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The classical substitution method for tensor rank

Prop. Let T ∈ A⊗B⊗C . Write T =
∑a

i=1 ai ⊗Mi , where
Mi ∈ B ⊗ C . Let R(T ) = r and M1 6= 0. Then ∃ λ2, . . . , λa ∈ C,
such that R(T̃ ) ≤ r − 1 where

T̃ :=
a∑

j=2

aj ⊗ (Mj − λjM1) ∈ 〈a2, . . . , aa〉⊗B⊗C .

Proof: R(T ) = r ⇒ ∃ X1, . . . ,Xr rank one and d i
j so

Mj =
∑

d i
jXi . M1 6= 0 ⇒ WLOG d1

1 6= 0.

Take λj = d1
j /d

1
1 ⇒ T̃ (〈a2, . . . , aa〉∗) ⊂ 〈X2, . . . ,Xr 〉 ⇒

R(T̃ ) ≤ r − 1.

Alexeev-Forbes-Tsimmerman: Used to find explicit sequence of
tensors with R(Tm) ≥ 3m − log(m) + 1 (best known over C).
Used tensors with nice combinatorial structure
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The substitution method rephrase

Prop. Let T ∈ A⊗B⊗C be A-concise. Fix a line [α] ∈ PA∗. Then

R(T ) ≥ minA′⊂A∗,hyperplane,α 6⊂A′ R(T |A′⊗B∗⊗C∗) + 1

Compare: above [α] = 〈a2, . . . , aa〉⊥

T̃ :=
a∑

j=2

aj ⊗ (Mj − λjM1) ∈ 〈a2, . . . , aa〉⊗B⊗C .
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The substitution method: Border rank version

Prop. (L-Michalek, Bläser-Lysikov, 2016) Let T ∈ A⊗B⊗C be
A-concise.

Then

R(T ) ≥ minA′⊂A∗,hyperplane R(T |A′⊗B∗⊗C∗) + 1

Proof: Say R(T ) = r so T = limt→0 Tt .

By rank version, ∃ a(t) ∈ A, such that R(Tt |a(t)⊥⊗B∗⊗C∗) ≥ r − 1

Let [a] = limt→0[a(t)] to conclude with A′ = a⊥.

How to use? Idea: if T has symmetry, can restrict search of A′’s.
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Weights (Generalized eigenvalues)
Fix bases and let T ⊂ GL(V ) denote the diagonal matrices,

T: maximal torus.

Write t :=

t1
. . .

tv

 then tej = tjej . More generally

t(e⊗p11 ⊗e⊗p22 ⊗ · · ·⊗ e⊗pv
v ) = tp11 · · · t

pv
v e⊗p11 ⊗e⊗p22 ⊗ · · ·⊗ e⊗pv

v

Say weight vector of weight (p1, . . . , pv), :=simultaneous
eigenvector ∀t ∈ T. Note Sd preserves weight.

Let B ⊂ GL(V ) upper triangular matrices (Borel subgroup). A
weight line x ∈ PV⊗d is a highest weight line if B · x = x .

Ex. W = SπV , highest weight is π. π = (p1, . . . , pv) ⇒
projπ−def (e⊗p11 ⊗e⊗p22 ⊗ · · ·⊗ e⊗pv

v ) hw vect.

Lie-Kolchin Thm: U G -module B ⊂ G Borel, ∃ B-fixed line.

Moreover if U irred. G -module (G reductive) ⇒ ∃! hw line. 5 / 18



B-fixed spaces and border substitution

Borel: More generally X : projective G -variety, ∃x ∈ X , B-fixed.

In border substitution method, can restrict to Borel fixed points in
G (a− t,A∗):

Prop. (L-Michalek 2016) Let T ∈ A⊗B⊗C be A-concise.

Then

R(T ) ≥ minA′⊂A∗,Borel fixed,codimA′=t R(T |A′⊗B∗⊗C∗) + t

Next step: Describe Borel fixed subspaces
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Weight diagrams
W : G -module has a basis consisting of weight vectors.

B ; partial order on weights and weight lines. [w ] ≤ [u] if
[u] ∈ B[w ]

G = GL(V ) get dominance order on sequences of integers
(p1, . . . , pv). ; weight diagram.

Ex. U∗⊗V as G = GL(U)× GL(V )-module, highest weight vect.
= un⊗v1 weight diagram:

Borel fixed subspaces (i.e., Borel fixed points of Grassmannian)

Easy to draw .
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Borel subgroups in general

Given G have assoc. Lie algebra g = TIdG .

g is solvable if, D1(g) := [g, g], Dk(g) := [Dk−1(g),Dk−1(g)] is 0
some k .

G solvable if g is solvable.

G : reductive, ∃ maximal solvable subgroups =: Borel subgroups
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Example M〈n〉

A = U∗⊗V

Computation ; worst case is along one of outer diagonals.

; Thm. (L-Michalek, 2018) R(M〈n〉) ≥ 2n2 − dlog2(n)e − 1.
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Hay in a haystack: explicit tensors of high border rank

Tension: want dim(GT ) > 0 and T as “generic” as possible

So far best with GT = C∗:

∀ k , define d3(2k+1)2

4 e-dimensional family
Tk = Tk(pij) ∈ C2k+1⊗C2k+1⊗C2k+1 =: A⊗B⊗C , where
|i |, |j |, |i + j | ≤ k as follows:

Tk =
k∑

i=−k

min(k,−i+k)∑
j=max(−k,−i−k)

pijai⊗bj⊗c−i−j ,

here (a−k , . . . , ak), (b−k , . . . , bk), (c−k , . . . , ck) are bases.

Take pij distinct primes (computer science explicit) ;

R(Tk) ≥ (2.02)(2k + 1) = (2.02)m once k ∼ 108. (L-Michalek
2019) (Already can beat 2m with smallish k.)
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Game over?

Both cases limits of known methods. How to go further?

Buczynska-Buczynski idea: use more information limits of ideals
It := ideal of [T1(t)] t · · · t [Tr (t)]

Problem: How to take limits?
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First Idea: The Hilbert scheme

Grothendiek: insist on saturated ideals I ⊂ Sym(V ∗). Then, in a
sufficiently high degree D, ID ⊂ SDV ∗ determines I in all degrees.
and sufficiently high can be made precise. Reduced to taking limits
in one fixed Grassmannian. “Hilbert Scheme”(Parametrizes
saturated ideals with same Hilbert polynomial.)

I ⊂ Sym(V ∗) any ideal. Let rd = dim(SdV ∗/Id). (Hilbert function
hI (d) := rd)

Fact: (Castelnuovo-Mumford regularity) if fix Hilbert function, ∃
explicit D = D(hI ) such that ID determines ID′ for all D ′ > D.

Moreover hI (x) poly when x > D ; Hilbert polynomial

Hilbert scheme lives in G (D,SDV ∗).
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BB idea

If have border rank decomp. T = limt→0
∑r

j=1 Tj(t) can study
It := ideal of [T1(t)] t · · · t [Tr (t)]

Bad news: Hilbert scheme doesn’t work. Consider toy case of 3
points in P2: [1, 0, 0], [0, 1, 0], [1,−1, t] t 6= 0, (It)1 = 0 and

(It)2 = 〈x23 + t2x1x2, x
2
3 − tx1x3, x1x3 + x2x3〉

But (I0)1 = 〈x3〉, (I0)2 = 〈x23 , x1x3 + x2x3〉

Ideal of limiting scheme in fixed deg. 6= limit of spans

Limit is taken in Hilbert scheme (i.e. a fixed Grasssmannian), loses
information important for border rank decomposition.

Solution: Haiman-Sturmfels multi-graded Hilbert scheme.
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BB idea

Consider product of Grasmannians

G (r1,V
∗)× G (r2, S

2V ∗)× · · · × G (rD , S
DV ∗)

and map I 7→ ([I1]× [I2]× · · · × [ID ]). For each Z≥0-valued
function h, get (possibly empty) subscheme parametrizing all ideals
I with Hilbert function hI = h.

Rigged such that limit I of ideals has same Hilbert function as
ideals Iε.

Key Lemma: In border rank decompositions, WLOG for t > 0
points in general position ; const. Hilbert function (as soon as
possible)
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BB idea: Tensor case

have more information: curves of points on Seg(PA× PB × PC )
can think of ideals in
Sym(A⊕ B ⊕ C )∗ =

⊕
s,t,u S

sA∗⊗S tB∗⊗SuC ∗, Z⊕3-graded.

Hilbert function hI (s, t, u) := dim(S sA∗⊗S tB∗⊗SuC ∗/Is,t,u).

Key Lemma ⇒ Know Hilbert function! Namely
hI (s, t, u) = min{r , dimS sA∗⊗S tB∗⊗SuC ∗}.
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BB idea: Tensor case summary

Instead of single curve Et ⊂ G (r ,A⊗B⊗C ) limiting to Borel fixed
point, for each (i , j , k) get curve in G (r ,S iA∗⊗S jB∗⊗SkC ∗), each
limiting to Borel fixed point and satisfying compatibility conditions.

Upshot: algorithm that either produces all normalized candidate
I0’s or proves border rank > r .
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The border apolarity method

If R(T ) ≤ r , there exists a multi-graded ideal I satisfying:

1. I is contained in the annihilator of T . This condition says
I110 ⊂ T (C ∗)⊥, I101 ⊂ T (B∗)⊥, I011 ⊂ T (A∗)⊥ and
I111 ⊂ T⊥ ⊂ A∗⊗B∗⊗C ∗.

2. For all (ijk) with i + j + k > 1, codimIijk = r .

3. each Iijk is Borel-fixed.

4. I is an ideal, so the multiplication maps
Ii−1,j ,k⊗A∗ ⊕ Ii ,j−1,k⊗B∗ ⊕ Ii ,j ,k−1⊗C ∗ → S iA∗⊗S jB∗⊗SkC ∗

have image contained in Iijk .

Next time: unpack these conditions and apply to matrix
multiplication and other tensors.
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Thank you for your attention

For more on tensors, their geometry and applications, resp.
geometry and complexity, resp. recent developments:
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