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Review
A = Ca, B = Cb, C = Cc on this page a = b = c = m

T ∈ A⊗B⊗C has border rank at most r , R(T ) ≤ r if ∃
T1(ε), . . . ,Tr (ε), Tj(ε) rank one ∀ε > 0, T = limε→0

∑
j Tj(ε).

Goal: lower bounds on R(T ), especially T = M〈n〉.

Classical R(T ) ≥ m via minors of flattening T : A∗ → B⊗C .

Strassen 1983: R(T ) ≥ 3
2m via minors of commutators in space of

endomorphisms T (A∗)T (α)−1.

L-Ottaviani 2015: R(T ) ≥ 2m − 3, for “good”T
R(M〈n〉) ≥ 2m −

√
m, m = n2 via minors of Koszul flattening

ΛpA⊗B∗ → Λp+1A⊗C .

L-Michalek 2019: R(T ) ≥ (2.02)m, R(M〈n〉) ≥ 2m − log(m) + 1,
m = n2. via Koszul flattenings of BT -fixed degenerations of T

Complexity Theorists and algebraic geometers: Game essentially
over for these techniques.
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Buczynska-Bucynski idea

T = limε→0
∑r

j=1 Tj(ε), consider Iε ⊂ Sym(A∗ ⊕ B∗ ⊕ C ∗)

Iε = {P ∈ Sym(A∗ ⊕ B∗ ⊕ C ∗) | P(Tj(ε)) = 0, ∀1 ≤ j ≤ r}.

Zero set of Iε considered as subvariety of Segre.

Iε Z3-graded (Iε)(s,t,u) ⊂ S sA∗⊗S tB∗⊗SuC ∗

Taylor series for Tj(ε), only low order terms relevant free to alter
higher order terms

Ex. a1⊗b1⊗c2 + a1⊗b2⊗c1 + a2⊗b1⊗c1 =
limε→0

1
ε [(a1 + εa2)⊗(b1 + εb2)⊗(c1 + εc2)− a1⊗b1⊗c1]

= limε→0
1
ε

[(a1 + εa2 + ε2a3 + ...)⊗(b1 + εb2 + ε2b3 + ...)⊗(c1 + εc2 + ...)−
a1⊗b1⊗c1]

; WLOG ε > 0 points in general position ⇒
codim((Iε)stu,S

sA∗⊗S tB∗⊗SuC ∗) = r whenever s + t + u > 1.
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Buczynska-Bucynski idea

; curves in Grassmannians of codim r -planes with limits defined ∀
s, t, u as ε→ 0.

Good News: Limit will be an ideal (Haiman-Sturmfels) but not
necessarily saturated

Limit as ε→ 0 in Haiman-Sturmfels multi-graded Hilbert scheme.
Good News: Only need finite number of Grassmannians.

Bonus: If T has symmetry, can insist limiting ideal I is Borel fixed.
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BB Border Apolarity

If R(T ) ≤ r , there exists a multi-graded ideal I satisfying:

1. I is contained in the annihilator of T . This condition says
I110 ⊂ T (C ∗)⊥, I101 ⊂ T (B∗)⊥, I011 ⊂ T (A∗)⊥ and
I111 ⊂ T⊥ ⊂ A∗⊗B∗⊗C ∗.

I.e., T ∈ I⊥111, i.e., T in limiting r -plane in A⊗B⊗C , and
T (A∗) in limiting r -plane I⊥011 ⊂ B⊗C etc...

2. For all (stu) with s + t + u > 1, codimIstu = r .

By general position ε > 0 assumption.

3. each Istu is Borel-fixed.

4. I is an ideal, so the multiplication maps
Is−1,t,u⊗A∗⊕Is,t−1,u⊗B∗⊕Is,t,u−1⊗C ∗ → S sA∗⊗S tB∗⊗SuC ∗

have image contained in Istu.
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Border Apolarity in practice

4. I is an ideal, so the multiplication maps
Is−1,t,u⊗A∗ ⊕ Is,t−1,u⊗B∗ ⊕ Is,t,u−1⊗C ∗ → S sA∗⊗S tB∗⊗SuC ∗

have image contained in Istu.

In particular codim of image of
Is−1,t,u⊗A∗ ⊕ Is,t−1,u⊗B∗ ⊕ Is,t,u−1⊗C ∗ → S sA∗⊗S tB∗⊗SuC ∗ is
at least r . Rank condition!

After fixing choice of Borel fixed subspaces, have polynomial
necessary conditions!
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Border Apolarity in practice

Given T , to prove R(T ) > r , prove can’t have I satisfying above.

1. determine all codimension r Borel fixed subspaces of A∗⊗B∗
annihilating T (C ∗) ⊂ A⊗B. get all candidates for I110. Do same
for candidate I101 ⊂ A∗⊗C ∗ and I011 ⊂ B∗⊗C ∗.

2. Compute the rank of I110⊗A∗ → S2A∗⊗B∗. If too large (image
has codim < r) REJECT! “(210)-test”ditto rank of
I110⊗B∗ → A∗⊗S2B∗ Do same for all candidates and other spaces.

3. For each so far ok triple, compute rank of
I110⊗C ∗ ⊕ I101⊗B∗ ⊕ I011⊗A∗ → A∗⊗B∗⊗C ∗. If too large (image
has codim < r) REJECT! “(111)-test”

continue all cases so far win already with 1-3.
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Matrix multiplication and border apolarity

Here A = U∗⊗V , B = V ∗⊗W , C = W ∗⊗U,

M〈n〉 reordering of IdU ⊗ IdV ⊗IdW , IdU ∈ U∗⊗U.

M〈n〉(C
∗) = U∗⊗ IdV ⊗W

⊂ A⊗B = (U∗⊗V )⊗(V ∗⊗W ) = M〈n〉(C
∗)⊕ [U∗⊗sl(V )⊗W ]

Need to understand Borel fixed subspaces in U∗⊗sl(V )⊗W .

Borel: upper triangular invertible matrices in
SL(U)× SL(V )× SL(W ) = SLn × SLn × SLn.

8 / 16



Borel fixed subspaces for U∗⊗sl(V )⊗W
Candidate I110 codim= r Equivalently, I⊥110, dim= r containing
T (C ∗) = U∗⊗ IdV ⊗W need to add r − n2 dimensional Borel fixed
subspace Case M〈2〉: r = 6, n2 = 4, r − n2 = 2

x21 ⊗ y21

x21 ⊗ y22 x11 ⊗ y21

x11 ⊗ y22

x21 ⊗ y11 − x22 ⊗ y21

x21 ⊗ y12 − x22 ⊗ y22 x11 ⊗ y11 − x12 ⊗ y21

x11 ⊗ y12 − x12 ⊗ y22

x22 ⊗ y11

x22 ⊗ y12 x12 ⊗ y11

x12 ⊗ y12

x ij = ui⊗vj etc.. three choices
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Matrix multiplication

To show R(M〈2〉) > 6: none of three choices of I110 passes both
(210) and (120) tests. Explicitly, just had to compute ranks of
sparse 24× 40 matrices with entries {0,±1} and show over
18 = 24− 6. In homework, shortcuts to make calculation easier,
even hand checkable.

Recall: Strassen R(M〈3〉) ≥ 14, L-Ottaviani R(M〈3〉) ≥ 15,
L-Michalek R(M〈3〉) ≥ 16.

Conner-Harper-L 2019: R(M〈3〉) ≥ 17

Known upper bound is 20 (Smirnov). Why didn’t we solve? Have
r = 17 ideal that passes all tests, in all multi-degrees. But tests are
just necess. conditions. Could be ideal from cactus border rank
decomp. or could just be garbage, not limit of anything. Work in
progress with Warsaw group (BB+ Jelisiejew): winner or not?
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Matrix multiplication results cont’d

Recall: so far only R(M〈2〉) known among nontrivial matrix
multiplication tensors.

Conner-Harper-L 2019: R(M〈223〉) = 10

Conner-Harper-L 2019: R(M〈233〉) = 14

For tensors where one factor is of much larger dimension than
other two, no eqns. beyond flattenings

Conner-Harper-L 2019: For all n > 25,
R(M〈2nn〉) ≥ n2 + 1.32n + 1.

Previously, only R(M〈2nn〉) ≥ n2 + 1 (Lickteig).

Conner-Harper-L 2019: For all n > 14, R(M〈3nn〉) ≥ n2 + 2n.

Previously, only R(M〈3nn〉) ≥ n2 + 2 (Lickteig).
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Other results

Strassen laser method: bound ω indirectly via other tensors.

Prop. (Conner-Gesmundo-L-Ventura) det3, perm3 potentially
could be used to prove ω = 2.

R(det3) = 17 (Conner-Harper-L 2019)

R(perm3) = 16 (Conner-Huang-L 2020)

CGLV Prop. more precisely: perm3 = T�2
cw ,2 Known since 1988

T�2
cw ,2 could potentially be used to prove ω = 2 ; solves Q open

since 1988.

If interested in other tensors for laser method, beam into Berlin on
Wed. 6am IPAM time (3pm Berlin time)
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Idea of proof for asymptotic results

How to prove lower bounds for all n?

Candidate I⊥110:

U∗⊗ IdV ⊗W ⊂ I⊥110 ⊂ B⊗C = U∗⊗sl(V )⊗W ⊕ U∗⊗ IdV ⊗W

To prove R(M〈mnn〉) ≥ n2 + ρ, we show:

∀ E ∈ G (ρ,U∗⊗sl(V )⊗W )B, (210) or (120) test fails.
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Idea of proof for asymptotic results

Set of U∗⊗W weights of I⊥110 “outer structure”

Given U∗⊗W weight (s, t), set of sl(V )-weights appearing with it
“inner structure” sl(V ) = sl2 or sl3

; n × n grid, attach to each vertex a B-closed subspace of sl(V ).

Split calculation of the kernel into a local and global computation.

Bound local (grid point) contribution to kernel by function of s, t
and dimension of subspace of sl(V ).
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Idea of proof for asymptotic results

Solve a nearly convex optimization problem over all possible outer
structures.

“Worst case”on boundary.

Show extremal values fail test ; all choices fail test.
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Thank you for your attention

For more on tensors, their geometry and applications, resp.
geometry and complexity, resp. recent developments:
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