Clay Lecture 2:

Border ranks of tensors with symmetry

J.M. Landsberg
Texas A\&M University

Supported by NSF grant CCF-1814254 and Clay foundation (Clay senior scholar)

The classical substitution method for tensor rank

Prop. Let $T \in A \otimes B \otimes C$. Write $T=\sum_{i=1}^{a} a_{i} \otimes M_{i}$, where $M_{i} \in B \otimes C$. Let $\mathbf{R}(T)=r$ and $M_{1} \neq 0$. Then $\exists \lambda_{2}, \ldots, \lambda_{\mathbf{a}} \in \mathbb{C}$, such that $\mathbf{R}(\tilde{T}) \leq r-1$ where

$$
\tilde{T}:=\sum_{j=2}^{\mathbf{a}} a_{j} \otimes\left(M_{j}-\lambda_{j} M_{1}\right) \in\left\langle a_{2}, \ldots, a_{\mathbf{a}}\right\rangle \otimes B \otimes C .
$$

Proof: $\mathbf{R}(T)=r \Rightarrow \exists X_{1}, \ldots, X_{r}$ rank one and d_{j}^{i} so $M_{j}=\sum d_{j}^{i} X_{i} . M_{1} \neq 0 \Rightarrow$ WLOG $d_{1}^{1} \neq 0$.
Take $\lambda_{j}=d_{j}^{1} / d_{1}^{1} \Rightarrow \tilde{T}\left(\left\langle a_{2}, \ldots, a_{\mathbf{a}}\right\rangle^{*}\right) \subset\left\langle X_{2}, \ldots, X_{r}\right\rangle \Rightarrow$ $\mathbf{R}(\tilde{T}) \leq r-1$.

Alexeev-Forbes-Tsimmerman: Used to find explicit sequence of tensors with $\mathbf{R}\left(T^{m}\right) \geq 3 m-\log (m)+1$ (best known over \mathbb{C}). Used tensors with nice combinatorial structure

The substitution method rephrase

Prop. Let $T \in A \otimes B \otimes C$ be A-concise. Fix a line $[\alpha] \in \mathbb{P} A^{*}$. Then

$$
\mathbf{R}(T) \geq \min _{A^{\prime} \subset A^{*}, \text { hyperplane }, \alpha \not \subset A^{\prime}} \mathbf{R}\left(\left.T\right|_{A^{\prime} \otimes B^{*} \otimes C^{*}}\right)+1
$$

Compare: above $[\alpha]=\left\langle a_{2}, \ldots, a_{\mathbf{a}}\right\rangle^{\perp}$

$$
\tilde{T}:=\sum_{j=2}^{\mathbf{a}} a_{j} \otimes\left(M_{j}-\lambda_{j} M_{1}\right) \in\left\langle a_{2}, \ldots, a_{\mathbf{a}}\right\rangle \otimes B \otimes C .
$$

The substitution method: Border rank version

Prop. (L-Michalek, Bläser-Lysikov, 2016) Let $T \in A \otimes B \otimes C$ be A-concise.

Then

$$
\underline{\mathbf{R}}(T) \geq \min _{A^{\prime} \subset A^{*}, \text { hyperplane }} \underline{\mathbf{R}}\left(\left.T\right|_{A^{\prime} \otimes B^{*} \otimes C^{*}}\right)+1
$$

Proof: Say $\underline{\mathbf{R}}(T)=r$ so $T=\lim _{t \rightarrow 0} T_{t}$.
By rank version, $\exists a(t) \in A$, such that $\mathbf{R}\left(\left.T_{t}\right|_{a(t)^{\perp} \otimes B^{*} \otimes C^{*}}\right) \geq r-1$
Let $[a]=\lim _{t \rightarrow 0}[a(t)]$ to conclude with $A^{\prime}=a^{\perp}$.
How to use? Idea: if T has symmetry, can restrict search of $A^{\prime \prime}$ s.

Weights (Generalized eigenvalues)

Fix bases and let $\mathbb{T} \subset G L(V)$ denote the diagonal matrices,
\mathbb{T} : maximal torus.
Write $t:=\left(\begin{array}{ccc}t_{1} & & \\ & \ddots & \\ & & t_{\mathrm{v}}\end{array}\right)$ then $t e_{j}=t_{j} e_{j}$. More generally

$$
t\left(e_{1}^{\otimes p_{1}} \otimes e_{2}^{\otimes p_{2}} \otimes \cdots \otimes e_{\mathrm{v}}^{\otimes p_{\mathrm{v}}}\right)=t_{1}^{p_{1}} \cdots t_{\mathrm{v}}^{p_{v}} e_{1}^{\otimes p_{1}} \otimes e_{2}^{\otimes p_{2}} \otimes \cdots \otimes e_{\mathrm{v}}^{\otimes p_{\mathrm{v}}}
$$

Say weight vector of weight $\left(p_{1}, \ldots, p_{\mathrm{v}}\right),:=$ simultaneous eigenvector $\forall t \in \mathbb{T}$. Note \mathfrak{S}_{d} preserves weight.

Let $\mathbb{B} \subset G L(V)$ upper triangular matrices (Borel subgroup). A weight line $x \in \mathbb{P} V^{\otimes d}$ is a highest weight line if $\mathbb{B} \cdot x=x$.

Ex. $W=S_{\pi} V$, highest weight is $\pi . \pi=\left(p_{1}, \ldots, p_{\mathrm{v}}\right) \Rightarrow$ $\operatorname{proj}_{\pi-\operatorname{def}}\left(e_{1}^{\otimes p_{1}} \otimes e_{2}^{\otimes p_{2}} \otimes \cdots \otimes e_{v}^{\otimes p_{v}}\right)$ hw vect.

Lie-Kolchin Thm: $U G$-module $\mathbb{B} \subset G$ Borel, $\exists \mathbb{B}$-fixed line.
Moreover if U irred. G-module (G reductive) $\Rightarrow \exists$! hw line.

\mathbb{B}-fixed spaces and border substitution

Borel: More generally X : projective G-variety, $\exists x \in X, \mathbb{B}$-fixed.
In border substitution method, can restrict to Borel fixed points in $G\left(\mathbf{a}-t, A^{*}\right)$:

Prop. (L-Michalek 2016) Let $T \in A \otimes B \otimes C$ be A-concise.
Then

$$
\underline{\mathbf{R}}(T) \geq \min _{A^{\prime} \subset A^{*}, \text { Borel fixed }, \text { codim } A^{\prime}=t} \underline{\mathbf{R}}\left(\left.T\right|_{A^{\prime} \otimes B^{*} \otimes C^{*}}\right)+t
$$

Next step: Describe Borel fixed subspaces

Weight diagrams

W: G-module has a basis consisting of weight vectors.
$\mathbb{B} \leadsto$ partial order on weights and weight lines. $[w] \leq[u]$ if $[u] \in \widehat{\mathbb{B}}[w]$
$G=G L(V)$ get dominance order on sequences of integers $\left(p_{1}, \ldots, p_{\mathrm{v}}\right) . \sim$ weight diagram.

Ex. $U^{*} \otimes V$ as $G=G L(U) \times G L(V)$-module, highest weight vect. $=u^{\mathbf{n}} \otimes v_{1}$ weight diagram:

Borel fixed subspaces (i.e., Borel fixed points of Grassmannian)
Easy to draw .

Borel subgroups in general

Given G have assoc. Lie algebra $\mathfrak{g}=T_{\mathrm{ld}} G$.
\mathfrak{g} is solvable if, $D_{1}(\mathfrak{g}):=[\mathfrak{g}, \mathfrak{g}], D_{k}(\mathfrak{g}):=\left[D_{k-1}(\mathfrak{g}), D_{k-1}(\mathfrak{g})\right]$ is 0 some k.

G solvable if \mathfrak{g} is solvable.
G : reductive, \exists maximal solvable subgroups $=$: Borel subgroups

Example $M_{\langle n\rangle}$

$A=U^{*} \otimes V$

Computation \leadsto worst case is along one of outer diagonals.
\leadsto Thm. (L-Michalek, 2018) $\underline{\mathbf{R}}\left(M_{\langle n\rangle}\right) \geq 2 \mathbf{n}^{2}-\left\lceil\log _{2}(\mathbf{n})\right\rceil-1$.

Hay in a haystack: explicit tensors of high border rank

Tension: want $\operatorname{dim}\left(G_{T}\right)>0$ and T as "generic" as possible
So far best with $G_{T}=\mathbb{C}^{*}$:
$\forall k$, define $\left\lceil\frac{3(2 k+1)^{2}}{4}\right\rceil$-dimensional family
$T_{k}=T_{k}\left(p_{i j}\right) \in \mathbb{C}^{2 k+1} \otimes \mathbb{C}^{2 k+1} \otimes \mathbb{C}^{2 k+1}=: A \otimes B \otimes C$, where
$|i|,|j|,|i+j| \leq k$ as follows:

$$
T_{k}=\sum_{i=-k}^{k} \sum_{j=\max (-k,-i-k)}^{\min (k,-i+k)} p_{i j} a_{i} \otimes b_{j} \otimes c_{-i-j}
$$

here $\left(a_{-k}, \ldots, a_{k}\right),\left(b_{-k}, \ldots, b_{k}\right),\left(c_{-k}, \ldots, c_{k}\right)$ are bases.
Take $p_{i j}$ distinct primes (computer science explicit) \leadsto $\underline{\mathbf{R}}\left(T_{k}\right) \geq(2.02)(2 k+1)=(2.02) m$ once $k \sim 10^{8}$. (L-Michalek 2019) (Already can beat $2 m$ with smallish k.)

Game over?

Both cases limits of known methods. How to go further?
Buczynska-Buczynski idea: use more information limits of ideals $I_{t}:=$ ideal of $\left[T_{1}(t)\right] \sqcup \cdots \sqcup\left[T_{r}(t)\right]$

Problem: How to take limits?

First Idea: The Hilbert scheme

Grothendiek: insist on saturated ideals $I \subset \operatorname{Sym}\left(V^{*}\right)$. Then, in a sufficiently high degree $D, I_{D} \subset S^{D} V^{*}$ determines I in all degrees. and sufficiently high can be made precise. Reduced to taking limits in one fixed Grassmannian. "Hilbert Scheme" (Parametrizes saturated ideals with same Hilbert polynomial.)
$I \subset \operatorname{Sym}\left(V^{*}\right)$ any ideal. Let $r_{d}=\operatorname{dim}\left(S^{d} V^{*} / I_{d}\right)$. (Hilbert function $\left.h_{l}(d):=r_{d}\right)$

Fact: (Castelnuovo-Mumford regularity) if fix Hilbert function, \exists explicit $D=D\left(h_{l}\right)$ such that I_{D} determines $I_{D^{\prime}}$ for all $D^{\prime}>D$.

Moreover $h_{l}(x)$ poly when $x>D \leadsto$ Hilbert polynomial
Hilbert scheme lives in $G\left(D, S^{D} V^{*}\right)$.

BB idea

If have border rank decomp. $T=\lim _{t \rightarrow 0} \sum_{j=1}^{r} T_{j}(t)$ can study $I_{t}:=$ ideal of $\left[T_{1}(t)\right] \sqcup \cdots \sqcup\left[T_{r}(t)\right]$

Bad news: Hilbert scheme doesn't work. Consider toy case of 3 points in $\mathbb{P}^{2}:[1,0,0],[0,1,0],[1,-1, t] t \neq 0,\left(I_{t}\right)_{1}=0$ and $\left(I_{t}\right)_{2}=\left\langle x_{3}^{2}+t^{2} x_{1} x_{2}, x_{3}^{2}-t x_{1} x_{3}, x_{1} x_{3}+x_{2} x_{3}\right\rangle$
But $\left(I_{0}\right)_{1}=\left\langle x_{3}\right\rangle,\left(I_{0}\right)_{2}=\left\langle x_{3}^{2}, x_{1} x_{3}+x_{2} x_{3}\right\rangle$
Ideal of limiting scheme in fixed deg. \neq limit of spans
Limit is taken in Hilbert scheme (i.e. a fixed Grasssmannian), loses information important for border rank decomposition.

Solution: Haiman-Sturmfels multi-graded Hilbert scheme.

BB idea

Consider product of Grasmannians
$G\left(r_{1}, V^{*}\right) \times G\left(r_{2}, S^{2} V^{*}\right) \times \cdots \times G\left(r_{D}, S^{D} V^{*}\right)$
and map $I \mapsto\left(\left[I_{1}\right] \times\left[I_{2}\right] \times \cdots \times\left[I_{D}\right]\right)$. For each $\mathbb{Z}_{\geq 0}$-valued function h, get (possibly empty) subscheme parametrizing all ideals I with Hilbert function $h_{I}=h$.

Rigged such that limit I of ideals has same Hilbert function as ideals I_{ϵ}.

Key Lemma: In border rank decompositions, WLOG for $t>0$ points in general position \leadsto const. Hilbert function (as soon as possible)

BB idea: Tensor case

have more information: curves of points on $\operatorname{Seg}(\mathbb{P} A \times \mathbb{P} B \times \mathbb{P} C)$ can think of ideals in
$\operatorname{Sym}(A \oplus B \oplus C)^{*}=\bigoplus_{s, t, u} S^{s} A^{*} \otimes S^{t} B^{*} \otimes S^{u} C^{*}, \mathbb{Z}^{\oplus 3}$ _graded.
Hilbert function $h_{l}(s, t, u):=\operatorname{dim}\left(S^{s} A^{*} \otimes S^{t} B^{*} \otimes S^{u} C^{*} / I_{s, t, u}\right)$.
Key Lemma \Rightarrow Know Hilbert function! Namely $h_{l}(s, t, u)=\min \left\{r, \operatorname{dim} S^{s} A^{*} \otimes S^{t} B^{*} \otimes S^{u} C^{*}\right\}$.

BB idea: Tensor case summary

Instead of single curve $E_{t} \subset G(r, A \otimes B \otimes C)$ limiting to Borel fixed point, for each (i, j, k) get curve in $G\left(r, S^{i} A^{*} \otimes S^{j} B^{*} \otimes S^{k} C^{*}\right)$, each limiting to Borel fixed point and satisfying compatibility conditions.

Upshot: algorithm that either produces all normalized candidate I_{0} 's or proves border rank $>r$.

The border apolarity method

If $\underline{\mathbf{R}}(T) \leq r$, there exists a multi-graded ideal I satisfying:

1. I is contained in the annihilator of T. This condition says $l_{110} \subset T\left(C^{*}\right)^{\perp}, l_{101} \subset T\left(B^{*}\right)^{\perp}, l_{011} \subset T\left(A^{*}\right)^{\perp}$ and $l_{111} \subset T^{\perp} \subset A^{*} \otimes B^{*} \otimes C^{*}$.
2. For all ($i j k$) with $i+j+k>1, \operatorname{codim} / l_{i j k}=r$.
3. each $I_{i j k}$ is Borel-fixed.
4. I is an ideal, so the multiplication maps
$I_{i-1, j, k} \otimes A^{*} \oplus I_{i, j-1, k} \otimes B^{*} \oplus I_{i, j, k-1} \otimes C^{*} \rightarrow S^{i} A^{*} \otimes S^{j} B^{*} \otimes S^{k} C^{*}$ have image contained in $I_{i j k}$.

Next time: unpack these conditions and apply to matrix multiplication and other tensors.

Thank you for your attention

For more on tensors, their geometry and applications, resp. geometry and complexity, resp. recent developments:

