results
in this direction: work of Strassen [53], Bini [6], Pan (see, e.g., [42]), and Smirnov (see, e.g., [47])
are all we are aware of. In order to lower the exponent further with the matrix multiplication
tensor the first opportunity to do so would be to show the border rank of the 6 × 6 matrix
multiplication tensor equaled its known lower bound of 69 from [36].

The only still viable proposed paths to prove ω < 2.3 that we are aware of would be to obtain
border rank upper bounds for a Kronecker power of a small (q ≤ 10) Coppersmith-Winograd
tensor (this path has been proposed since 1989) or its skew cousin (more recently proposed in
[18]). The results in this paper take a few steps further on these two paths. There is no proposed
path that we are aware of to prove ω > 2.3 other than by proving border rank lower bounds for
the matrix multiplication tensor (or its symmetrized or skew-symmetrized versions [14]) for all
n.

1.1. Main Results. After the barriers of [5], the auxiliary tensor viewed as most promising for
upper bounding the exponent, or even proving it is two, is the small Coppersmith-Winograd
tensor, or more precisely its Kronecker powers. In [18] bad news in this direction was shown
for the square of most of these tensors and even the cube. Left open was the square of Tcw,2 as
it was unaccessible by the technology available at the time (Koszul flattenings and the border
substitution method), although it was shown that 15 ≤ R(T⊠2

cw,2) ≤ 16. With the advent of border

apolarity [11, 20] and the Flag Condition (Proposition 2.5) that strengthens it, we are able to
resolve this last open case. See Remark 5.4 for an explanation why this result was previously
unaccessible, even with the techniques of [11, 20]. The result for the exponent is negative:

Theorem 1.1. R(T⊠2
cw,2) = 16.

For a detailed discussion of the relation of border rank bounds to the exponent for Kronecker
powers of the small Coppersmith-Wingrad tensor and its skew cousin, see Section 1 of [18].

In [18] it was observed that T⊠2
cw,2 = perm3, the 3×3 permanent considered as a tensor. Y. Shitov

[45] has shown that the Waring rank of perm3 is at least 16, which matches the upper bound of
[27].

Remark 1.2. P. Comon [9] had conjectured that for symmetric tensors their Waring rank equals
their tensor rank and it has similarly be conjectured that their Waring border rank equals their
tensor border rank. While Comon’s conjecture was shown to be false in general by Shitov [46],
Theorem 1.1 shows that both versions hold for perm3.

Theorem 1.1 is proved in §5.

We determine the border rank of Tskewcw,q in the range relevant for the laser method:

Theorem 1.3. R(Tskewcw,q) ≤ 3
2q + 2 and equality holds for q ≤ 10.

While this is less promising than the equality R(Tcw,q) = q + 2, in [18] a significant drop in the
border rank of T⊠2

skewcw,2 = det3 was shown, namely that it is 17 rather than 25 = R(Tskewcw,2)2.

(The upper bound was shown in [18] and the lower bound in [20].) Theorem 1.3 implies
R(Tskewcw,4)2 = 64. The following theorem is the largest drop in border rank under a Kro-
necker square that we are aware of:

Theorem 1.4. (∗) R(T⊠2
skewcw,4) ≤ RS(T⊠2

skewcw,4) ≤ 42.
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The Theorem is marked with a (∗) because the result is only shown to hold numerically. The
expression we give has largest error 4.4 × 10−15. While we could have presented a solution to
higher accuracy, we were unable to find an exact expression. The new numerical techniques used
to obtain this decomposition are described in §9. We also give a much simpler Waring border
rank 17 expression for det3 = T⊠2

skewcw,2 than the one in [18], see §8.

Using Koszul flattenings (see §4) we show R(T⊠2
skewcw,4) ≥ 39. For the cube we show R(T⊠3

skewcw,4) ≥
219 whereas for its cousin we have 180 ≤ R(T⊠3

cw,4) ≤ 216. We also prove, using Koszul flatten-

ings, lower bounds for R(T⊠2
skewcw,q) and R(T⊠3

skewcw,q) for q ≤ 10. These results are all part of

Theorem 4.1.

Remark 1.5. Starting with the fourth Kronecker power it is possible the border rank of T⊠4
skewcw,q

is less than that of T⊠4
cw,q, for q ∈ {2,6,8}. The best possible upper bound on ω obtained from

some T⊠4
skewcw,q would be ω ≤ 2.39001322 which could potentially be attained with q = 6. Starting

with the fifth Kronecker power it is potentially possible to beat the current world record for ω
with Tskewcw,q and for Tcw,q it is already possible with the fourth power.

Strassen’s asymptotic rank conjecture [52] posits that for all concise tensors T ∈ Cm⊗Cm⊗Cm
(see Definition 1.8) with regular positive dimensional symmetry group (called tight tensors),

limk→∞[R(T⊠k)]
1
k = m. As a first step towards this conjecture it is an important problem to

determine which tensors T satisfy R(T⊠2) < R(T )2. We discuss what we understand about this
problem in §3.2.

A variety that parametrizes all possible (minimal) border rank decompositions of a given tensor
T , denoted V SP (T ), is defined in [11]. This variety naturally sits in a product of Grassmannians,
see §3.1 for the definition. We observe that in many examples V SP (T ) often has a large
dimension when R(T⊠2) < R(T )2 (although not always), and in all examples we know of, when
V SP (T ) is zero-dimensional one also has R(T⊠2) = R(T )2. This is reflected in the following
results:

Theorem 1.6. For q > 2, V SP (Tcw,q) is a single point.

Theorem 1.7. V SP (Tcw,2) consists of three points.

More precise versions of these results and their proofs are given in §6.

In contrast V SP (Tskewcw,q) is positive dimensional, at least for all q relevant for complexity
theory (q ≤ 10). Explicitly, V SP (Tskewcw,2) is at least 8-dimensional, see Corollary 3.2, and for

4 ≤ q ≤ 10, dimV SP (Tskewcw,q) ≥ (q/2
2
), see Corollary 7.1.

Border apolarity is just in its infancy. In §2.1 we give a history leading up to it. In §2.2 we explain
results from border apolarity needed in this paper. In §2.3 we discuss challenges to getting better
results with the method and take first steps to overcome them in §2.4. In particular, Proposition
2.5 was critical to the proof of Theorem 1.1 as it enables one to substantially reduce the border
apolarity search space in certain situations (weights occurring with multiplicities).

1.2. Previous border rank bounds on T⊠kcw,q and T⊠kskewcw,q.

● R(T⊠2
cw,q) = (q + 2)2 for q > 2 and 15 ≤ R(T⊠2

cw,2) ≤ 16. [18]

● R(T⊠3
cw,q) = (q + 2)3 for q > 4. [18]
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● R(T⊠2
skewcw,2) = 17. [20]

● R(Tskewcw,q) ≥ q + 3. [18]

● For all q > 4 and all k, R(T⊠kcw,q) ≥ (q + 2)3(q + 1)k−3 and R(T⊠kcw,4) ≥ 36 ⋅ 5k−2. [18]

● R(T⊠kcw,2) ≥ 15 ⋅ 3k. [18]

With the exception of the proof R(T⊠2
skewcw,2) ≥ 17, which was obtained via border apolarity,

these lower bounds were obtained using Koszul flattenings.

Previous to these it was shown that R(T⊠kcw,q) ≥ (q + 1)k + 2k − 1 using the border substitution
method [8].

1.3. Definitions/Notation. Throughout, A,B,C will denote complex vector spaces of dimen-
sion m. We let {ai} denote a basis of A, with either 0 ≤ i ≤ m − 1 or 1 ≤ i ≤ m and similarly
for {bj} and {ck}. The dual space to A is denoted A∗. Since our vector spaces have names, we
re-order them freely without danger of confusion. The Z-graded algebra of symmetric tensors
is denoted Sym(A) = ⊕dSdA, it is also the algebra of homogeneous polynomials on A∗. For
X ⊂ A, X⊥ ∶= {α ∈ A∗ ∣ α(x) = 0∀x ∈ X} is its annihilator, and ⟨X⟩ ⊂ A denotes the span of X.
Projective space is PA = (A/{0})/C∗, and if x ∈ A/{0}, we let [x] ∈ PA denote the associated
point in projective space (the line through x). The general linear group of invertible linear maps
A→ A is denoted GL(A) and the special linear group of determinant one linear maps is denoted
SL(A). The permutation group on r elements is denoted Sr.

The Young diagram associated to a partition (p1,⋯, pd) is an array of left-aligned boxes with pj
boxes in the j-th row.

The Grassmannian of r-planes through the origin is denoted G(r,A), which we will view in its
Plücker embedding G(r,A) ⊂ PΛrA. We let Gr(r,A) denote the Grassmannian of codimension
r planes.

For a set Z ⊂ PA, Z ⊂ PA denotes its Zariski closure, Ẑ ⊂ A denotes the cone over Z union the
origin, I(Z) = I(Ẑ) ⊂ Sym(A∗) denotes the ideal of Z, and C[Ẑ] = Sym(A∗)/I(Z), denotes the

homogeneous coordinate ring of Ẑ. Both I(Z), C[Ẑ] are Z-graded by degree.

We will be dealing with ideals on products of three projective spaces, that is, we will be dealing
with polynomials that are homogeneous in three sets of variables, so our ideals with be Z⊕3-
graded. More precisely, we will study ideals I ⊂ Sym(A∗)⊗Sym(B∗)⊗Sym(C∗), and Istu
denotes the component in SsA∗⊗StB∗⊗SuC∗.

For T ∈ A⊗B⊗C, define the symmetry group of T , GT ∶= {g = (g1, g2, g3) ∈ GL(A) ×GL(B) ×
GL(C) ∣ g ⋅ T = T}.

Given T,T ′ ∈ A⊗B ⊗C, we say that T degenerates to T ′ if T ′ ∈ GL(A) ×GL(B) ×GL(C) ⋅ T ,
the closure of the orbit of T . The closures are the same in the Euclidean and Zariski topologies.

Definition 1.8. Given T ∈ A⊗B⊗C, we may consider it as a linear map TC ∶ C∗ → A⊗B, and
we let T (C∗) ⊂ A⊗B denote its image, and similarly for permuted statements. A tensor T is
A-concise if the map TA is injective, i.e., if it requires all basis vectors in A to write down in
any basis, and T is concise if it is A, B, and C concise. A tensor is 1A-generic if T (A∗) ⊂ B⊗C
contains an element of maximal rank m.
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2. Border apolarity and the challenges it faces

2.1. History. Until very recently, essentially the only way to prove border rank lower bounds
for a tensor T was to find a polynomial P in the ideal of σr(Seg(PA × PB × PC)) such that
P (T ) ≠ 0. (See [40] for an exception.) The first nontrivial equations for tensors were found by
Strassen in 1983 [50], although the equations essentially date back to 1877 when E. Toeplitz
[55] wrote the equations in the partially symmetric case. No further equations were found until
2004 [31], then 2008 [32], then 2013 [35, 37], and these are the state of the art. The equations
(and a much broader class of equations) are known to have limits (see, e.g., [24]), essentially one
could not prove border rank lower bounds better than 2m − 3 for tensors in Cm⊗Cm⊗Cm. A
small way to improve upon this was developed in [34, 8]: this border substitution method, which
generalizes the classical substitution method to prove rank lower bounds, is only applicable in
practice to tensors with positive dimensional symmetry groups: Let T ∈ A⊗B⊗C be A-concise.
Let GT be the symmetry group of T and let BT ⊂ GT be a Borel subgroup. Let Gr(t,A∗) denote
the Grassmannian of codimension t-planes in A∗. Note that BT acts on Gr(t,A∗) so it makes
sense to discuss its Borel fixed elements. Then

(3) R(T ) ≥ minA′∈Gr(t,A∗),Borel fixed R(T ∣A′⊗B∗⊗C∗) + t.

This enables one to prove border rank lower bounds on T by proving border rank lower bounds
via known equations on the restrictions of T to all Borel fixed elements of the Grassmannian
Gr(t,A∗). In [11] Buczynska-Buczynski introduced Border apolarity, which generalizes the
classical apolarity for rank to border rank, and V SP which generalizes the the Variety of Sums
of Powers (VSP, see, e.g., [43]) for rank decompositions to border rank decompositions.

2.2. Border apolarity. If one has a border rank decomposition T = limε→0∑rj=1 Tj(ε), for each
ε > 0, one obtains an ideal of polynomials in the coordinate ring of the Segre Seg(PA×PB×PC)
vanishing on the r points [T1(ε)]⊔⋯⊔ [Tr(ε)]. These are ideals in three sets of variables (those
of A,B,C), and since border rank decompositions only utilize a finite number of terms in the
Taylor expansion of the Tj(ε), one may assume that for all ε > 0, the r points are in general
position by modifying the higher order terms in the series. This has the effect that in each
multi-degree Istu,ε ⊂ SsA∗⊗StB∗⊗SuC∗ has codimension r whenever s + t + u > 1. Thus for
each s, t, u there is a limiting Istu ∈ Gr(r, SsA∗⊗StB∗⊗SuC∗). Moreover, generalizing (3), one
may assume that each of the Istu is BT -fixed. By the construction in [26] these limiting spaces
fit together to form an ideal. In particular the ideal annihilates T , which in practice means
I110 ⊆ T (C∗)⊥, I101 ⊆ T (B∗)⊥, I011 ⊆ T (A∗)⊥ and I111 ⊂ T ⊥. Moreover, since ideals are closed
under multiplication, the image of the direct sum of the three multiplication maps

Is−1,t,u⊗A∗ ⊕ Is,t−1,u⊗B∗ ⊕ Is,t,u−1⊗C∗ → SsA∗⊗StB∗⊗SuC∗,

must be contained in Istu. In particular the image must have codimension at least r, which
translates to rank conditions on the map. Call the map the (stu)-map and the rank condition
the (stu)-test.

Write Estu = I⊥stu. It will be convenient to phrase the codimension tests dually:
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Proposition 2.1. [20, Prop. 3.1] The (210)-test is passed if and only if the skew-symmetrization
map

(4) A⊗E110 → Λ2A⊗B

has kernel of dimension at least r. The kernel is (A⊗E110) ∩ (S2A⊗B).

The (stu)-test is passed if and only if the triple intersection

(5) (Es,t,u−1⊗C) ∩ (Es,t−1,u⊗B) ∩ (Es−1,t,u⊗A)

has dimension at least r.

We will make repeated use of the following lemma:

Lemma 2.2 (Fixed ideal Lemma [11]). If T has symmetry group GT , then if there exists an
ideal as above then there exists one that is fixed under the action of a Borel subgroup of GT
which we will denote BT . In particular, if GT contains a torus, if there exists such an ideal, then
there exists one fixed under the action of the torus.

Border apolarity provides both lower bounds and a guide to proving upper bounds. For example,
the (111) space for Tskewcw,q described in the proof of Theorem 1.3 hints at the formula (21),
where the terms linear in t appear in the (111) space.

2.3. Challenges facing border apolarity. In modern algebraic geometry the study of geo-
metric objects (algebraic varieties) is replaced by the study of the ideal of polynomials that
vanish on a variety. The study of a set of r points {z1,⋯, zr} in affine space CN is replaced by
the study of its ideal, more precisely the quotient C[x1,⋯, xN ]/Iz1⊔⋯⊔zr where C[x1,⋯, xN ] is
the ideal of all polynomials on CN and Iz1⊔⋯⊔zr is the ideal. Note that ring C[x1,⋯, xN ]/Iz1⊔⋯⊔zr
is a vector space of dimension r, called the coordinate ring of the variety. (In our case we will
be concerned with r points on the Segre variety Seg(PA × PB × PC) but the issues about to
be discussed are local and there is no danger working in affine space.) The study becomes one
of such rings, and one no longer requires them to correspond to ideals of points, only that the
vector space has dimension r and that the ideal is saturated. Such ideals are called zero dimen-
sional schemes of length r. If the ideal corresponds to r distinct points one says the scheme is
smooth. A central challenge of border apolarity as a tool in the study of border rank, is that
applied näıvely, it only determines necessary conditions for an ideal to be the limit of a sequence
of such ideals. One could split the problem of detecting non-border rank ideals into two: first,
just get rid of the ideals that are not limits of ideals of zero dimensional schemes, then, given an
ideal that is a limit of ideals of zero dimensional schemes of length r, determine if it is a limit of
ideals of smooth schemes (smoothability conditions). In this paper we address the first problem
and the new additional necessary conditions we obtain (Proposition 2.5) are enough to enable
us to determine R(T⊠2

cw,2) via border apolarity. In §2.6 we show that ideals that fail to deform to
saturated ideals occur already for quite low border rank. The second problem is ongoing work
with J. Buczyński and his group in Warsaw.

The second problem is a serious issue: The cactus rank [11, 10] of a tensor T is the smallest r
such that T lies in the span of a zero dimensional scheme of length r supported on the Segre
variety. The cactus border rank of T , CR(T ) is the smallest r such that T is a limit of tensors
of cactus rank r. One has R(T ) ≥ CR(T ) and for almost all tensors the inequality is strict.
The (stu) tests are tests for cactus border rank. Cactus border rank is not known to be relevant
for complexity theory, thus the failure of current border apolarity technology to distinguish



8 A. CONNER, H. HUANG, J.M. LANDSBERG

between them is a barrier to future progress. Moreover, the cactus variety fills the ambient
space of P(Cm⊗Cm⊗Cm) at latest border rank 6m − 4, see [25, Ex. 6.2 case k = 3].

2.4. Viability and the flag conditions. We begin in the general context of secant varieties
with a preliminary observation:

For a projective variety X ⊂ PN , define its variety of secant Pr−1’s,

σr(X) ∶= ⋃
x1,⋯,xr∈X

⟨x1,⋯, xr⟩.

Proposition 2.3. Let X ⊂ PV be a projective variety and let PE ⊂ σr(X) be a Pr−1 arising
from a border rank r decomposition of a point on σr(X). Then there exists a complete flag
E1 ⊂ E2 ⊂ ⋯ ⊂ Er = E such that for all 1 ≤ j ≤ r, PEj ⊂ σj(X).

Proof. We may write E = limt→0⟨x1(t),⋯, xr(t)⟩ where xj(t) ∈ X and the limit is taken in the
Grassmannian G(r, V ) (in particular, for all t ≠ 0 we may assume x1(t),⋯, xr(t) are linearly in-
dependent). Then take Ej = limt→0⟨x1(t),⋯, xj(t)⟩ where the limit is taken in the Grassmannian
G(j, V ). �

Let T ∈ A⊗B⊗C and let Estu be an r-dimensional space that is I⊥stu for a multi-graded ideal
that passes all border apolarity tests up to total degree s + t + u + 1.

Definition 2.4. An multi-graded ideal, or an Estu, associated to a potential border rank de-
composition of T is viable if it arises from an actual border rank decomposition.

Viability implies PEstu ⊂ σr(Seg(vs(PA) × vt(PB) × vu(PC))). Here vs ∶ PA → P(SsA) is the
Veronese re-embedding, vs([a]) = [as].

To a c-dimensional subspace E ⊂ A⊗B, one may associate a tensor T ∈ A⊗B⊗Cc, well-defined
up to isomorphism, such that T (Cc∗) = E. Much of the lower bound literature exploits this
correspondence to reduce questions about tensors to questions about linear subspaces of spaces of
matrices. (This idea appears already in [50].) The following proposition exploits this dictionary
to obtain new conditions for viability of candidate Estu’s:

Proposition 2.5. [Flag conditions] If E110 is viable, then there exists a BT -fixed filtration of
E110, F1 ⊂ F2 ⊂ ⋯ ⊂ Fr = E110, such that Fj ⊂ σj(Seg(PA ×PB)). Let Tj ∈ A⊗B⊗Cj be a tensor
equivalent to the subspace Fj . Then R(Tj) ≤ j.

Similarly, if Estu is viable, there are complete flags in Estu,A,B,C such that for all j < m,
Estu,j ⊂ SsAj⊗StBj⊗SuCj and for all j ≤ r, PEstu,j ⊂ σj(Seg(vs(PA) × vt(PB) × vu(PC))).

Proof. Set Ĉ = C⊕Cr−m. Then there exists T̂ ∈ A⊗B⊗Ĉ such that T̂ (Ĉ∗) = E110 and R(T̂ ) ≤ r.
In this case the flag condition [33, Cor. 2.3] implies that since T̂ ∈ A⊗B⊗Ĉ = Cm⊗Cm⊗Cr with

r ≥ m is concise of minimal border rank r, there exists a complete flag C1 ⊂ C2 ⊂ ⋯ ⊂ Cr = Ĉ∗

such that T̂ (Ck) ⊂ σk(Seg(PA × PB)). Take Fk = T̂ (Ck). The proof that the flag may be taken
to be Borel fixed is the same as in the Fixed ideal lemma.

The second assertion follows from the preceding discussion. �

Proposition 2.5 provides additional conditions Estu must satisfy for viability beyond the border
apolarity tests. It allows one to utilize the known conditions for minimal border rank in a
non-minimal border rank setting.
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When Tj is concise, Proposition 2.5 is quite useful as there are many known conditions for
concise tensors to be of minimal border rank. In particular it must have symmetry Lie algebra
of dimension at least 2j − 2 and if it is 1Cj -generic (for any of the factors), it must satisfy the
End-closed condition (see [33]).

Remark 2.6. Proposition 2.5 also applies to cactus border rank decompositions, so it is a “non-
deformable to saturated” removal condition rather than a smoothability one.

By the classification of tensors of border rank at most three [12, Thm. 1.2(iv)] the possibilities
for the first two filtrands of E110 are F1 = ⟨a⊗b⟩, F2a = ⟨a⊗b, a′⊗b′⟩ or F2b = ⟨a⊗b, a⊗b′ + a′⊗b⟩
corresponding to either two distinct rank one points or a rank one point and a tangent vector,
and there are five possibilities for F3:

(1) F3aa = ⟨a⊗b, a′⊗b′, a′′⊗b′′⟩ (three distinct points)

(2) F3aab = ⟨a⊗b, a⊗b′ + a′⊗b, a′′⊗b′′⟩ (two points plus a tangent vector to one of them)

(3) F3bc = ⟨a⊗b, a⊗b′ + a′⊗b, a′′⊗b + a′⊗b′ + a⊗b′′⟩ (points of the form x(0), x′(0), x′′(0) for a
curve x(t) ⊂ Seg(PA × PB))

(4) F3abb = ⟨a⊗b, a⊗b′ + a′⊗b, a⊗b′′ + a′′⊗b⟩ (point plus two tangent vectors)

(5) F3bd = ⟨a⊗b, a⊗b′, a′⊗b + a′′⊗b′ + a⊗b′′⟩ (sum of tangent vectors to two colinear points
x′ + y′) or its mirror F3bd = ⟨a⊗b, a′⊗b, a⊗b′ + a′⊗b′′ + a′′⊗b⟩.

The space E110 contains the distinguished subspace T (C∗). Write E′
110 for a choice of a com-

plement to T (C∗) in E110.

Corollary 2.7. If E110 is viable and PT (C∗)∩σk(Seg(PA×PB)) = ;, then there exists a choice
of E′

110 such that Fk ⊂ E′
110.

Proof. Say otherwise, then there exists M ∈ Fk ∩T (C∗). This contradicts T (C∗)∩σk(Seg(PA×
PB)) = ;. �

The following Corollary originally appeared in [8, Cor. 4.2]:

Corollary 2.8. If PT (C∗) ∩ σq(Seg(PA × PB)) = ;, then R(T ) ≥m + q.

Although we have stronger lower bounds, Corollary 2.8 provides the following “for free”:

Corollary 2.9. For all k, R(T⊠kcw,2) ≥ 3k + 2k − 1 and R(T⊠kskewcw,2) ≥ 3k + 2k − 1.

The first assertion originally appeared in [8].

Proof. Let iα, jβ ∈ {1,2,3}. Then

T⊠kcw,2(C∗) = ⟨ ∑
σ∈Zk2

σ ⋅ (ai1,⋯,ik⊗bj1,⋯,jk) ∣ iα ≠ jα∀1 ≤ α ≤ k⟩

and the action of σ is by swapping indices. This transparently is of rank bounded below by 2k.
The case of T⊠kskewcw,2 is the same except that the coefficients appear with signs. �
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2.5. Free, pure and mixed kernels. Define three types of contribution to the kernel of the
(210)-map: the free kernel

κf ∶= dim[(T (C∗)⊗A) ∩ (S2A⊗B)],

the pure kernel

κp = minE′

110
dim[(A⊗E′

110) ∩ (S2A⊗B)],

where the min is over all choices of E′
110 ⊂ E110, and the mixed kernel

κm = dim[(A⊗E110) ∩ (S2A⊗B)] − κp − κf

corresponding to elements of the kernel arising from linear combinations of elements of A⊗E′
110

and A⊗T (C∗). In this language, E′
110 passes the (210) test if and only if κp+κm ≥ r−κf . Define

corresponding κ′p, κ
′
m for the (120)-test.

Conjecture 2.10. If r >m and E110 is such that κm, κ
′
m = 0, then it is not viable.

Intuitively, if E′
110 never “sees” the tensor, it should not be viable.

2.6. Limitations of the total degree 3 border apolarity tests.

Proposition 2.11. Let m ≥ 9, but m ≠ 10,15. Then for any tensor in Cm⊗Cm⊗Cm, there are
candidate ideals passing all degree three tests for border rank at most r when r ≥ 2m.

More generally, setting r = m + k2, there are candidate ideals in total degree two passing all

degree three tests once m ≤ k3

2 − k2

2 . In particular, for all ε > 0, r ≥m +m
1
3
+ε, and m sufficiently

large, there are such candidate ideals.

Proof. For the first assertion, it suffices to prove the case r = 2m and the tensor T is con-

cise. Set k = ⌊
√
m⌋, t = k + ⌈m−k22 ⌉, and t′ = k + ⌊m−k22 ⌋. Take E′

110 = ⟨a1,⋯, ak⟩⊗⟨b1,⋯, bk⟩ +
⟨ak+1,⋯, at′⟩⊗b1 + a1⊗⟨bk+1,⋯, bt⟩ and similarly for the other spaces. Then

(E110⊗A) ∩ (S2A⊗B) ⊇
S2⟨a1,⋯, ak⟩⊗⟨b1,⋯, bk⟩⊕ ⟨ak+1,⋯, at′⟩ ⋅ ⟨a1,⋯, ak⟩⊗b1 ⊕ S2⟨ak+1,⋯, at′⟩⊗b1 + a⊗2

1 ⊗⟨bk+1,⋯, bt⟩.

This has dimension (k+1
2
)k + (t′ − k)k + (t

′−k+1
2

) + (t − k) which is at least 2m in the specified
range. (The only value greater than 8 the inequality fails for is m = 10.) Similarly the (120)
test is passed at least as easily. Finally

(E110⊗C) ∩ (E101⊗B) ∩ (E011⊗A) ⊇ ⟨a1,⋯, ak⟩⊗⟨b1,⋯, bk⟩⊗⟨c1,⋯, ck⟩⊕ ⟨T ⟩

which has dimension k3+1 which is at least 2m in the range of the proposition. (The only value
greater than 8 the inequality fails for is m = 15.)

The second assertion follows with the same E′
110, taking r =m + k2 and t, t′ = 0. �

Example 2.12. For T⊠3
cw,2 it is easy to get E′

110 of dimension 21 (so for border rank 48 < 63)

that pass the (210) and (120) tests. Take E′
110 spanned by rank one basis vectors such that the

associated Young diagram is a staircase. Then κp = κ′p = 1(6)+ 2(5)+ 3(4)+ 4(3)+ 5(2)+ 6(1) =
56 > 48.
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3. Moduli and submultiplicativity

3.1. Moduli spaces V SP . Following [11], define V SP (T ) to be the set of ideals as in §2.2 aris-
ing from a border rank R(T ) decomposition of T . (In the notation of [11] this is V SP (T,R(T )).)
Since for zero dimensional schemes of a fixed length (and more generally for schemes with a fixed
Hilbert polynomial), there is a uniform bound on degrees of generators of their ideals, this is a
finite dimensional variety which naturally embedds in a product of Grassmannians.

A more classical object also of interest is V SPA⊗B⊗C(T ) ⊂ G(R(T ),A⊗B⊗C), which just
records the R(T )-planes giving rise to a border rank decomposition, i.e., the annihilator of the
(111)-component of the ideal. In particular dim(V SPA⊗B⊗C(T )) ≤ dim(V SP (T )).

It will be useful to state the following result in a more general context: Let X ⊂ PV be a variety
not contained in a hyperplane, assume σr−1(X) ≠ PV and write dimσr(X) = r dim(X)+r−1−δ.
Consider the incidence correspondence

Sr(X) = {((x1,⋯, xr), y, V ) ∈X×r × PV ×G(r, V ) ∣ y ∈ ⟨x1,⋯, xr⟩ ⊆ V },
and its projection maps

Sr(X)
↙ ↘

G(r, V ) σr(X).
Call the projections πG, πσ. We have dimSr(X) = r dim(X) + r − 1 so for y ∈ σr(X)general,
dim(π−1

σ (y)) = δ.

Define V SPX,PV (y) ∶= πGπ−1
σ (y). When X = Seg(PA×PB ×PC), y = T , and V = A⊗B⊗C, this

is V SPA⊗B⊗C(T ).
Proposition 3.1. For all y ∈ σr(X), dimV SPX,PV (y) ≥ δ.

Proof. By [17] dimπG(Sr(X)) = r dim(X), so πG generically has (r − 1)-dimensional fibers,
which correspond to the choice of a point in PV . This implies that πG∣πσ−1(y) is finite to one.

Since dimπ−1
σ (y) ≥ δ we conclude. �

Corollary 3.2. A border rank five tensor T ∈ C3⊗C3⊗C3 has dimV SPA⊗B⊗C(T ) ≥ 8.

Proof. dimσ5(Seg(P2 × P2 × P2)) = 26 [50]. �

Remark 3.3. In this case, by [54] T also has rank five and thus dimV SPA⊗B⊗C(T ) ≥ 8, where
V SPA⊗B⊗C(T ) is the variety of rank decompositions.

A similar argument shows:

Proposition 3.4. Let Os,t,u be a smallest dimensional GT -orbit in P(SsA⊗StB⊗SuC). Then
for all (s, t, u), dimV SP (T ) ≥ dimOs,t,u.

3.2. How to find good tensors for the laser method? The utility of a tensor T ∈ A⊗B⊗C
for the laser method may be thought of as the ratio of its cost, which is the asymptotic
rank, R

:
(T ) ∶= limN→∞[R(T⊠N)]1/N , and its value, which is its asymptotic subrank Q

:
(T ) ∶=

limN→∞[Q(T⊠N)]1/N . See [16] for a discussion, where the ratio of their logs is called the irre-

versibility of T . Here Q(T ) is the maximum q such that M⊕q
⟨1⟩

∈ GL(A) ×GL(B) ×GL(C) ⋅ T ,
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where M⊕q
⟨1⟩

is the so-called unit tensor, in bases M⊕q
⟨1⟩

= ∑qj=1 aj⊗bj⊗cj . Unless a tensor is of

minimal border rank, we only can estimate the asymptotic rank of a tensor by computing its
border rank and the border rank of its small Kronecker powers.

There are several papers attempting to find tensors that give good upper bounds on ω in the
laser method:

Papers on barriers may be interpreted as describing where not to look for good tensors: [16,
2, 4, 1] discuss limits of the laser method for various types of tensors and various types of
implementations.

A program to utilize algebraic geometry and representation theory to find good tensors for the
laser method was initiated in [19, 33].

Here we describe a more modest goal: determine criteria that indicate (or even guarantee) that
border rank is strictly sub-multiplicative under the Kronecker square.

To our knowledge, the first example of a non-minimal border rank tensor that satisfied R(T⊠2) =
R(T )2 was given in [18]: the small Coppersmith-Winograd tensor Tcw,q for q > 2 and in this
paper we show equality also holds when q = 2. This shows that tight tensors need not exhibit
strict submultiplicativity. Several examples of strict submultiplicativity were known previous
to this paper: the 2 × 2 matrix multiplication tensor M⟨2⟩ ∈ C4⊗C4⊗C4, R(M⟨2⟩) = 7 [29] while

R(M⊠2
⟨2⟩

) ≤ 46 [48]. The tensors of [15] have a drop of one, a generic tensor T ∈ C3⊗C3⊗C3

satisfies R(T ) = 5 while R(T⊠2) ≤ 22 [18], and R(Tskewcw,2) = 5 while R(T⊠2
skewcw,2) = 17 [18, 20].

3.3. V SP and strict submultiplicativity. All the strict submultiplicativity examples have
positive dimensional V SP . This is attributable to the degeneracy of σ4(Seg(P2 × P2 × P2)) for
the generic tensors in C3⊗C3⊗C3, and to the large symmetry groups for the other cases: If a
tensor T ∈ A⊗B⊗C has a positive dimensional symmetry group GT and GT does not have a
one-dimensional submodule in each of A⊗B, A⊗C, B⊗C, A⊗B⊗C, then dim(V SP (T )) > 0
because any ideal in the GT -orbit closure of an ideal of a border rank decomposition for T will
give another border rank decomposition.

It would be too much to hope that a concise tensor T not of minimal border rank satisfying
dimV SP (T ) > 0 also satisfies R(T⊠2) < R(T )2. Consider the following example: Let T = T1⊕T2

with the Tj in disjoint spaces, where T1 has non-minimal border rank and dimV SP (T1) = 0
and T2 has minimal border rank with dimV SP (T2) > 0. Then there is no reason to believe T⊠2

should have strict submultiplicativity.

It is possible that the converse holds: that strict submultiplicativity under the Kronecker square
implies a positive dimensional V SP .

It might be useful, following [15] to split the submultiplicativity question into two questions: first
to determine if the usual tensor square is submultiplicative and then if the border rank of the
Kronecker square is less than the border rank of the tensor square. Note that in general, assuming
non-defectivity, for a projective variety X ⊂ PV of dimension N , σR−1(X) has codimension
N + 1 in σR(X). In our case R = r2 and in the tensor square case N = 6m − 6, and in the
Kronecker square case N = 3m2 − 3. A priori, for T ∈ Cm⊗Cm⊗Cm of border rank r, T⊗2 ∈
σr2(Seg(P(m−1)×6)) and submultiplicativity is a codimension 6m − 5 condition, whereas T⊠2 ∈
σr2(Seg(P(m

2−1)×3)) and submultiplicativity is a codimension 3m2 − 2 condition. Despite this,
the second condition is weaker than the first.
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4. Koszul flattening lower bounds

The best general technique available for border rank lower bounds are Koszul flattenings [37, 35].

Fix an integer p. Given a tensor T = ∑ijk T ijkai⊗ bj ⊗ ck ∈ A⊗B⊗C, the p-th Koszul flattening
of T on the space A is the linear map

T∧pA ∶ ΛpA⊗B∗ → Λp+1A⊗C

X⊗β ↦ ∑ijkT ijkβ(bj)(ai ∧X)⊗ck.

Then [35, Proposition 4.1.1] states

(6) R(T ) ≥
rank(T ∧pA )
(dim(A)−1

p
)
.

The best lower bounds for any given p are obtained by restricting T to a generic 2p+1 dimensional
subspace of A∗ so the denominator becomes (2p

p
).

Theorem 4.1. The following border rank lower bounds are obtained by applying Koszul flat-
tenings to a restriction of the tensor to a sufficiently generic C2p+1⊗B⊗C ⊂ A⊗B⊗C. Values of
p that give the bound are in parentheses.

(1) R(T⊠2
skewcw,4) ≥ 39 (p = 2,3,4)

(2) R(T⊠2
skewcw,6) ≥ 70 (p = 2,3,4)

(3) R(T⊠2
skewcw,8) ≥ 110 (p = 4)

(4) R(T⊠2
skewcw,10) ≥ 157 (p = 4)

(5) R(T⊠3
skewcw,2) ≥ 49 (p = 4)

(6) R(T⊠3
skewcw,4) ≥ 219 (p = 3)

(7) R(T⊠3
skewcw,6) ≥ 550 (p = 3)

(8) R(T⊠3
skewcw,8) ≥ 1089 (p = 3)

(9) R(T⊠3
skewcw,10) ≥ 1886 (p = 3).

Better lower bounds for the larger cases are potentially possible, if not easily accessible, using
larger values of p.

Compare these with the values for the small Coppersmith-Winograd tensor from [18]:

(1) R(T⊠2
cw,4) = 36

(2) R(T⊠2
cw,6) = 64

(3) R(T⊠2
cw,8) = 100

(4) R(T⊠2
cw,10) = 144

(5) R(T⊠3
cw,4) ≥ 180

(6) R(T⊠3
cw,6) = 512
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(7) R(T⊠3
cw,8) = 1000

(8) R(T⊠3
cw,10) = 1728.

Note that R(T⊠4
cw,q) ≤ (q + 2)4 and that R(T⊠4

skewcw,q) is at least the estimate in Proposition

4.1 times q + 1 by [18, Prop. 4.2]. Based on this, it is possible as of this writing that of
R(T⊠4

skewcw,q) ≤ R(T⊠4
cw,q) for q = 2,6,8.

5. Proof of Theorem 1.1 that R(perm3) = 16

The upper bound follows as R(Tcw,2) = 4.

For the lower bound, we prove there is no E110 ⊂ A⊗B of dimension 15 that satisfies the flag
condition and passes the (210) and (120) tests. To do this, we need to show there is no E′

110

of dimension six that is spanned by weight vectors such that the resulting E110 passes the tests
and satisfies the flag condition. We do this by separately analyzing the pure and mixed kernels
discussed in §2.5:

Lemma 5.1. There is a unique up to isomorphism choice of six-dimensional BTcw,2-fixed E′
110

satisfying the flag condition with κm = 5 and this choice fails the (210)-test. All other choices
satisfy κm, κ

′
m ≤ 4.

Lemma 5.2. For any six-dimensional E′
110, κp, κ

′
p ≤ 10 and if equality holds, then κm, κ

′
m < 4.

Lemmas 5.1 and 5.2 together prove Theorem 1.1.

In order to prove Lemma 5.1 we need to analyze what the flag condition imposes on potential
E′

110. It turns out we only need to analyze the first three steps carefully. The essential point is
when we analyze potential contributions to the mixed kernel, any element of the kernel carries
a “cost” of at least three, in the sense that either three rank one weight vectors are used to
construct the element of the kernel, or a weight vector that cannot appear until the third step
in a flag is used, or a similar intermediate combination results in a cost of three.

In what follows, {i, j, k} = {1,2,3}, {i′, j′, k′} = {1,2,3}, k̂′ ∈ {i′, j′}, k̂ ∈ {i, j} etc..

Here
perm3(C∗) = ⟨aii′⊗bîî′ + a

î
i′⊗biî′ + a

i
î′
⊗bîi′ + aîî′⊗b

i
i′⟩.

Thus perm3(C∗) ∩ σ3 = ;. Observe that κf = 1 as

(perm3(C∗)⊗A) ∩ (S2A⊗B) = ⟨∑akk′⊗(aii′⊗b
j
j′ + a

j
i′⊗b

i
j′ + aij′⊗b

j
i′ + a

j
j′⊗b

i
i′)⟩.

Remark 5.3. In general, for any symmetric tensor T , κf ≥ 1 due to the copy of T in S3A ⊂
S2A⊗B.

The possible weights of elements in A⊗B are (200)(200), (110)(110), (200)(110) and their
permutations under the action of (S3 ×S3) ⋊ Z2. We will say an element has type (xyz)(pqr)
if its weight is in the (S3 ×S3) ⋊Z2-orbit of (xyz)(pqr).

First step in flag: rank one weight vectors. All weight vectors of type (200)(200) have
rank one, these are of the form aii′⊗bii′ . Vectors of type (200)(110) have rank one or two, those
of rank one are of the form aii′⊗bik′ and vectors of type (110)(110) have rank at most four, the

rank one vectors among them are of the form aii′⊗b
j
j′ .
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Second step in the flag. Given the first step, we could get the second step either by adding
another rank one weight vector, or taking a tangent vector to a rank one weight vector.

The rank two weight vectors tangent to a rank one element of type (200)(200), which we may

write as ajj′⊗b
j
j′ , are up to scale ajj′⊗b

j

ĵ′
+Kaj

ĵ′
⊗bjj′ , for some K ≠ 0, or its Z2-image, which are

of type (200)(110) or ajj′⊗b
ĵ

ĵ′
+Kaĵ

ĵ′
⊗bjj′ , which are of type (110)(110).

No rank two tangent vector to a rank one element of type (110)(110) is a weight vector.

The rank two tangent weight vectors to a rank one element of type (200)(110), e.g., aii′⊗bik′ , are

of the form aii′⊗bîk′ +Ka
î
i′⊗bik′ for some K ≠ 0, and they are of type (110)(110).

Third step in the flag. Given a two-step flag, the third step may be obtained either by adding
another rank one weight vector, or adding a new tangent vector to one of the rank one vectors in
the flag, or taking a rank three second derivative of a weight vector, whose first tangent vector
also appears in the flag, or by taking a vector of the form x′ +y′ where x, y are rank one, appear
in the flag, and are colinear.

Consider rank three second derivatives of a weight vector: Say we had some

(7) (a + ta′ + t2a′′)⊗(b + tb′ + t2b′′) = a⊗b + t(a⊗b′ + a′⊗b) + t2(a⊗b′′ + a′⊗b′ + a′′⊗b) + ...

In order that the t coefficient appears in E′
110, either we would need either a′⊗b + a⊗b′ to

be a weight vector, or one of a⊗b′, a′⊗b to be a multiple of a⊗b. The second case yields
nothing interesting. To see this, assume b′ = λb. Then the coefficient of t2 may be written as
a⊗b′′ + (λa′ + a′′)⊗b, which is just a tangent vector to the original point, so we are just in the
situation of a rank one point and two tangent vectors, so we ignore this situation.

Recalling the possible tangent vectors that are weight vectors we have three potential cases:

⟨ajj′⊗b
j
j′ , a

j
j′⊗b

j

ĵ′
+Kaj

ĵ′
⊗bjj′ , a

j
j′⊗b

′′ + aj
ĵ′
⊗bj

ĵ′
+Ka′′⊗bjj′⟩

⟨ajj′⊗b
j
j′ , a

j
j′⊗b

ĵ

ĵ′
+Kaĵ

ĵ′
⊗bjj′ , a

′′⊗bĵ
ĵ′
+ aĵ

ĵ′
⊗bĵ

ĵ′
+ aĵ

ĵ′
⊗b′′⟩

⟨aii′⊗bik′ , a
i
i′⊗bîk′ +Ka

î
i′⊗bik′ , a

′′⊗bîk′ + a
î
i′⊗bîk′ +Ka

î
i′⊗b′′⟩

In the first case, the third vector is not a weight vector for any choice of a′′, b′′ not both zero,
and in the other two cases the third vector can only be a weight vector if the third term collapses
to a rank one element, and thus this scenario does not occur.

Since no two vectors of type (200)(200) are colinear, the only possibility of a vector of the form
x′ + y′ appearing is if x is of type (200)(200) and y of type (200)(110), but in this case one just
gets a weight vector of the form x′ of type (110)(110) by the weight vector requirement. If x, y
are of type (200)(110), then any nontrivial x′ + y′ is not a weight vector. Thus this scenario
does not occur.

Proof of Lemma 5.1. We first describe all possible elements in the mixed kernel, these are given
in equations (8) - (18). We then show that with a 6-dimensional E′

110 satisfying the flag condition,
no matter what combinations appear, there is at most a four dimensional contribution to the
mixed kernel, with a unique (up to symmetry) exception whose pure kernel is too small for it to
pass the (210) test.
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Let Γ = Z2 ×Z2 and Γ ⋅ ajj′⊗b
k
k′ = a

j
j′⊗b

k
k′ + a

j
k′⊗b

k
j′ + akj′⊗b

j
k′ + a

k
k′⊗b

j
j′ . In what follows underlined

terms are elements of E′
110. The group Gperm3

allows us to unambiguously define the elements
of E′

110 except those of type (110)(110).

Up to (S3 ×S3) ⋊ Z2, there are four types of potential vectors in the mixed kernel that use a

single element Γ ⋅ aii′⊗b
j
j′ of perm3(C∗):

First, E′
110 could contain a complement to Γ ⋅aii′⊗b

j
j′ in its weight space (the complement is three

dimensional). We have the following types:

(8) ajj′⊗(Γ ⋅ aii′⊗b
j
j′) − a

j
j′⊗(aii′⊗b

j
j′) − a

j
j′⊗(aij′⊗b

j
i′) − a

j
j′⊗(aji′⊗b

i
j′),

(9) ajj′⊗(Γ ⋅ aii′⊗b
j
j′) − a

j
j′⊗(aii′⊗b

j
j′ + a

i
j′⊗b

j
i′) − a

j
j′⊗(aji′⊗b

i
j′),

(10) ajj′⊗(Γ ⋅ aii′⊗b
j
j′) − a

j
j′⊗(aji′⊗b

i
j′ + aij′⊗b

j
i′) − a

j
j′⊗(aii′⊗b

j
j′),

(11) ajj′⊗(Γ ⋅ aii′⊗b
j
j′) − a

j
j′⊗(aii′⊗b

j
j′ + a

i
j′⊗b

j
i′ + a

j
i′⊗b

i
j′).

We distinguish (9) and (10) because in (10) the rank two element appearing is tangent to a rank
one weight vector of type (200)(200) and this is not the case in (9).

Note that the flag condition is crucial here: otherwise we could just take six vectors of the type
appearing in (11) to have κm = 6.

The other potential elements of the mixed kernel utilizing a single element of perm3(C∗) are
(here and below, K,K ′ are constants):

(12) ajj′⊗(Γ ⋅ aĵ
ĵ′
⊗bjj′) + a

ĵ

ĵ′
⊗(ajj′⊗b

j
j′) + a

ĵ
j′⊗(ajj′⊗b

j

ĵ′
+Kaj

ĵ′
⊗bjj′) + a

j

ĵ′
⊗(ajj′⊗b

ĵ
j′ +Ka

ĵ
j′⊗b

j
j′),

where the underlined terms are respectively types (200)(200), (200)(110), (200)(110),

aii′⊗(Γ ⋅ akk′⊗b
j
j′) + a

k
k′⊗(aii′⊗b

j
j′ +Ka

j
j′⊗b

i
i′) + akj′⊗(aii′⊗b

j
k′ +K

′ajk′⊗b
i
i′)(13)

+ ajk′⊗(aii′⊗bkj′ +K ′akj′⊗bii′) + a
j
j′⊗(aii′⊗bkk′ +Ka

k
k′⊗b

i
i′),

where the underlined terms are all of type (110)(110) and they all live in different weight spaces,
and

aji′⊗(Γ ⋅ aĵk′⊗b
j
j′) + a

ĵ
k′⊗(aji′⊗b

j
j′ +Ka

j
j′⊗b

j
i′) + a

ĵ
j′⊗(aji′⊗b

j
k′ +K

′ajk′⊗b
j
i′)(14)

+ ajk′⊗(aji′⊗b
ĵ
j′ +K

′aĵj′⊗b
j
i′) + a

j
j′⊗(aji′⊗b

ĵ
k′ +Ka

ĵ
k′⊗b

j
i′),

where the underlined terms are respectively of types (200)(110), (200)(110), (110)(110), (110)(110).
The two elements of type (110)(110) live in different weight spaces.

The possible terms in the mixed kernel with two elements of perm3(C∗) that are not just sums
of terms with one element having no cancellation are as follows:
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aii⊗(Γ ⋅ akk⊗b
i
j) + aik⊗(Γ ⋅ aii⊗bkj )

(15)

+ akk⊗(aii⊗bij +Kaij⊗bii) + akj⊗(aii⊗bik + a
i
k⊗b

i
i) + aki⊗(aik⊗b

i
j) + aij⊗(aii⊗bkk +Ka

k
k⊗b

i
i) + aij⊗(aik⊗b

k
i ),

where the underlined terms are respectively of types (200)(110), (200)(110), (200)(110), (110)(110),
(110)(110) and the two type (110)(110) vectors live in different weight spaces, and

aii⊗(Γ ⋅ akk⊗b
i
j) + aij⊗(Γ ⋅ aii⊗bkk)

(16)

+ akk⊗(aii⊗bij + aij⊗bii) + akj⊗(aii⊗bik +K
′aik⊗b

i
i) + aik⊗(aii⊗bkj +K ′akj⊗bii) + aik⊗(aij⊗bki ) + aki⊗(aij⊗bik),

where the underlined terms are respectively of types (200)(110), (200)(110), (110)(110), (110)(110)
and the two type (110)(110) vectors live in different weight spaces.

The possible terms in the mixed kernel with three elements of perm3(C∗) are:

aii′⊗(Γ ⋅ aîk′⊗b
i
j′) + aik′⊗(Γ ⋅ aii′⊗bîj′) + aij′⊗(Γ ⋅ aii′⊗bîk′)(17)

+ aîk′⊗(aii′⊗bij′ + aij′⊗bii′) + aîj′⊗(aii′⊗bik′ + a
i
k′⊗b

i
i′) + aîi′⊗(aik′⊗b

i
j′ + aij′⊗bik′),

where all have type (200)(110), with the same (200) weight space and the three distinct (110)
weight spaces.

aii′⊗(Γ ⋅ ajj′⊗b
k
k′) + a

j
j′⊗(Γ ⋅ aii′⊗bkk′) + a

k
k′⊗(Γ ⋅ aii′⊗b

j
j′)(18)

+ aii′⊗(ajk′⊗b
k
j′ + akj′⊗b

j
k′) + a

j
j′⊗(aik′⊗b

k
i′ + aki′⊗bii′) + akk′⊗(aij′⊗b

j
i′ + a

j
i′⊗b

i
j′),

where all have type (110)(110) and lie in different weight spaces.

We first observe that no element appears in more than 4 of the potential kernel vectors. Since
we only have six elements to obtain a 5 dimensional mixed kernel, we see any potential kernel
vector using more than 3 elements of E′

110 cannot be used. (Here we are also using that with
vectors involving more than 3 elements, no pair of elements appears in a same second potential
kernel vector.) We are reduced to examining (8), (9), (11), (12), (17) and (18).

Case: the kernel contains an element of type (8). We have three elements of type (110)(110) all
of the same weight in E′

110. The only other relations among those we consider that use elements
of type (110)(110) are of type (18), but this requires two additional elements of that type with
different weights. We conclude elements of type (8) will not be useful.

Case: the kernel contains an element of type (9) or (10). The second underlined term is not
tangent to the first, so the cost of such an element is three. If the element is obtained naively,
we are in the same situtation as (8). For case (10) there is also the possibility to obtain the rank
two element as a tangent vector to an element of type (200)(200). If we form the 3-plane with
the (200)(200) vector and want to use it in some other relation, we cannot reuse the (110)(110)
vectors with it as no other kernel element involves this mixture of weights, so these cases are
not useful.
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Case: the kernel contains an element of type (11). We have seen there is no way to construct
the element appearing at cost three other than as the sum of three rank one elements or as the
sum of a rank one element and a tangent vector as above. Thus this case reduces to one of the
previous two cases.

Case: the kernel contains an element of type (12). These use an element of type (200)(200)
and two of its type (200)(110) tangent vectors. Each (200)(200) element appears in 4 relations

of type (12). To obtain them, we only need include the four vectors ajj′⊗b
j

ĵ′
+ aj

ĵ′
⊗bjj′ , a

j
j′⊗b

ĵ
j′ +

Kaĵj′⊗b
j
j′ (where there are two possibilities for each of the the two hatted vectors). When K = 1,

this gives κm, κ
′
m = 4 (if K ≠ 1, then κ′m is smaller). At this point we have a five-plane in E′

110.
We could take a (200)(110)-vector appearing as a tangent vector to the (200)(200) vector and
attempt to use it in an element of type (17), in fact we may use two tangent vectors in such an
expression, but we still need to add a third (200)(110) vector that is not of rank one, and is not
tangent to the (200)(200) vector. Explicitly, we may take

(19) E′
110 = ⟨a1

1⊗b11, a1
1⊗b12 + a1

2⊗b11, a1
1⊗b13 + a1

3⊗b11, a1
1⊗b21 + a2

1⊗b11, a1
1⊗b31 + a3

1⊗b11, a1
2⊗b13 + a1

3⊗b12⟩

Here the (210) test fails, κp = 6 (for each basis vector v of E′
110 there is a pure kernel of the form

a1
1⊗v +⋯), so the total kernel has dimension 12.

Case: the kernel contains an element of type (17). Each element is a tangent vector to a same
vector of type (200)(200), namely aii′⊗bii′ . Thus to get just one element of the kernel already
uses 4 dimensions of E′

110. Unless we enlarge to obtain (19), we would have to enlarge to obtain
either additional relations of type (17) or relations of type (18). To get a second such relation,
one needs at least two more elements, which would fill E′

110 and only give κm = 3. The terms in
(18) have a different type, so that will not work either.

Case: the kernel contains an element of type (18). The elements appearing are all of type
(110)(110) and in different weight spaces so at most one of these could be re-used in a different
relation, so this situation cannot occur. �

For the proof of Lemma 5.2 we use a basic fact from exterior differential systems (the easy part
of Cartan’s test) [28, Prop. 4.5.3]: let B1 ⊂ B2 ⊂ ⋯ ⊂ B9 be a generic flag in B (generic in
the sense that s1 below is maximized, and having maximized s1, s2 is maximized etc..). Let s1

be the dimension of the projection of E′
110 to A⊗B1. Define s2 by s1 + s2 is dimension of the

projection of E′
110 to A⊗B2, set s1 + s2 + s3 to be the dimension of E′

110 projected to A⊗B3 etc..
Then

(20) dim(S2A⊗B) ∩ (A⊗E′
110) ≤ s1 + 2s2 +⋯ + 6s6.

In particular, κp ≤ s1 + 2s2 +⋯ + 6s6. If equality holds in (20), we will say E′
110 is A-involutive.

Proof of Lemma 5.2. Let t1,⋯, t6 be the corresponding quantities for the (120) test. The only
way to have κp, κ

′
p ≥ 10 is if the associated Young diagrams are respectively A and B involutive,

and both the staircase, i.e., s1 = t1 = 3, s2 = t2 = 2, s3 = t3 = 1. This is because involutivity
can only hold if E′

110 is spanned by rank one elements and in this case the B-diagram is the
transpose of the A-diagram.

Thus there are a1, a2, a3 ∈ A and b1, b2, b3 ∈ B such that

E′
110 = ⟨a1⊗b1, a1⊗b2, a2⊗b1, a1⊗b3, a3⊗b1, a2⊗b2⟩.



ALGEBRAIC GEOMETRY AND THE LASER METHOD 19

The best one can do here is to obtain κm = 1, e.g., by taking a1 = a1
1, a2 = a1

3, a3 = a3
1 and

similarly for the bj . �

Remark 5.4. The reason perm3 was previously unaccessible was that already to choose E′
110,

without the flag condition one needed to introduce numerous parameters due to the high weight
multiplicities that made the calculation infeasible. The flag condition guaranteed the presence
of low rank elements in E′

110 which significantly reduced the search space.

Remark 5.5. It is interesting to see what happens when dimE′
110 = 7, to obtain a border rank

16 ideal fixed by the torus in Gperm3
. One may take for example

E′
110 = ⟨a1

1⊗b11, a1
2⊗b11 + a1

1⊗b12, a1
3⊗b11 + a1

1⊗b13, a2
1⊗b11 + a1

1⊗b21, a3
1⊗b11 + a1

1⊗b31, a1
2⊗b12, a1

3⊗b12 + a1
2⊗b13⟩.

Then we obtain the four (200)(200) contributions to κm from expressions of type (12) as well
as three additional contributions from expressions of type (17). Here s1 = t1 = 4, s2 = t2 = 3 and

(A⊗E′
110) ∩ (S2A⊗B) =

⟨a1
1⊗a1

1⊗b11, a1
2⊗a1

1⊗b11 + a1
1⊗(a1

2⊗b11 + a1
1⊗b12), a1

3⊗a1
1⊗b11 + a1

1⊗(a1
3⊗b11 + a1

1⊗b13),
a2

1⊗a1
1⊗b11 + a1

1⊗(a2
1⊗b11 + a1

1⊗b21), a3
1⊗a1

1⊗b11 + a1
1⊗(a3

1⊗b11 + a1
1⊗b31),

a1
2⊗a1

2⊗b12, a1
1⊗a1

2⊗b12 + a1
2⊗(a1

2⊗b11 + a1
1⊗b12), a1

3⊗a1
2⊗b12 + a1

2⊗(a1
3⊗b12 + a1

2⊗b13)⟩

so κp = κ′p = 8 and both the (210) and (120) tests are passed.

6. Descriptions of V SP (Tcw,q)

In this section we adopt the index range 1 ≤ α,β ≤ q. The small Coppersmith-Winograd tensor
has a well-known border rank decomposition, which is also a Waring border rank decomposition.

Tcw,q = lim
t→0

1

t2
∑
α

[(a0 + taα)⊗(b0 + tbα)⊗(c0 + tcα)]

− 1

t3
[(a0 + t2∑

α

aα)⊗(b0 + t2∑
α

bα)⊗(c0 + t2∑
α

cα)]

− (q 1

t2
− 1

t3
)a0⊗b0⊗c0.

Let q > 2. Write A = B = C = L ⊕M , where L = ⟨a0⟩ and M = ⟨aα⟩. Set Q = ∑α aα⊗aα. A
straight-forward Lie algebra calculation (see, e.g., [19]) shows GTcw,q ⊃ SO(M,Q) × GL(L) =
SO(q) ×C∗. Then

A⊗B = L⊗2 ⊕L ∧M ⊕ S2
0M ⊕Λ2M ⊕ (L ⋅M ⊕Q),

where the term in parenthesis is Tcw,q(C∗). Here S2
0M =M2ω1 is the complement to the trivial

SO(M,Q)-representation in S2M . In what follows we write Lk for L⊗k = SkL.

Theorem 6.1. For q > 2, V SP (Tcw,q) is a point. The unique ideal is as follows: for all s, t, u
with s + t + u = d, the annhilator of the ideal in degree (s, t, u) is

Ld ⊕Ld−1 ⋅M ⊕Ld−2 ⋅Q.
Here

Ld−1 ⋅M = ⟨as−1
0 ⋅ aα⊗bt0⊗cu0 + as0⊗bt−1

0 ⋅ bα⊗cu0 + as0⊗bt0⊗cu−1
0 ⋅ cα ∣ α = 1,⋯, q⟩
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and

Ld−2 ⋅Q = ⟨∑
α

as−1
0 ⋅ aα⊗bt−1

0 ⋅ bα⊗cu0 + as−1
0 ⋅ aα⊗bt0⊗cu−1

0 ⋅ cα + as0⊗bt−1
0 ⋅ bα⊗cu−1

0 ⋅ cα

+ as−2
0 ⋅ a2

α⊗bt0⊗cu0 + as0⊗bt−2
0 ⋅ b2α⊗cu−1

0 ⋅ cα + as0⊗bt0⊗cu−2
0 ⋅ c2

α⟩.

Proof. We must have PE110 ∩ Seg(PA × PB) ≠ ;. This may be achieved by adding some

(u0a0 +∑
α

uαaα)⊗(v0b0 +∑
β

vβbβ)

for u0, uα, v0, vβ ∈ C. We also must have a flag as in Observation 2.5. Taking anything other than
a0⊗b0, (u0a0+a)⊗b0 with u0 ∈ C, a ∈M , or xa0⊗bα+yaα⊗b0 (i.e., some a0⊗bα or aα⊗b0 since we
are working modulo T (C∗)) makes the flag condition PF2 ⊂ σ2(Seg(PA×PB)) fail. (Here we use
that q > 2.) Taking anything other than a0⊗b0 makes the flag condition PF3 ⊂ σ3(Seg(PA×PB))
fail. Thus there is a unique E110, and by symmetry unique E101 and E011. This triple exactly
passes all degree three tests.

To see E200 must be as asserted, it must be such that (E200⊗B) ⊇ E210. In order to have L⊗3

in this intersection, we need L⊗2 ⊂ E200. In order to have L2 ⋅M = ⟨a0⊗a0⊗bα + a0⊗aα⊗b0 +
aα⊗a0⊗b0⟩ in the intersection, we see it must also contain ⟨a0⊗aα + aα⊗a0⟩ = L ⋅M . In order to
have L ⋅Q = ⟨∑α(a0⊗aα⊗bα + aα⊗a0⊗bα + aα⊗aα⊗b0)⟩ in the intersection, we see it must also
contain ⟨∑α aα⊗aα⟩ = Q.

For the general case, assume by induction Es−1,t,u,Es,t−1,u,Es,t,u−1 are as asserted and isomorphic

as a module to L⊗d−1⊕Ld−2 ⋅M ⊕Ld−3 ⋅Q. Arguing as we did for E200, first obtaining L⊗d, then
Ld−1 ⋅M , then Ld−2 ⋅Q we conclude. �

Note that the ideal is GTcw,q -fixed as indeed it has to be if V SP is a point.

Now let q = 2, in this case it is more convenient to write Tcw,2 as

Tcw,2 = ∑
σ∈S3

aσ(1)⊗bσ(2)⊗cσ(3).

Write A = B = C = L1 ⊕ L2 ⊕ L3 where, e.g., for A, Lj = ⟨aj⟩. A straight-forward Lie algebra

calculation shows ĜTcw,2 ⊇ (C∗)×3.

Theorem 6.2. V SP (Tcw,2) and V SP v3(P2),PS3C3(Tcw,2) each consists of three points. One

choice has for all s, t, u with s + t + u = d, the annihilator in degree (s, t, u) equal to

Ls1⊗Lt1⊗Lu1 ⊕ φ(Ld−1
1 ⊗L2)⊕ φ(Ld−1

1 ⊗L3)⊕ φ(Ls−2
1 ⊗L2⊗L3)

where φ ∶ (Ld−1
1 ⊗Lx) → SsA⊗StB⊗SuC is the symmetric embedding. The other two choices

arise from exchanging the role of L1 with L2, L3.

Proof. We have Tcw,2(C∗) = ⟨ai⊗bj + bj⊗ai ∣ i ≠ j⟩. The only possibilites for E110 for r = 4 that
pass the (210)-test arise by adding ak⊗bk to this for some k ∈ {1,2,3}. Take k = 1. Then

(E110⊗A) ∩ (S2A⊗B) = ⟨a2
1⊗b1, a1a2⊗b1 + a2

1⊗b2, a1a3⊗b1 + a2
1⊗b3, ∑

σ∈S3

aσ(1)⊗aσ(2)⊗bσ(e)⟩

The only compatible choice of E200 is ⟨a2
1, a1a2, a1a3, a2a3⟩. The situation for higher multi-

degrees is similar. �
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Remark 6.3. In contrast to Tcw,2, by Corollary 3.2, dimV SP (Tskewcw,2) ≥ 8. From [23] (slightly
changing notation) we have the rank five decomposition:

Tskewcw,2 =
1

2
[2a1⊗(b2 − b3)⊗(c2 + c3)

− (a1 + a2)⊗(b1 − b3)⊗(c1 + c3) − (a1 − a2)⊗(b1 + b3)⊗(c1 − c3)
+ (a1 + a3)⊗(b1 − b2)⊗(c1 + c2) − (a1 − a3)⊗(b1 + b2)⊗(c1 − c2)]

and the orbit of this decomposition already has dimension 8. (This can be seen by noting that
more than four distinct vectors in C3 appear in the decomposition.)

7. Tskewcw,q, q > 2

Proof of Theorem 1.3. For the upper bound, we have

Tskewcw,q = lim
t→0

1

t3
[∑
ξ

[(a0 + t2aξ)⊗(b0 − t2bξ)⊗(c0 − tcξ+p) + (a0 − t2aξ)⊗(b0 − tbξ+p)⊗(c0 + t2cξ)

(21)

+ (a0 − taξ+p)⊗(b0 + t2bξ)⊗(c0 − t2cξ)]

+ 1

t5
(a0 + t3∑

ξ

aξ+p)⊗(b0 + t3∑
ξ

bξ+p)⊗(c0 + t3∑
ξ

cξ+p)

− ( 3q

2t2
+ 1

t5
)a0⊗b0⊗c0].

For the lower bounds, write A = B = C = L⊕M with dimL = 1, dimM = q and M is equipped
with a symplectic form Ω. A straight-forward Lie algebra calculation shows GTskewcw,q ⊇ Sp(M)×
GL(L) ×M∗⊗L. Then

A⊗B = L⊗2 ⊕L ⋅M ⊕ S2M ⊕Λ2M0 ⊕ (L ∧M ⊕Ω)
where the term in parentheses equals Tskewcw,q(C∗). Here Λ2M0 =Mω2 , the complement to the

Sp(M)-trivial representation in Λ2M .

we have the following weight diagram for the GTskewcw,q -complement of T (C∗) in A⊗B:

L⊗2 L ⋅M S2M Λ2M

a0⊗b0
a0⊗b1 + a1⊗b0

a0⊗b2 + a2⊗b0

a0⊗b3 + a3⊗b0
⋮

a1⊗b1

a1⊗b2 + a2⊗b1

a1⊗b3 + a3⊗b1

a2⊗b3 + a3⊗b2 a1⊗b4 + a4⊗b1
⋮

a1⊗b2 − a2⊗b1

a1⊗b3 − a3⊗b1

a2⊗b3 − a3⊗b2 a1⊗b4 − a4⊗b1
⋮

We will show that for q ≤ 10, there is no choice of E′
110 satisfying all degree three tests when

r = 3
2q + 1. We focus on the case q = 10 as that is the most difficult, the other cases are easier.
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Note that elements of M may be raised to L, so an element of S2M cannot be placed in E′
110

unless its raising to L ⋅M is also there. On the other hand, since L ∧M ⊂ E110, there is no
similar restriction on elements of Λ2M .

We now restrict to q = 10. We split the types of (110) spaces into 10 types of cases depending
on the dimension of E′

110 intersected with the various irreducible modules:

case L⊗2 L ⋅M S2M Λ2
0M

1 1 4 0 0
2 1 3 1 0
3 1 2 2 0

4x 1 2 1 + 1
2

1
2

5 0 0 0 5
6 1 0 0 4
7 1 1 0 3
8 1 2 0 2
9 1 1 1 2
10 1 2 1 1

Types 1,2,3,8,9,10 are all single cases Types 5,6,7 each involve a choice of subset of weight
vectors in Λ2

0M (so they are each a collection of a finite number of cases) and case 4 involves a
parameter, where we use 1

2 to indicate the parameter, as the weight vector is a sum of a vector
in the two indicated spaces. Explicitly, case 4x may be written

E′
110 = ⟨a0⊗b0, a0⊗b1 + a1⊗b0, a0⊗b2 + a2⊗b0, a1⊗b1, x(a1⊗b2 + a2⊗b1) + a1⊗b2 − a2⊗b⟩.

Of these cases 1,2,3,4x,8,10 pass the (210) and (120) tests. No triple passes the (111) test. �

We remark that the decomposition (21) is Z3-invariant.

Corollary 7.1. For 10 ≥ q > 2, and q = 2p even, V SP (Tskewcw,q) contains the isotropic Grass-

mannian GΩ( q2 ,M). In particular it has dimension at least (p
2
).

Proof. Examining (21), by Sp(M) ⊂ GTskewcw,q we may replace ⟨aξ⟩ with any isotropic subspace
as long as we replace ⟨aξ+p⟩ with the corresponding dual subspace and the same changes in
B,C. �

8. A simpler Waring border rank 17 expression for det3

In this section and the next, we present explicit decompositions. The method used to obtain
the decompositions is discussed after the second decomposition at the end of §9.
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Set i =
√
−1 and ζ = e2πi/12. Then det3 = ∑17

s=1m
⊗3
s (t) + O(t), where the ms are the following

matrices

⎛
⎜
⎝

ζ6

t5
0 0

0 ζ6 0
0 0 t5

⎞
⎟
⎠

⎛
⎜
⎝

1
t5

0 0
0 1 0
0 0 0

⎞
⎟
⎠

⎛
⎜
⎝

ζ6

t5
0 0

0 0 tζ8

0 t4ζ4 0

⎞
⎟
⎠

⎛
⎜
⎝

ζ4

t5
0 0

0 0 tζ6

0 0 0

⎞
⎟
⎠

⎛
⎜
⎝

ζ5

t5
0 0

0 0 0
0 t4 0

⎞
⎟
⎠

⎛
⎜
⎝

ζ3

t5
0 0

0 0 0
0 0 t5

⎞
⎟
⎠

⎛
⎜
⎝

0 ζ10

t4
ζ8

t3

0 0 tζ8

t3ζ6 0 0

⎞
⎟
⎠

⎛
⎜
⎝

0 ζ8

t4
ζ6

t3

0 0 tζ6

0 0 0

⎞
⎟
⎠

⎛
⎜
⎝

0 1
t4

1
t3

0 0 0
t3ζ6 0 0

⎞
⎟
⎠

⎛
⎜⎜
⎝

0 ζ6

t4
0

ζ6

t 0 0
0 0 t5ζ6

⎞
⎟⎟
⎠

⎛
⎜
⎝

0 ζ11

t4
0

0 0 0
t3 0 0

⎞
⎟
⎠

⎛
⎜
⎝

0 ζ9

t4
0

0 0 0
0 0 t5ζ6

⎞
⎟
⎠

⎛
⎜⎜
⎝

0 0 1
t3

ζ6

t 0 0
0 t4ζ6 0

⎞
⎟⎟
⎠

⎛
⎜
⎝

0 0 1
t3

0 ζ4 0
t3ζ2 t4 0

⎞
⎟
⎠

⎛
⎜
⎝

0 0 ζ6

t3

0 ζ10 0
0 0 0

⎞
⎟
⎠

⎛
⎜⎜⎜⎜
⎝

0 5
5
6 ζ2

5t4
(1+ 2

5

√
5)

1
3 ζ2

t3

(1− 2
5

√
5)

1
3 ζ8

t 0 0
0 0 0

⎞
⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜
⎝

0 5
5
6 ζ8

5t4
(1− 2

5

√
5)

1
3 ζ2

t3

(1+ 2
5

√
5)

1
3 ζ8

t 0 0
0 0 0

⎞
⎟⎟⎟⎟
⎠

.

9. A numerical border rank 42 expression for T⊠2
skewcw,4

What follows is an expression for T⊠2
skewcw,4 as ∑42

s=1ms(t)⊗3 +O(t) that is satisfied to an error of

at most 4.4 × 10−15 in each entry. Code to verify the assertion is available at
https://www.math.tamu.edu/∼jml/chllasersupp.html.

It consists of 42 matrices whose entries are rational expressions in the following 36 complex
numbers: Let i =

√
−1 and let ζ = e2πi/12. Set

z0 = −0.8660155098072051 + 0.9452855522785384i z1 = −1.2981710770246242 + 0.0008968724089185688i
z2 = 2.9260271139931078 + 0.1853833642730014i z3 = 0.2542517122150322 + 0.30793819438378284i
z4 = 0.6964375578992822 + 0.2772662627986198i z5 = 0.5507020325318998 − 0.0493931308002328i
z6 = 1.149228383831849 − 1.1683147648642283i z7 = 0.6586404058476252 − 0.16578044112199047i
z8 = 0.7654345273805864 − 0.06877274843008892i z9 = 0.544690883860558 + 0.09720573163212605i
z10 = 0.6932236636741451 + 0.14980159446358277i z11 = 0.5862637032385472 − 0.12844523449559558i
z12 = 2.384363992555291 − 0.08927102369428247i z13 = 0.9664252976479286 + 0.08480470055107503i
z14 = 0.6190926897383283 + 0.15631000400545272i z15 = 0.6283592253932955 − 0.5626050553495663i
z16 = 1.8190778570602204 − 0.22163457440913656i z17 = 1.153187286528645 − 0.07977233251120702i
z18 = 1.4498877801613976 − 0.22515738202335905i z19 = 0.7262464450114047 + 0.7050051641972112i
z20 = 1.1195537528292199 − 0.26381000320340176i z21 = 0.4400325048210471 + 0.6593492930106759i
z22 = 0.3476654993676339 + 0.4095417606798612i z23 = 0.9459769225333798 + 0.24589162882727128i
z24 = 0.7637135867709066 − 0.10529269213820387i z25 = 0.7409392923310902 − 0.10474756303325146i
z26 = 1.0112068238001992 − 0.12695675940574122i z27 = 1.5005677845016696 − 0.24533651960180036i
z28 = 0.6134145054919202 + 0.08121891266185506i z29 = 1.145625294745251 − 0.3813562005184122i
z30 = 1.0607612533915372 − 0.016294891090460426i z31 = 0.941339345482511 + 0.20413704882122435i
z32 = 0.622575977639622 + 0.2555810563389569i z33 = 0.951746321194872 − 0.2894768358835511i
z34 = 1.0532801812660977 − 0.2502246606675517i z35 = 1.0207644184200035 − 0.2106937666100475i.
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The 42 matrices are:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ζ3z25z26z31z35
t269

ζ8z28t
61

z23z25z26z31z33z34

ζ10z24z35t
13

z23z25z26z31z33z34
0 0

z25z26z31z33z35
t104

0 0 0
ζ9z18z26z32t

148

z21z23z33z
2
35

0 0 0 0 0

0 0
ζ7z35t

121

z23z25z
2
26
z31z33z34

0
ζ8z23z34t

91

z24z
2
35

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ζ10z30
t269

0
ζ10z24z35t

13

z27z28z30z33
0 0

0 0
ζ7z24z35t

178

z27z28z30
0 0

0 0 0 0 0

0 0
ζ6z27z28z

2
35t

121

z2
23
z25z

2
26
z31z33z

2
34

0 0

0 ζt184

z27z30z34
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0
0 0 0 0 0

0
z18z24z28z32t

211

z21z
2
23
z25z

3
33
z35

z0t
163 0

ζz34t
133

z25

0 0 0 0 0
ζz23z25z33
z24z31t

146
ζ5z31z35t

184

z23z
2
27
z28z30z

2
34

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ζ9z30
z27t

269 0 0 ζ7

t65
0

0 0 0 0 0
0 0 0 0 0

0
ζ5z27t

169

z30z33
0 0 0

0
ζ9z27t

184

z30z34

z28t
136

z26z34z35
0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ζ4z19z35
z3z12z13z18z32t

269 0 0 0
ζ4z18z21z34

z2z12z25z31z32z35t
17

ζz19z33z35
z3z12z13z18z32t

104 0 0 0
ζ9z19z26z

2
32z33z35t

148

z3z12z13z18

0 0 0 0 0
ζ4z2z3z13z31

z12z19z20z21z32z34t
161 0 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1
z34t

269 0 0
ζz24z26z35
z28z34t

65 0

0 0 0 0 0
ζ5

t119
0 0

z24z26z35t
85

z28
0

0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
ζ2z15z18z19z28z32t

61

z21z23z25z31z
2
33
z34

ζ11z15z19z35t
13

z34
0 0

0 0 0 0 0
0 0 0 0 0

ζ11z15z21z23z25z31z35
z18z

2
19
z26z32z34t

161 0 0 0 0

ζ9z21z23z25z33z34
z2
15
z18z

2
19
z26z

2
31
z32z

2
35
t146

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ζ5z25z31
z23z34t

269 0 0 0 ζ4

t17

0 0 0 0 0
ζ10z25z31
z23t

119 0
ζ7z23z24z33t

163

z2
20
z31

0 ζ3z34t
133

0
ζ2z223z28z

2
34t

169

z2
25
z2
31
z33z35

0 0 0

0 0
ζ10z23t

136

z25z31
0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ζ11z3z19
z12z21z23z25z32t

269 0 0 0
ζ10z2z18z21z23z24z34

z12z13z19z20z31z32z35t
17

ζ8z3z19z33
z12z21z23z25z32t

104 0 0 0
ζ4z3z19z26z

2
32z33t

148

z12z21z23z25

0 0 0 0 0
ζ9z13z31z35

z2z3z12z18z24z32z34t
161 0 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ζ9z28
t269

0 0 0 0

0 0 0 0 0
ζ2z28z34
t119

ζ10z34t
211

z28z33z35
0 0 0

0 0 0 0 0

0 0 0
ζ5z33z35t

58

z34
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ζ5z24z26z
3
29z30

z27t
269 0

ζ11z322z27z33z35t
13

z20z23z28z30z
2
31

ζ2

t65
0

0 0 0 0 0
ζ10z24z26z

3
29z30z34

z27t
119 0 0 ζz34t

85 ζ10z18z
3
22z26z27z32z34z35t

133

z20z21z
2
23
z25z28z30

0 0 0 0 0
ζ10z18z

3
22z25z26z27z32z33z35

z20z21z23z24z28z30z31t
146

z27t
184

z24z26z
3
29
z30z34

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ζ2z25z26z31z32z35
z18z21z34t

269

ζ11z21z24z
2
32z35t

61

z25z31
0 0 0

ζ11z25z26z31z32z33z35
z18z21z34t

104 0 0 0
ζ11z28t

148

z2
21
z23z24z32z33z34z

3
35

0 0 0 0 0
ζ11z25z31z32z35
z18z21z24z34t

161 0 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0
ζ6z18z26z31z32
z20z21z34t

17

0 0 0 0 0
0 0 0 0 0

ζz221z
2
23z24z25z33

z2
18
z3
19
z20z

2
26
z31z

2
32
t161

0 0 0 0

ζ11

t146
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ζ3z9z10z11z18z19z30z32z34
z5z7z8z16z21z23z25z33t

269 0 0 0
ζz5z11z16z18z24z26z31z32

z4z20z21z25t
17

0 0
ζ11z5z11z16z20z33t

178

z4
0 0

0 0 0 0 0
ζ10z4

z19z20z27z30z33t
161 0 0 0 0

ζ2z4
z19z20z27z30z34t

146 0
ζ6z9z10z11z18z19z27z28z32t

136

z5z7z8z16z21z23z25z26z33z35
0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ζ5z28z
2
35

t269
0 0 ζ5

t65
0

ζ2z28z33z
2
35

t104
0 0 ζ8z33t

100 0

0 0 0 0 0

0 0 0 t43 0

0 0 0
ζ10z33t

58

z34
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
ζ9z217z21z24z28z

2
29t

61

z18z
2
22
z25z

2
27
z32z33z34z35

ζ4z22z27t
13

z17z26z29z
2
31

ζz22z27z31z33z35
z17z28z29t

65 0

0 0 0 0 0

0
ζ2z217z21z24z28z

2
29t

211

z18z
2
22
z25z

2
27
z32z33z35

0
z22z27z31z33z34z35t

85

z17z28z29

ζ3z18z22z27z32z34t
133

z17z21z23z25z29z33

0 0 0 0 0
ζ3z18z22z25z27z32
z17z21z24z29z31t

146

ζ2z217z22t
184

z20z23z24z29z
2
30
z31z34

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ζ11z27z28z
2
30

z26z35t
269 0 0 0 ζ3

t17

0 0
ζz220z21z25z33t

178

z18z24z26z31z32
0 0

0 0 0 0 0

0 0
ζ7z26z35t

121

z27z28z
2
30
z33

0 0

0 0
z25z31t

136

z23z26z
2
34

0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ζ8z25z26z31z32z35
z18z21z34t

269 0
ζ4z21z24z35t

13

z25z26z31z32
0 0

ζ5z25z26z31z32z33z35
z18z21z34t

104 0 0 0
ζ5z28t

148

z2
21
z23z24z32z33z34z

3
35

0 0 0 0 0
ζ5z25z31z32z35
z18z21z24z34t

161 0 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ζ10z5z18z19z28z30z32
z21z23z25z33z35t

269 0 0 0
z4z11z16z31
z5z19z20t

17

0 0
ζ10z4z11z16z20z21z25z33t

178

z5z18z19z24z26z32
0 0

0 0 0 0 0
ζ10z9z10z11z18z24z26z32z34z35

z4z7z8z16z20z21z25z27z28z30z33t
161 0 0 0 0

ζ2z9z10z11z18z24z26z32z35
z4z7z8z16z20z21z25z27z28z30t

146 0
ζz5z18z19z27z

2
28z32t

136

z21z23z25z26z33z34z
2
35

0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ζ4z217z22z26z29

z20z23z30z34t
269 0

z22z27z28z29z30z
2
34t

13

z17z26z31z35

ζ8z22z24z26z29z33z
2
35

z17z27z
2
28
z31z34t

65 0

0 0 0 0 0
ζ9z217z22z26z29

z20z23z30t
119 0 0

ζ7z22z24z26z29z33z
2
35t

85

z17z27z
2
28
z31

ζ11z18z22z27z28z29z30z31z32z
3
34t

133

z17z21z23z25z33z35

0 0 0 0 0
ζ11z18z22z25z27z28z29z30z32z

2
34

z17z21z24z35t
146 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 ζ5z19z31t
13 0 0

0 0 ζ8z19z31z33t
178 0 0

0 0 0 0 0
ζ8z21z23z25

z18z
2
19
z26z31z32t

161 0 0 0 0
z21z23z25z33

z18z
2
19
z26z31z32z34t

146 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

ζ3

t269
ζ7t61

z33
0 ζ10

t65
0

z33
t104

0 0 ζz33t
100 0

0 0 0 0 0
ζ4

t161
0 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
ζ10z216z21z23z25z28t

61
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We now give an overview of the method used to obtain the expressions for det3 and T⊠2
skewcw,4:

Fix bases ai ∈ A, bi ∈ B, and ci ∈ C. A tensor T ∈ A⊗B⊗C has an expression T = ∑i,j,k T ijkai⊗bj⊗ck
and is standard tight in this basis if there exist injective functions ωA ∶ [m] → Z, ωB ∶ [m] → Z,
ωC ∶ [m]→ Z so that T ijk ≠ 0 implies ωA(i)+ωB(j)+ωC(k) = 0. In this case, we will call a choice
of (ωA, ωB, ωC) satisfying the constraints a set of tight weights. Given a set of tight weights for
T , we consider border rank decompositions of the form:

(22) T = ∑rs=1As(t)⊗Bs(t)⊗Cs(t) +O(t),

where As(t) = ∑mi=1AsitωA(i)ai, Bs(t) = ∑mj=1BsjtωB(j)bj , and Cs(t) = ∑mk=1 CsktωC(k)ck. Note
that when the tight weights are trivial, this is an ordinary rank decomposition. In our situation,
the equations correspond to a strict subset of the equations describing a rank decomposition,
namely those corresponding to triples (i, j, k) where ωA(i) + ωB(j) + ωC(k) ≤ 0. In the case of

T⊠2
skewcw,4 this reduces the number of equations down from (25+2

3
) = 2925 to 692 and just as with

a rank decomposition, there are 3rm = 3150 unknowns.
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We pick a choice of tight weights which minimizes the number of equations to be solved. The
problem of obtaining a border rank decomposition is then split into two questions: first, to
compute a set of tight weights (ωA, ωB, ωC) so that #{(i, j, k) ∣ ωA(i) + ωB(j) + ωC(k) ≤ 0} is
minimal, and second, to solve the resulting equations (22) in the Asi, Bsj , Csk.

Consider the first question. Given sets S≤, S> ⊂ [m]×[m]×[m], consider the problem of deciding
if there are tight weights (ωA, ωB, ωC) satisfying the additional constraints that ωA(i)+ωB(j)+
ωC(k) ≤ 0 for (i, j, k) ∈ S≤ and ωA(i)+ωB(j)+ωC(k) ≥ 1 for (i, j, k) ∈ S>. These conditions along
with the original equality conditions form a linear program on the images of (ωA, ωB, ωC) which
may be efficiently solved. There is no harm in letting the linear program be defined over the
rationals, as we may clear denominators to obtain a solution in integers. One can use this fact to
prune an exhaustive search of choices of S≤, S> to find one for which S≤∪S> = [m]×[m]×[m], there
exists a corresponding set of tight weights, and #S≤ is minimal. While this is an exponential
procedure, this optimization was sufficient to solve the problem for this decomposition.

The second problem, solving the associated system, is solved with the Levenberg-Marquardt
nonlinear least squares algorithm [39, 41]. The sparse structure of the answer is obtained by
speculatively zeroing (or setting to simple values) coefficients until all freedom with respect to
the equations is lost. In other words, we impose additional simple equations on the solution
and solve again until we obtain an isolated point, which can be verified by checking that the
Jacobian has full rank numerically. This procedure is repeated many times in order to find a
simple solution. Ideally, we would prove the resulting parameters indeed approximate an exact
solution to the equations by searching for additional relations between the parameters and then
using such relations to make symbolic methods tractable. In this case, all such attempts failed.
See [18] for further discussion of these techniques.

The border rank decomposition in this section is also a Waring border rank decomposition, that
is, A = B = C, and As(t) = Bs(t) = Cs(t); in particular, ωA = ωB = ωC . This condition was
imposed to make the nonlinear search more tractable, and it also has independent interest. The
techniques presented are equally applicable in the symmetric case as well as the asymmetric.

We remark that numerous relaxations of this method are possible. It was inspired by the
improved expression for det3, which had the structure we assume. It remains to determine how
useful it will be for more general types of tensors.
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