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ABSTRACT

The structure tensor of sln, denoted Tsln , is the tensor arising from the Lie bracket bilinear

operation on the set of traceless n × n matrices over C. This tensor is intimately related to the

well studied matrix multiplication tensor. Studying the structure tensor of sln may provide further

insight into the complexity of matrix multiplication and the “hay in a haystack” problem of finding

explicit sequences tensors with high rank or border rank. We aim to find new bounds on the rank

and border rank of this structure tensor in the case of sl3 and sl4. The lower bounds on the border

rank of Tsl4 were obtained via Koszul flattenings and border substitution. The best lower bound

on the border rank of Tsl3 were obtained via a new technique called border apolarity, developed

by Conner, Harper, and Landsberg. Upper bounds on the rank of Tsl3 are obtained via numerical

methods that allowed us to find an explicit rank decomposition.
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4.7 Tsl4 with Restriction Ã = v[1 0 1] ∧ v[1 1 −1] ∧ v[−1 1 1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
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1. INTRODUCTION

In 1969, Strassen presented a novel algorithm for matrix multiplication of n × n matrices.

Strassen’s algorithm used fewer than the O(n3) arithmetic operations needed for the standard al-

gorithm. This led to the question: what is the minimal number of arithmetic operations required

to multiply n × n matrices, or in other words, what is the complexity of matrix multiplication [2]

[3]. An asymptotic version of the problem is to determine the exponent of matrix multiplication,

ω, which is the minimum value such that for all ε > 0, multiplying n × n matrices can be per-

formed in O(nω+ε) arithmetic operations. Any bilinear operation, including matrix multiplication,

may be thought of as tensor in the following way: Let A,B, and C denote vector spaces over C.

Given a bilinear map A∗×B∗ → C, the universal property of tensor products induces a linear map

A∗ ⊗B∗ → C. Since HomC(A∗ ⊗B∗, C) ' A⊗B ⊗C, then we can take our bilinear map to be

a tensor in A⊗ B ⊗ C. Let M〈n〉 denote the matrix multiplication tensor arising from the bilinear

operation of multiplying n× n matrices.

An important invariant of a tensor is its rank. For a tensor T ∈ A ⊗ B ⊗ C the rank, denoted

R(T ), is the minimal r such that T =
∑r

i=1 ai⊗ bi⊗ ci with ai ∈ A, bi ∈ B, ci ∈ C for 1 ≤ i ≤ r.

Given precise Ti = ai ⊗ bi ⊗ ci, then we call T =
∑r

i=1 Ti a rank decomposition of T . Strassen

also showed that the rank of the matrix multiplication tensor is a valid measure of its complexity;

in particular, he proved ω = inf{τ ∈ R | R(M〈n〉) = O(nτ )} [2].

For a tensor T ∈ A⊗B⊗C, the border rank of T , denoted R(T ), is another invariant of interest

and defined to be the minimal r such that T = lim
ε→0

Tε where for all ε > 0, Tε has rank r. Given rank

decompositions of Tε =
r∑
i=1

Ti(ε), we then call limε→0

∑r
i=1 Ti(ε) a border rank decomposition of

T . Later, in 1980, it was shown by Bini that the border rank of matrix multiplication is also a valid

measure of its complexity by proving that ω = inf{τ ∈ R | R(M〈n〉) = O(nτ )} [4].

Intimately related to the matrix multiplication tensor is the structure tensor of the Lie algebra

sln, the set of traceless n × n matrices over C equipped with the Lie bracket [x, y] = xy − yx.

1



The structure tensor of sln is defined as the tensor arising from the Lie bracket bilinear operation,

and we denote it by Tsln . One example of how matrix multiplication is related to Tsln is by closer

examination of a skew-symmetric version of the matrix multiplication tensor; consider the tensor

arising from the Lie bracket bilinear operation on gln, (which is just Mn, but considered as a Lie

algebra) [5]. Since gln = sln⊕z, where z indicates the scalar matrices which are central in gln, Tsln

determines the commutator action on all of gln. While the matrix multiplication tensor has been

well studied [5] [1], the structure tensor of sln has not been studied to the same extent. Currently,

the only known non-trivial results are lower bounds on the rank of the structure tensor of sln [6].

Studying the structure tensor of sln may provide some further insight into two central problems in

complexity theory.

In complexity theory, it is of interest to find explicit objects that behave generically. This

type of problem is known as a “hay in a haystack” problem. Algebraic geometry tells us that a

“random” tensor T in Cm⊗Cm⊗Cm will have rank/border rank d m3

3m−2
e. By an explicit sequence

of tensors, we will mean a collection of tensors Tm ∈ Cm⊗Cm⊗Cm such that the coefficients of

Tm are computable in polynomial time in m. The “hay in a haystack” problem for tensors is to find

an example of an explicit sequence of tensors of high rank or border rank, asymptotically in m.

Currently, there exists an explicit sequence of tensors, Sm, such that R(Sm) ≥ 3m− o(log(m))[7]

and a different explicit sequence of tensors, Tm, such that R(Tm) ≥ 2.02m−o(m) [8]. One should

note that the sequence Tm of [8] has border rank equal to 2m when m = 13 and has been shown

to exceed 2m for m > 364175. It would be of interest to find sequences of tensors for which

the border rank exceeds 2m for smaller values of m. Finding lower bounds on border ranks of

tensors over C is equivalent to a problem called “complexity theory’s Waterloo”[9]. It would be

groundbreaking to find any lower bounds that are superlinear.

The second problem is Strassen’s problem of computing of the complexity of matrix multipli-

cation. The exponent of sln is defined as ω(sln) := lim inf
n→∞

logn(R(Tsln)). By Theorem 4.1 from

[10], the exponent of matrix multiplication is equal to the exponent of sln. Consequently, upper

bounds on the rank and even the border rank of Tsln provide upper bounds on ω.

2



These two problems motivate our study of the border rank of Tsln .
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2. BACKGROUND

The above definition of Tsln is independent of choice of basis, but we may also write the tensor

in terms of bases. Let {ai}n
2−1
i=1 be a basis of sln and {αi}n2−1

i=1 a dual basis. Recall that sln has

a bilinear operation called the Lie bracket, given by [ai, aj] = aiaj − ajai =
n2−1∑
k=1

Akijak. The

structure tensor of sln in this basis is Tsln =
∑

i,j,k A
k
ijα

i ⊗ αj ⊗ ak ∈ sl∗n ⊗ sl∗n ⊗ sln

We establish some basic definitions of algebraic geometry and representation theory that will

be used in our study of the structure tensor of sln.

2.1 Algebraic Geometry

The language of algebraic geometry will prove useful in studying our problems. Let V be

a vector space over C. Let π : V → PV be the projection map from V to its projectivization.

Denote [v] := π(v) ∈ PV for nonzero v ∈ V . For v1, · · · , vk ∈ V , let 〈v1, · · · , vk〉 denote the

projectivization of the linear span of v1, · · · , vk.

See [11] for the definitions of the Zariski topology, projective variety, and the dimension of

a projective variety. For a projective variety, X ⊂ PV , let S[X] denote its coordinate ring and

let I(X) ⊂ Sym(A∗) denote the ideal of X . A projective variety is nondegenerate if it is not

contained in any hyperplane. Given Y ⊂ PV a nondegenerate projective variety, we define the rth

secant variety of Y , denoted σr(Y ) ⊂ PV .

Definition 1. The rth secant variety of Y is σr(Y ) =
⋃
yi∈Y

〈y1, · · · , yr〉

The closure operation indicated in Definition 1 is the Zariski closure. As polynomials are

continuous, this closure also contains the Euclidean closure of the set. In this case, we have that

the Euclidean closure is in fact equal to the Zariski closure.

Theorem 2. Let Z ⊂ PV . Suppose that the Zariski closure of Z is irreducible. If Z contains a

Zariski open subset of its Zariski closure, then the Euclidean closure will coincide with the Zariski

closure.

4



For a proof, see Theorem 3.1.6.1 in [12] or Theorem 2.3.3 in [13].

Definition 3. Let A,B,C be vector spaces over C. The Segre embedding is defined as

Seg : PA× PB × PC → P(A⊗B ⊗ C)

([a], [b], [c]) 7→ [a⊗ b⊗ c]

Let X = Seg(PA×PB×PC) denote the image of the Segre embedding, which is a projective

variety of dimension dimA + dimB + dimC − 3 (See [11] for proof). Note that X is the space

of rank one tensors in P(A ⊗ B ⊗ C). Consequently, one can redefine the border rank, R(T ),

for T ∈ A ⊗ B ⊗ C as the r such that T ∈ σr(X) and T /∈ σr−1(X). We make a remark here

that R(T ) ≥ R(T ), trivially, as a tensor rank decomposition can be considered as a border rank

decomposition by taking the tensor rank decomposition as a constant sequence.

The dimension of these secant varieties in general can be computed using the classical Terracini

lemma on the dimension of tangent spaces of the join of two varieties, which we recall below.

Given a projective variety Y ⊂ PV , let Ŷ = π−1(Y ) ∪ {0} ⊂ V be the affine cone over Y .

The affine tangent space T̂[y]Y at a point [y] ∈ Y (y 6= 0) is the span of tangent vectors at y to

analytic curves on Ŷ . Note that this is independent of choice of y ∈ π−1([y]). We also note that

we primarily use T to denote a tensor, but will be careful to make clear which object we are using.

A point y ∈ Y is smooth if the dimension of the affine tangent space is constant in a neighborhood

of y. A general point on variety Y is a point not lying on an explicit Zariski closed subset of Y .

Denote the set general points on Y by Ygen. In our case, we take the explicit closed subvariety to be

the singular locus of Y , i.e. the set of points that are not smooth. Define the join of two projective

varieties Y, Z ⊂ PV to be J(Y, Z) =
⋃
y∈Y,z∈Z,y 6=z〈y, z〉.

Lemma 4 (Terracini’s Lemma). Given (y, z) ∈ (Ŷ × Ẑ)gen and [x] = [y + z] ∈ J(Y, Z), then

T̂[x]J(Y, Z) = T̂[y]Y + T̂[z]Z

For a proof, see Lemma 5.3.1.1 in [14].

5



Corollary 5. Let (y1, · · · , yr) ∈ (Y ×r)gen, then dimσr(Y ) =

dim(T̂y1Y + · · ·+ T̂yrY )− 1.

Proof. For a smooth point y ∈ Y , dimY = dim T̂[y]Y − 1. Applying this fact with Terracini’s

Lemma yields the result.

For a secant variety σr(Y ) ⊂ PV in general, the expected dimension will be min{r dimY +

(r−1), dimPV }, since we expect to choose r points from Y and have an additional r−1 parameters

to span the r-plane generated by those points. It is not always the case that the dimension of the

secant variety will have its expected dimension for an arbitrary projective variety Y . However, the

following theorem from [15] shows that for the secant varieties of the Segre variety that we will be

working with, the expected dimension given below will in fact be the actual dimension.

Theorem 6 (Lickteig). For Seg(PV ×PV ×PV ) ⊂ P(V ⊗V ⊗V ), the dimension of σr(Seg(PV ×

PV ×PV )) is the expected dimension min{r dimSeg(PV ×PV ×PV )+r−1, dimP(V ⊗V ⊗V )}

except when r = 4 and dimV = 3.

See [15] for the proof of this theorem. For dimσr(Seg(PV ×PV ×PV )), the expected dimen-

sion will be r(3 dimV − 3) + r − 1 = 3r dimV − 2r − 1. This theorem allows us to compute

that a "random" tensor in Cm ⊗ Cm ⊗ Cm will have border rank d m3

3m−2
e. Let Pm−1 = P(Cm)

and Pm3−1 = P(Cm ⊗ Cm ⊗ Cm). We note that σr(Seg(Pm−1 × Pm−1 × Pm−1)) = Pm3−1 when

r(3m−3)+r−1 ≥ m3−1, or equivalently, r ≥ m3

3m−2
. Solving for the minimal such integer r, we

get the desired value. One may say more precisely that the set of tensors not having this property

is a proper algebraic subvariety and thus will be a set of measure 0.

Another variety we will make use of is the Grassmannian, which we define below. Given

T ∈ A ⊗ B ⊗ C, analogous to the correspondence of a tensor with a bilinear form, we may

regard it as a trilinear form T ∈ HomC(A∗ ⊗B∗ ⊗C∗,C), which we will denote by T (x1, x2, x3).

Let v1, · · · , vk,∈ V and V ⊗k be the tensor product of V with itself k times. Also, let Sk be the

symmetric group on k elements. Define v1 ∧ · · · ∧ vk :=
∑

σ∈Sk sgn(σ)vσ(1)⊗ · · · ⊗ vσ(k) ∈ V ⊗k.

Let ΛkV := {T ∈ V ⊗k | T (x1, · · · , xk) = sgn(σ)T (xσ(1), · · · , xσ(k)) ∀σ ∈ Sk}, which we call

6



the set of skew symmetric tensors. Note that by the above definitions, v1 ∧ · · · ∧ vk ∈ ΛkV for all

vi ∈ V .

Definition 7. The Grassmannian variety isG(k, V ) := P{T ∈ ΛkV | ∃v1, · · · , vk ∈ V such that T =

v1 ∧ · · · ∧ vk}

See [11] for proof that this is in fact a projective variety. This variety parametrizes the set of

k-planes in V , i.e. v1 ∧ · · · ∧ vk corresponds to the k-plane spanned by the k vectors v1, · · · , vk.

2.2 Representation Theory

Recall that A,B,C, and V are complex vector spaces. A guiding principle in geometric com-

plexity theory is to use symmetry to reduce the problem of testing a space of tensors to testing

particular representatives of families of tensors. To describe the symmetry of our tensor, we use

the language of the representation theory of linear algebraic groups and Lie algebras. See [16] for

the definitions of linear algebraic groups, semisimple Lie algebras, representations, orbits of group

actions, G-modules, irreducibility of a representation/module, Borel subgroups, a maximal torus,

and the correspondence between Lie groups and Lie algebras.

The groupGL(A)×GL(B)×GL(C) acts onA⊗B⊗C by the product of the natural actions of

GL(A) on A, etc. Identify (C∗)×2 with the subgroup {(aIdA, bIdB, cIdC) ∈ GL(A)×GL(B)×

GL(C) | abc = 1} of GL(A)×GL(B)×GL(C). Note that (C∗)×2 acts trivially on A⊗B ⊗C.

Definition 8. For a tensor T ∈ A ⊗ B ⊗ C, define the symmetry group of T to be the group

GT := {g ∈ GL(A)×GL(B)×GL(C)/(C∗)×2 | gT = T}.

In the case where A,B,C all have the same dimension, we addtionally have S3 symmetry cor-

responding to permuting the factors A,B,C (after having explicit isomorphisms between them),

so we define GT := {g ∈ (GL(A)×GL(B)×GL(C)/(C∗)×2) oS3 | gT = T}.

In the case of Tsln , our symmetry group, GTsln
, is in fact isomorphic to SLn. For any element

g ∈ SLn, we have the element g∗ ⊗ g∗ ⊗ g acts on sl∗n ⊗ sl∗n ⊗ sln and leave Tsln invariant. It is

always the case that for any automorphism of sln, we will have an automorphism of sl∗n⊗sl∗n⊗sln.

See [?] for a proof that these are all elements of the symmetry group for Tsln .

7



Let BT ⊂ GT denote a Borel subgroup. In the case of Tsln , where our symmetry group is iso-

morphic to SLn, we take BT to be the Borel subgroup of upper triangular matrices of determinant

1. We note that Borel subgroups in general are not unique, but are all conjugate. For this Borel

subgroup, let N ⊂ BT denote the group of upper triangular matrices with diagonal entries equal

to 1, called the maximal unipotent group, and let T denote the subgroup of diagonal matrices, also

called the maximal torus.

Definition 9. A vector v ∈ V ⊗k is a weight vector if T[v] = [v]. In particular, for t ∈ T, where

t = diag{t1, · · · , tn}, if tv = tp11 · · · tpnn v, then v is said to have weight (p1, · · · , pn) ∈ Zn.

Furthermore, call v a highest weight vector if BT [v] = [v], i.e. if Nv = v.

In our case where GT ' SLn, every irreducible GT -module will have a highest weight line

and addtionally will be be uniquely determined by this highest weight line.

Given a symmetry group, GT , we also have a symmetry Lie algebra, denoted gT , which will

be more convenient to work with. Let bT denote the Borel subalgebra and h denote the Cartan

subalgebra, which will be the Lie algebras of the Borel subgroup, BT , and maximal torus, T,

respectively. In the case of our symmetry Lie algebra, sln, we take h to be the subalgebra of

traceless diagonal matrices. Additionally, for N ⊂ BT , we have the corresponding Lie subalgebra

n ⊂ bT , which will consist of the strictly upper triangular elements of sln. We will refer to elements

of n as raising operators.

For a Lie algebra representation, a vector is a weight vector, if h[v] = [v]. One may regard the

weight of a vector v as a linear functional λ ∈ h∗, such that for allH ∈ h,Hv = λ(H)v. Analogous

to the above definition, [v] is a highest weight vector if and only if n[v] = 0. Let eji denote the n×n

matrix with 1 in the (i, j)th entry. Consider the weights ωi ∈ h∗ satisfying ωi(hj) = δij for all

1 ≤ i, j ≤ n−1, where hj = ejj−e
j+1
j+1 ∈ h. Call these weights ω1, · · · , ωn−1 ∈ h∗ the fundamental

weights of sln. It is well known that the highest weight λ of an irreducible representation can be

represented as an integral linear combination of fundamental weights. For notational convenience,

we denote the irreducible representation with highest weight λ = a1ω1 + · · · + an−1ωn−1 by

[a1 · · · an−1] and denote its highest weight vector by v[a1 ··· an−1]. We note that this notation is
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different from the widely used diagram notation of Weyl [16]

Definition 10. A variety X ⊂ PV is G-homogeneous if it is a closed orbit of some point x ∈ PV

under the action of some group G ⊂ GL(V ). If P ⊂ G is the subgroup fixing x, write X = G/P .

Example 2.2.1. Let a ∈ A, b ∈ B, c ∈ C and v1, · · · , vk ∈ V . Note that both the Segre and

Grassmannian varieties are both homogeneous varieties as Seg(PA × PB × PC) = GL(A) ×

GL(B)×GL(C) · [a⊗ b⊗ c] ⊂ P(A⊗B⊗C) and G(k, V ) = GL(V ) · v1 ∧ · · · ∧ vk ⊂ P(ΛkV ).

The purpose for introducing the language of homogeneous varieties is to introduce the follow-

ing Normal Form Lemma. Recall that V be a complex vector space.

Lemma 11 (Normal Form Lemma). Let X = G/P ⊂ PV be a homogeneous variety and v ∈ V

such that Gv = {g ∈ G | g[v] = [v]} has a single closed orbit Omin in X . Then any border rank

r decomposition of v may be modified using Gv to a border rank r decomposition limε→0 x1(ε) +

· · · + xr(ε) such that there is a stationary point x1(t) ≡ x1 (i.e. x1 is independent of t) lying in

Omin.

If, moreover, every orbit of Gv ∩Gx1 contains x1 in its closure, we may further assume that for

all j 6= 1, limε→0 xj(ε) = x1.

See Lemma 3.1 in [17] for the proof. This Lemma allows one describe the interactions between

the different G-orbits. It can be thought of as a consequence of the following theorem.

Theorem 12 (Lie’s Theorem). LetH be a solvable group andW be anH-module. For [w] ∈ PW ,

H[w] contains an H-fixed point.

See Theorem 9.11 of [16] for proof. We show a simple example to foreshadow how this idea

will be used.

Example 2.2.2. Let {ei}4
i=1, be a basis of a vector space, V . Consider the element [v] = [e1∧ e2 +

e3 ∧ e4] ∈ P(Λ2(V )). Let gt ∈ GL(V ) be the element that maps e1 to 1
t
e1 and fixes the remaining

basis elements. Then acting on [v], we get [1
t
e1 ∧ e2 + e3 ∧ e4] = [e1 ∧ e2 + te3 ∧ e4]. As t → 0,

then we limit towards [e1 ∧ e2] ∈ G(2, V ).

This Lemma and Theorem are used to assert that a limiting point is in fact BT -fixed.

9



3. METHODOLOGY

The most fruitful current techniques for finding lower bounds on the border rank of a tensor are

Koszul flattenings, the border substitution method, and border apolarity. In this chapter, we review

each of these techniques.

3.1 Koszul flattenings

For T ∈ A ⊗ B ⊗ C, we may consider it as a linear map TB : B∗ → A ⊗ C. We have

analogous maps TA, TB, TC , which are called the coordinate flattenings of T . Consider the linear

map obtained by composing the map TB ⊗ IdΛpA : B∗ ⊗ ΛpA → ΛpA ⊗ A ⊗ C with the map

π ⊗ IdC : ΛpA ⊗ A ⊗ C → Λp+1A ⊗ C. Note that π ⊗ IdC is the tensor product of the exterior

multiplication map with the identity on C. Denote this composition by T∧pA . Let rank denote the

rank of a linear map.

Proposition 13 (Landsberg-Ottaviani). Let T ∈ A⊗B⊗C and t = a⊗ b⊗ c ∈ A⊗B⊗C, then

R(T ) ≥ rank(T∧pA )

rank(t∧pA )
=

rank(T∧pA )(
dimA−1

p

)
Proof. Note that in terms of bases T =

∑
i,j,k t

ijkai⊗bj⊗ck and for β⊗f1∧· · ·∧fk ∈ B∗⊗ΛpA,

the Koszul flattening map is T∧pA (β⊗f1∧· · ·∧fk) =
∑

ijk t
ijkβ(bj)f1∧· · ·∧fk∧ai⊗ck, Therefore,

for a rank one tensor t = a⊗b⊗c, then the image of t∧pA is {f1∧· · ·∧fk∧a⊗c ∈ Λp+1A⊗C | a /∈

span{f1, · · · , fk}}, so then rank(t∧pA ) =
(

dimA−1
p

)
.

Suppose R(T ) = r and let T = limTε with rank r decompositions Tε =
∑r

i=1 Ti(ε). The map

T 7→ T∧pA is linear, and so we have

rank(T∧pA ) ≤ rank((Tε)
∧p
A ) ≤

r∑
i=1

rank(Ti(ε)
∧p
A ) = r

(
dimA− 1

p

)

One should note that we achieve the best bounds when dimA = 2p + 1. Thus, if dimA >
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2p + 1, we may restrict T to subspaces A′ ⊂ A of dimension 2p + 1, since border rank is upper

semi-continuous with respect to restriction i.e. for a restriction T ′ of T , R(T ′) ≤ R(T ). Koszul

flattenings alone are insufficient to prove R(Tsln) ≥ 2(n2 − 1), as the limit of the method for

T ∈ Cm ⊗ Cm ⊗ Cm is below 2m − 3(m even) and 2m − 5(m odd). See [18] for more on this

method.

As a remark, we have that Koszul flattening do provide a lower bound on the rank of a tensor,

as R(T ) ≥ R(T ). Koszul flattenings are not able to produce lower bounds on the rank alone.

The conditions on the ranks of the Koszul flattenings furnish equations (in particular, the minors

of the linear maps) for the secant variety. So we are obtaining equations for a Zariski closed set

containing the set of tensors of rank r, which is not closed. We note here that trivially R(T ) ≥

max{rank(TA), rank(TB), rank(TC)}, and in some cases the substitution method, presented in the

next section, improves upon this trivial lower bound.

3.2 Border Substitution

The only known technique for computing lower bounds on the rank of a tensor is the substitu-

tion method. A tensor T is A-concise if the coordinate flattening map TA is injective, and define

similarly for B-concise and C-concise. If a tensor is A-concise, B-concise, and C-concise, then

we simply call it concise. We remark that Tsln is in fact a concise tensor, since sln is a simple Lie

algebra and the coordinate flattening maps do not send everything to 0.

Proposition 14 (Alexeev-Forbes-Tsimerman). Let T ∈ A⊗B⊗C be A-concise. Let dimA = m

and fix Ã ⊂ A of dimension k. Then

R(T ) ≥ min
{A′∈G(k,A∗) | A′∩Ã⊥=0}

R(T
∣∣
A′⊗B∗⊗C∗) + (m− k)

See Proposition 5.3.1.1 in [12] for proof. In practice, the substitution method applies this

proposition iteratively, while also allowing B and C to play the role of A.

This proposition can be extended to border rank.
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Proposition 15 (Landsberg-Michałek). Let T ∈ A⊗B⊗C be A-concise. Let dimA = m and let

k < m. Then

R(T ) ≥ min
A′ ∈ G(k,A∗)

R(T
∣∣
A′⊗B∗⊗C∗) + (m− k)

Proof. Suppose T has border rank r with border rank decomposition T = limε→0 Tε, with Tε =∑r
k=1 ak(ε) ⊗ bk(ε) ⊗ ck(ε). Without loss of generality, let ai(ε) for i = 1, · · · ,m be a basis

of A. Let A′ε = 〈ak+1(ε), · · · , am(ε)〉⊥ ⊂ A∗. Applying the substitution method, we obtain

r = R(Tε) ≥ (m − k) + R(Tε
∣∣
A′ε⊗B∗⊗C∗

). Let A′ = limε→0A
′
ε. Taking limits as ε → 0, we

may no longer have the restriction that the limiting plane in the grassmannian trivially intersects

〈a1(0), · · · , ak(0)〉⊥. Therefore, we must minimize over all elements of the Grassmannian.

Note that the notation T
∣∣
A′⊗B∗⊗C∗ is a restriction of T when considering T as a trilinear form

T : A∗ ⊗ B∗ ⊗ C∗ → C. If we let Ã = A/(A′)⊥ then our restricted tensor will be an element of

Ã⊗B ⊗ C.

Also note that in the border substitution proposition, we are minimizing over all elements in the

Grassmannian. In practice, applying border substitution uses tensors with large symmetry groups

GT . The utility is that one may restrict to looking at representatives of closed GT -orbits in the

Grassmannian, rather than by examining all elements of the Grassmannian. One often achieves

the best results on the rank of a tensor by using border substitution in conjunction with Koszul

flattenings. Naively, the largest lower bound obtainable by the method, i.e. the limit of the method,

is at most dimA + dimB + dimC − 3, however, the limit is in fact slightly less. For tensors

T ∈ Cm⊗Cm⊗Cm, the limit of the method is 3m− 3
√

3m+ 9
4

+ 9
2
. See [17] for a proof of this

and more on this method. The best lower bound achieved on the border rank that is mentioned in

the introduction is achieved using this method [8].

3.3 Border Apolarity

In order to establish larger lower bounds on R(Tsl3) than can be achieved by Koszul flattenings
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and border substitution for Tsl3 , we will use the idea of border apolarity, as developed in [19] and

[1].

Suppose T has a border rank r decomposition, T = limε→0 Tε, where Tε =
∑r

i=1 Ti(ε). If

the rank summands Ti(ε) are in general position in A ⊗ B ⊗ C, then we may identify the border

rank decomposition with a curve Eε in the Grassmannian variety G(r, A⊗ B ⊗ C), by taking the

exterior product of the Ti(ε), i.e. Eε = [T1(ε) ∧ · · · ∧ Tr(ε)].

Now we define a Z3-grading on ideals of subsets of PA × PB × PC (i.e. the Segre variety)

from the natural Z3-grading of Sym(A ⊕ B ⊕ C)∗. Let Irrel := {0 ⊕ B ⊕ C} ∪ {A ⊕ 0 ⊕

C} ∪ {A ⊕ B ⊕ 0} ⊂ A ⊕ B ⊕ C. Since PA × PB × PC ' (A ⊕ B ⊕ C\Irrel)/(C∗)×3, then

we may consider the quotient map q : (A ⊕ B ⊕ C)\Irrel → PA × PB × PC, which will be

invariant under the action of (C∗)×3. Therefore, for a set Z ⊂ PA×PB×PC), the ideal of this set

I(Z) = I(q−1(Z)) ⊂ Sym(A ⊕ B ⊕ C)∗ will have a Z3 grading. In particular, for a single point

([a], [b], [c]) ∈ PA× PA× PC, corresponding to a rank one tensor ([a⊗ b⊗ c] ∈ P(A⊗B ⊗C)),

we are considering the ideal in Sym(A ⊕ B ⊕ C)∗ of polynomials vanishing along the lines a, b,

and c.

Let Iε denote the Z3-graded ideal of the set of the r points [Ti(ε)], i.e. Iijk,ε ⊂ SiA∗ ⊗ SjB∗ ⊗

SkC∗. Since the r points are in general position, then codim Iijk,ε = r. Define Iijk := lim
ε→0

Iijk,ε as

the limit of points in the Grassmannian G(dim(SiA∗ ⊗ SjB∗ ⊗ SkC∗)− r, dim(SiA∗ ⊗ SjB∗ ⊗

SkC∗)). Iijk will exist, since the Grassmannian is compact, however, the resulting ideal I may not

be saturated. See [19] for further discussion on this.

Recall that a tensor T is concise if all the coordinate flattening maps TA, TB, TC are injective.

For a subspace U ⊂ V , define U⊥ := {α ∈ V ∗ | α(u) = 0 ∀u ∈ U}. In a nutshell, border apolarity

gives us some necessary conditions on the possible limiting ideals, I , that can arise from a border

rank decomposition.

Theorem 16. (Weak Border Apolarity) Let X = PA× PB × PC and S[X] be its coordinate ring.

Suppose a tensor T has R(T ) ≤ r. Then there exists a (multi)homogeneous ideal I ⊂ S[X] such

that
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• I ⊂ Ann(T )

• For each multidegree ijk, the ijkth graded piece, Iijk, of I has codim Iijk = min{r, dimS[X]ijk}

In addition, if GT is a group acting on X and preserving T , then there exists an I as above

which in addition is invariant under a Borel subgroup of GT .

In [19], see Theorems 3.15 (Border Apolarity) for proof of the first part and see Theorem

4.3 (Fixed Ideal Theorem) for a proof of the second part. Theorem 3.15 and 4.3 of [19] are not

stated here as they are stated in greater generality than we require using the language of schemes.

We remark that the Weak Border Apolarity Theorem provides sufficiency that if a border rank r

decomposition exists, then there will exist another border rank r decomposition satisfying given

conditions.

We note that the second condition says that we may in fact take the r points of the border

rank decomposition to be in general position, and so our initial supposition that the r points are

in general position is justified. Lie’s Theorem and the Normal Form Lemma allow us to take I111

to be BT -fixed. The Fixed Ideal Theorem of [19] uses the same reasoning to generalize this to

prove BT -invariance for all multigraded components Iijk, not just a finite number of multigraded

components.

In [1], using Weak Border Apolarity Theorem, they assert that for T a concise tensor with a

border rank r decomposition, there will exist an ideal I satisfying the following:

1. Iijk is BT -stable (Iijk is a Borel fixed weight space)

2. I ⊂ Ann(T ) i.e. I110 ⊂ T (C∗)⊥ ⊂ A∗ ⊗B∗, etc. and I111 ⊂ T⊥ ⊂ A∗ ⊗B∗ ⊗ C

3. For all i, j, k such that i + j + k > 1, then codim Iijk = r, i.e. the condition that we may

take the r points of the border rank decomposition to be in general position.

4. Since I is an ideal, the image of the multiplication map Ii−1,j,k⊗A∗⊕Ii,j−1,k⊗B∗⊕Ii,j,k−1⊗

C∗ → SiA∗ ⊗ SjB∗ ⊗ SkC∗ is contained in Iijk
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We note that the last condition is simply the condition that I is an ideal where the multiplication

respects the grading. The border apolarity algorithm presented in [1] makes use of these conditions

and attempts to iteratively construct all possible ideals, I , in each multidegree. In particular, if at

any multidegree ijk, there does not exist an Iijk satisfying the above, then we may conclude that

R(T ) > r. We remark that the candidate ideals, I , do not necessarily correspond to an actual

border rank decomposition of the tensor. We describe the algorithm of [1] precisely below:

Algorithm 1 Border Apolarity Algorithm
Input: T ∈ A⊗B ⊗ C, r

Output: Candidate ideals or R(T ) > r

1. For each BT -fixed space F110 of codim r − dimC in T (C∗)⊥ (i.e. codim r in A∗ ⊗ B∗)

compute ranks of maps F110 ⊗ A∗ → S2A∗ ⊗B∗ and F110 ⊗B∗ → A∗ ⊗ S2B∗

If both have images of codim at least r, then F110 is possible I110. These are called the (210)

and (120) tests.

2. Perform analogously for possible I101 ⊂ T (B∗)⊥ and I011 ⊂ T (A∗)⊥ for candidate F101 and

F011

3. For each triple F110, F101, F011, compute rank of map (F110 ⊗ C∗)⊕ (F101 ⊗B∗)⊕ (F011 ⊗

A∗)→ A∗ ⊗B∗ ⊗ C∗

If codim of image is at least r, then have a candidate triple. F111 is candidate for I111 if it is

codim r, it is contained in T⊥ and contains image of above map.

4. Analogous higher degree tests

5. If at any point there are no such candidates R(T ) > r, otherwise stabilization of candidate

ideals will occur at worst multi-degree (r, r, r)
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The condition that Iijk is BT -fixed allows us to greatly reduce the search for possible candidate

ideals. The BT -fixed spaces are easier to list than trying to list all possible Iijk. This condition

allows the algorithm of [1] to be feasible for tensors with large symmetry groups. Then, using the

assumption that our points are in general position, one has rank conditions on the multiplication

maps, as the images must have codim at least r.

3.3.1 Implementation of Border Apolarity for Tsln

We show how to implement the algorithm of [1] for Tsln by describing how to compute all

possible BT -fixed I110. Additionally, we can leverage the skew-symmetry of Tsln to reduce the

amount of computation involved for determining potential I110, I101, I011.

Let T = Tsl3 ∈ sl∗3⊗sl∗3⊗sl3 = A⊗B⊗C. The first and third condition from border apolarity

tells us to compute all BT -fixed weight subspaces F110 ⊂ A∗ ⊗ B∗ of codimension r; however,

since T is concise with dimT (C∗) = dim sl3 = 8 and F110 ⊂ T (C∗)⊥ by the second condition of

border apolarity, we compute all BT -fixed weight spaces F110 ⊂ T (C∗)⊥ of codimension r − 8.

Standard computational methods, see [16], yield that the irreducible decomposition of A∗⊗B∗

as sln-modules is as follows.

A∗ ⊗B∗ = sln ⊗ sln (3.1)

' [2 0 · · · 0 2]⊕ [2 0 · · · 0 1 0]⊕ [0 1 0 · · · 0 2]⊕ [0 1 0 · · · 0 1 0]⊕ 2[1 0 · · · 0 1]⊕ [0 · · · 0]

(3.2)

In particular, for sl3, we have the following decomposition into sl3-modules.

sl3 ⊗ sl3 ' [2 2]⊕ [3 0]⊕ [0 3]⊕ 2[1 1]⊕ [0 0] (3.3)

Using this decomposition and the conciseness of T , we have the sl3-module decomposition

T (C∗)⊥ ' [2 2]⊕ [3 0]⊕ [0 3]⊕ [1 1]⊕ [0 0] (Note that dimT (C∗)⊥ = 56). Using this sl3-module
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decomposition, we can obtain a decomposition of T (C∗)⊥ into weight spaces (decomposition into

h-modules) by combining the weight space decompositions of each sl3-module into one poset. The

result is the Figure 3.1. Each node represents a weight space of weight λ labeled by (λ, dimension

of weight space in T (C∗)⊥). Also note that arrows go from lower weights to higher weights, so

the highest weight occuring in T (C∗)⊥ is [2 2]. The weight space [3 0] is of dimension 2, where

one of the basis elements for this weight space is the highest weight vector of the sl3-module [3 0]

and the other basis element for this weight space is the vector arising from lowering the highest

weight vector of the sl3-module [2 2].

Figure 3.1: Weight Decomposition of T (C∗)⊥

The utility of this decomposition is that we can generate all BT -fixed weight subspaces F110 by

taking a collection of weight vectors vi from the poset such that v1∧v2∧· · ·∧v56−(r−8) is a highest
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weight vector in G(56− (r − 8), T (C∗)⊥) and consequently is closed under the raising operators.

One should note that if vi comes from a weight space of dimension greater than 1 then one needs

to include linear combinations of basis vectors of that weight space.

Example 3.3.1. We show a few small examples of possible F110 BT -fixed subspaces to provide

intuition of how these spaces are computed.

For r = 63, we have that F110 will be of the form v1. Since it must be closed under raising

operators, it will necessarily be a highest weight vector. Therefore, our choices will be v1 = vλ

where of vλ is a highest weight vector of weight λ = [2 2], [3 0], [0 3], [1 1], or [0 0].

For r = 62, F110 will be of the form v1 ∧ v2. Necessarily, we must have that v1 must be a

highest weight vector. The second vector v2 may either be another highest weight vector, a weight

vector that can be raised to v1, or a linear combination of the two previous cases if they are vectors

of the same weight. For example, if we take v1 = v[2 2] to be the highest weight vector of [2 2]. Let

v[3 0] and u[3 0] be a weight basis for [3 0] with v being a highest weight vector. Assume similarly

for [0 3] weight space. The possible choices for v2 are weight vectors of the following types:

v[3 0], sv[3 0] + tu[3 0], v[0 3], sv[0 3] + tu[0 3], v[1 1], v[0 0] with s, t parameters. Applying all possible

raising operators to v1 ∧ v2 where v2 has parameters will provide equations for what values of s, t

give us a highest weight vector.

For smaller values of r, the number of possible Borel fixed spaces is much larger and more

difficult to list by hand without the aide of a computer. The computationally difficult step in this

algorithm lies in computing the ranks of the multiplication maps such as F110⊗A∗ → S2A∗⊗B∗.

In some cases there are many parameters which arise from choosing weight vectors from high

dimensional weight spaces, such as the [0 0] weight space in Figure 3.1. Recall that a linear map

has rank at most k is the k + 1 minors all vanish. In order to determine whether the multiplication

map has image codimension r, we look at the appropriate minors of this linear map. When there

are no parameters involved, this is a simple linear algebra calculation. However, in some cases, the

entries of the multiplication map are linear polynomials in the parameters coming from choosing

a linear combination of weight vectors. In order to determine whether the multiplication map has
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image of codimension r, one needs to look at the ideal of these minors, as well as some polynomial

equations in the parameters that are needed for the space to be Borel fixed. One must do a Groebner

Basis computation on this ideal to determine whether all the minors vanish or not. This can become

an unfeasible computation if there are too many parameters and/or equations.

3.3.2 Flag Condition

In addition to the necessary conditions on I that come from border apolarity, we have some

more necessary conditions called the Flag Conditions in [20]. These additional conditions should

help to mitigate the computational issue of having many parameters. We recall that the candidate

ideals I generated from implementing border apolarity on a tensor, T , may not necessarily arise

from an actual border rank decomposition of T . For a given Estu := I⊥stu for the ideal defined

above, we call it viable if it arises from an actual border rank decomposition.

Proposition 17 (Flag Conditions). If E110 is viable then there exists a BT -fixed filtrand of E110,

namely F1 ⊂ · · · ⊂ Fr = E110 such that Fj ⊂ σr(Seg(PA × PB)). Let Tj ∈ Cj ⊗ Cj ⊗ Cj be a

tensor equivalent to the tensor restricted to subspace Fj . Then R(Tj) = j.

Generally, if Estu is viable, there are complete flags in A,B,C such that P(Estu ∩ SsAj ⊗

StBj ⊗ SuCj) ⊂ σj(Seg(PSsAj × PStBj × PSuCj)).

See [20] for the proof of this proposition. The restricted tensors having minimal border rank

for j ≤ m are the new necessary conditions. The classification theorem, Theorem 1.2 from [21],

provides choices for the forms of the first three filtrands F1, F2, and F3. For example, the first

filtrand must be of the form F1 = 〈a ⊗ b〉. The second filtrand will have one of the two forms,

F2 = 〈a ⊗ b, a′ ⊗ b′〉 or F2 = 〈a ⊗ b, a ⊗ b′ + a′ ⊗ b〉, where a′ and b′ denote tangent vectors of

a and b, respectively. Note that since the tangent space T̂xPA = A, we may take a′ and b′ to be

arbitrary vectors. There are five choices for F3; see [21] or [20] for all five explicitly listed. These

choices allow us to put conditions on the rank of some of the highest weight vectors occuring.

In particular for Tsl3 , we may eliminate candidate E110 which contain v[0 0], the highest weight

vector in [0 0] weight space, since the rank of this weight vector is too high. The [0 0] weight space
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has the highest dimension in T (C∗)⊥ and so limiting the number of choices of weight vectors from

that space decreases the number of parameters needed. While this condition helps to eliminate

certain cases which may contain too many parameters, it does not help in the cases where the

Groebner basis computation has too many equations.
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4. CURRENT RESULTS

It is known that R(Tsl2) = 5 [22], so we aim to find bounds on R(Tsln) for n = 3 and 4 using

the above techniques.

4.1 Koszul flattenings

In the case of Tsl3 , we achieve the best results when p = 3 and we restrict to a generic 7

dimensional subspace of sl3, since dim sl3 = 8. The best bound achieved is R(Tsl3) ≥ 14 (See

Table 4.2).

Table 4.1: Tsl3 Results

p Dimensions of Linear Map Dimension of Kernel Koszul Bound

1 (64,224) 0 10

2 (224,448) 1 11

3 (448,560) 8 13

Table 4.2: Tsl3 Restriction to a generic subspace of dim k Results

p k Dimensions of Linear Map Dimension of Kernel Koszul Bound

1 3 (24,24) 0 12

2 5 (80,80) 4 13

3 7 (280,280) 7 14

In the case of Tsl4 , we achieve the best lower bound of 27 when p = 4 or 5 while restricting to
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a subspace (See Table 4.4).

Table 4.3: Tsl4 Results

p Dimensions of Linear Map Dimension of Kernel Koszul Bound

1 (225,1575) 0 17

2 (1575,6825) 1 18

3 (6825,20475) 15 19

4 (20475,45045) 106 21

5 (45045,75075) 470 23

6 (75075,96525) 2680 25

7 (96525,96525) 11039 25

Table 4.4: Tsl4 Restriction to a generic subspace of dim k Results

p k Dimensions of Linear Map Dimension of Kernel Koszul Bound

1 3 (45,45) 0 23

2 5 (150,150) 2 25

3 7 (525,525) 7 26

4 9 (1890,1890) 38 27

5 11 (6930,6930) 176 27

6 13 (25740,25740) 2254 26

As stated above, Koszul flattenings alone are insufficient to obtain border rank lower bounds

exceeding 2m, i.e. Koszul flattenings will not prove R(Tsl3) ≥ 16 and R(Tsl4) ≥ 30.

22



4.2 Border Substitution

For Tsln ∈ sl∗n ⊗ sl∗n ⊗ sln, we may identify the space sl∗n with sln (by sending an element to

its negative transpose). Therefore, we may identify Tsln as an element of sln⊗ sln ⊗ sln. As a first

step in applying border substitution, we restrict Tsln ∈ A ⊗ B ⊗ C in the A tensor factor. Since

we may restrict to looking at representatives of closed GTsln
-orbits, then the only planes we need

to check are the highest weight planes in G(k, sln). In order to compute the border rank of the

restricted tensor, we use Koszul flattenings on the restricted tensor. Once again, let vλ denote the

unique weight vector in weight space λ.

For Tsl3 , border substitution did not generate a better lower bound than the Koszul flattenings.

However, we were able to obtain a better lower bound for Tsl4 . Let A′, as in Proposition 15, be Ã⊥

where we take Ã to be a space of dimension m− k. If we restrict our tensor by a one dimensional

subspace, then the only choice for Ã will be the space spanned by v[1 0 1], which is the highest

weight vector of sln.

Table 4.5: Tsl4 with Restriction Ã = v[1 0 1]

p k Dimensions of Linear Map Dimension of Kernel Koszul Bound

1 3 (45,45) 0 23

2 5 (150,150) 2 25

3 7 (525,525) 7 26

4 9 (1890,1890) 38 27

5 11 (6930,6930) 248 27

6 13 (25740,25740) 2254 26

Restricting by a two dimensional subspace, we have one choice for Ã up to symmetry in the

weight space decomposition for sl4, namely v[1 0 1] ∧ v[−1 1 1].
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Table 4.6: Tsl4 with Restriction Ã = v[1 0 1] ∧ v[−1 1 1]

p k Dimensions of Linear Map Dimension of Kernel Koszul Bound

1 3 (45,45) 0 23

2 5 (150,150) 2 25

3 7 (525,525) 7 26

4 9 (1890,1890) 78 26

5 11 (6930,6930) 498 26

Restricting by a three dimensional subspace, we have three choices for Ã up to symmetry. Ã

may be v[1 0 1] ∧ v[1 1 −1] ∧ v[−1 1 1], v[1 0 1] ∧ v[1 1 −1] ∧ v[2 −1 0], or v[1 0 1] ∧ v[1 1 −1] ∧ v[−1 2 −1].

Table 4.7: Tsl4 with Restriction Ã = v[1 0 1] ∧ v[1 1 −1] ∧ v[−1 1 1]

p k Dimensions of Linear Map Dimension of Kernel Koszul Bound

1 3 (45,45) 0 23

2 5 (150,150) 2 25

3 7 (525,525) 31 25

4 9 (1890,1890) 168 25

5 11 (6930,6930) 755 25
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Table 4.8: Tsl4 with Restriction Ã = v[1 0 1] ∧ v[1 1 −1] ∧ v[2 −1 0]

p k Dimensions of Linear Map Dimension of Kernel Koszul Bound

1 3 (45,45) 0 23

2 5 (150,150) 2 25

3 7 (525,525) 7 25

4 9 (1890,1890) 72 25

5 11 (6930,6930) 498 25

Table 4.9: Tsl4 with Restriction Ã = v[1 0 1] ∧ v[1 1 −1] ∧ v[−1 2 −1]

p k Dimensions of Linear Map Dimension of Kernel Koszul Bound

1 3 (45,45) 3 21

2 5 (150,150) 14 23

3 7 (525,525) 42 25

4 9 (1890,1890) 254 24

5 11 (6930,6930) 1072 24

The best bound we obtain is R(Tsl4
∣∣
(v[1 0 1])

⊥⊗sln⊗sln
) ≥ 27 (See Table 4.5). By Proposition 15,

Theorem 18. R(Tsl4) ≥ 28

After restricting in the A tensor factor, we cannot restrict by the highest weight vector of sln

in the B or C factor as the symmetry group of the restricted tensor will have a different symmetry

group.
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4.3 Border Apolarity

We use border apolarity to disprove that Tsl3 has rank r = 15. We first compute candidate F110

spaces which passed the (210)-test. There were a total of 5 candidate F110 subspaces out of a total

of more than 1245 possible F110 spaces. The candidate F110 spaces came in three types of weight

space decompositions:

Table 4.10: Two candidate F110 planes have the following weight decomposition

Weight Dimension of weight space in A∗ ⊗B∗ Dimension of weight space in F110

[2, 2] 1 1

[3, 0] 2 2

[4,−2] 1 1

[0, 3] 2 2

[1, 1] 5 5

[2,−1] 5 5

[3,−3] 2 2

[−2, 4] 1 1

[−1, 2] 5 5

[0, 0] 8 8

[1,−2] 5 5

[2,−4] 1 1

[−3, 3] 2 2

[−2, 1] 5 4

[−1,−1] 5 4

[0,−3] 2 1
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Table 4.11: One candidate F110 plane has the following weight decomposition

Weight Dimension of weight space in A∗ ⊗B∗ Dimension of weight space in F110

[2, 2] 1 1

[3, 0] 2 2

[4,−2] 1 1

[0, 3] 2 2

[1, 1] 5 5

[2,−1] 5 5

[3,−3] 2 2

[−2, 4] 1 1

[−1, 2] 5 5

[0, 0] 8 8

[1,−2] 5 5

[2,−4] 1 1

[−3, 3] 2 2

[−2, 1] 5 5

[−1,−1] 5 3

[−4, 2] 1 1
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Table 4.12: Two candidate F110 planes have the following weight decomposition

Weight Dimension of weight space in A∗ ⊗B∗ Dimension of weight space in F110

[2, 2] 1 1

[3, 0] 2 2

[4,−2] 1 1

[0, 3] 2 2

[1, 1] 5 5

[2,−1] 5 5

[3,−3] 2 2

[−2, 4] 1 1

[−1, 2] 5 5

[0, 0] 8 8

[1,−2] 5 5

[2,−4] 1 1

[−3, 3] 2 2

[−2, 1] 5 5

[−1,−1] 5 4

[−4, 2] 1 1

[−3, 0] 2 1

The computation to produce these 5 candidate F110 planes took extensive time in some cases,

due to the parameters creating a difficult groebner basis computation when determining whether an

F110 plane passes (210)-test. The large number of candidates was not as much of a computational

issue as all the (210)-tests can be parallelized. Some of these computations were done on Texas

A&M’s High Performance Research Cluster as well as Texas A&M’s Math Department Cluster.

Using the skew-symmetry of Tsln , we are able to produce F011 and F101 candidate weight
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spaces from the candidate F110 spaces. A computer calculation verified that for each candidate

triple F110, F011, F101, the rank condition is not met for the (111)-test and consequently, there are

no candidate F111 spaces. Therefore, the rank of Tsl3 is greater than 15.

Theorem 19. R(Tsl3) ≥ 16

This result is significant as it is the first example of an explicit tensor such that the border rank

is at least 2m when m < 13.

4.3.1 Computational improvements to Border Apolarity

The flag condition helps to eliminate cases where there are many parameters. In the case of

testing r = 15 for Tsl3 , the flag condition was able to eliminate two cases for which the (210)-test

had taken months to compute. These two cases had taken the most time to compute and all other

cases took a significantly less time (on the order of a week at most). The flag condition is currently

being used to reduce the number of F110 planes that need to be tested for r = 16.

In addition to the flag condition, reducing the Groebner basis computation to be performed

over a finite field of characteristic p has been implemented in order to reduce the computational

cost in some of the more extreme cases. This reduction mod p does not benefit cases where there

the computational difficulty is due to a large number of equations.

4.4 Upper Bounds

A numerical computer search has given a rank 20 decomposition of Tsl3 . The technique used

was a combination of Newton’s Method and Lenstra–Lenstra–Lovász Algorithm to find rational

approximations [23]. This technique formulated the problem as a nonlinear optimization problem

that was solved to machine precision and then subsequently modified using the Lenstra-Lenstra-

Lovász Algorithm to generate a precise solution with algebraic numbers given the numerical so-

lution. As Tsl3 ∈ C8 ⊗ C8 ⊗ C8, a rank 20 decomposition consists of finding ai, bi, ci ∈ C8 such

that T =
∑20

i=1 ai ⊗ bi ⊗ ci. We take each vector ai, bi, ci to be a vector in 8 variables, and using

properties of elements of tensor products, we can multiply out the right hand side and have a sys-

tem of equations for each entry of the tensor. This amounts to solving a system of 512 polynomial
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equations of degree 3 in 480 variables. We then use Newton’s method to find roots to this system

of equations. If it appears to converge to a solution, then we compute it to machine precision

and use Lenstra-Lenstra-Lovász to find an algebraic solution that satisfies the initial polynomial

conditions. Therefore,

Theorem 20. R(Tsl3) ≤ 20

Let ζ6 denote a primitive 6th root of unity. The following is the rank 20 decomposition of Tsl3 .

One may verify that this is in fact a rank decomposition by showing that it satisfies the polynomial

equations described above. Note that since ζ6 is a primitive root of unity, then ζ2
6 = ζ6 − 1.

Tsl3 = (4.1)

(
1

342
)


0 ζ6 0

0 0 0

0 1 0

⊗

−6 −4ζ2

6 −6ζ6

9ζ6 18 0

6ζ2
6 0 −12

⊗


6ζ6 −4 0

9ζ2
6 0 −9

0 4ζ2
6 −6ζ6

+ (4.2)

(
1

3423
)


−6 −4ζ2

6 −6ζ6

9ζ6 18 0

6ζ2
6 0 −12

⊗


0 ζ6 0

0 0 0

0 1 0

⊗

−6ζ6 4 −6ζ2

6

0 6ζ6 9

−6 0 0

+ (4.3)

(
1

3421
)


6 4ζ2

6 0

9ζ6 0 9ζ2
6

0 4ζ6 −6

⊗


12ζ6 −4 6ζ2
6

0 −18ζ6 −9

6 0 6ζ6

⊗


0 ζ6 0

0 0 0

0 1 0

+ (4.4)

(
1

352
)


0 0 6ζ6

−18ζ6 −18ζ2
6 −9

−6 −4ζ6 18ζ2
6

⊗


18ζ2
6 0 6ζ6

9ζ6 −18ζ2
6 18

−6 −4ζ6 0

⊗


0 −1 0

0 0 0

0 −ζ6 0

+ (4.5)
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(
1

3422
)


−6ζ6 4ζ2

6 −6

9 18ζ6 0

−6ζ2
6 0 −12ζ6

⊗


0 ζ6 − 1 0

0 0 0

0 −1 0

⊗

−12ζ6 0 −6

−9 6ζ6 18ζ2
6

−6ζ2
6 4 6ζ6

+ (4.6)

(
1

34
)


0 ζ6 0

0 0 0

0 ζ2
6 0

⊗

−3ζ2

6 −2 −3ζ6

0 9ζ2
6 0

1 0 −6ζ2
6

⊗


6ζ6 0 −6

1 6ζ6 −9ζ2
6

−6ζ2
6 4 −12ζ6

+ (4.7)

(
1

3423
)


−12 −4ζ2

6 −6ζ6

0 18 −9ζ2
6

6ζ2
6 0 −6

⊗

−6ζ2

6 4ζ6 0

9 0 9ζ6

0 4 6ζ2
6

⊗


0 −4 6ζ2
6

−9ζ2
6 −6ζ6 0

6 0 6ζ6

+ (4.8)

(
1

3523
)


−18 0 6ζ2

6

9ζ2
6 18 18ζ6

−6ζ6 −4ζ2
6 0

⊗


0 0 −6ζ2
6

18ζ2
6 −18 9ζ6

6ζ6 4ζ2
6 18

⊗


0 4ζ6 6ζ2
6

−9ζ2
6 6 0

−6ζ6 0 −6

+ (4.9)

(
1

3323
)


−12ζ6 8 −6ζ2

6

0 18ζ6 9

−6 −4ζ2
6 −6ζ6

⊗

−2ζ2

6 0 0

3 0 3ζ6

0 0 2ζ2
6

⊗


0 0 −6ζ6

9ζ6 6 0

6ζ2
6 4ζ6 −6

+ (4.10)

(
1

3523
)


18ζ2

6 12 6ζ6

9ζ6 −18ζ2
6 18

−6 8ζ6 0

⊗


0 −6 −6ζ6

18ζ6 18ζ2
6 9

6 −2ζ6 −18ζ2
6

⊗


0 0 6ζ6

−9ζ6 −6ζ2
6 0

−6 −4ζ6 6ζ2
6

+ (4.11)
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(
1

3423
)


12 4 −6

0 −18 9

−6 0 6

⊗

−6 4 0

9 0 −9

0 −4 6

⊗


0 0 6

−9 6 0

6 −4 −6

+ (4.12)

(
1

3323
)


−12 0 6

0 18 −9

6 −4 −6

⊗


2 0 0

−3 0 3

0 0 −2

⊗


0 4 −6

9 −6 0

−6 0 6

+ (4.13)

(
1

3321
)


−2 0 0

3 0 −3

0 0 2

⊗


12 0 −6

0 −18 9

−6 4 6

⊗


0 −1 0

0 0 0

0 1 0

+ (4.14)

(
1

3421
)


6 4 −6

9 −18 0

−6 0 12

⊗


0 1 0

0 0 0

0 −1 0

⊗


6 0 −6

0 −6 9

−6 4 0

+ (4.15)

(
1

3321
)


0 1 0

0 0 0

0 −1 0

⊗

−6 −4 6

−9 18 0

6 0 −12

⊗


2 0 0

−3 0 3

0 0 −2

+ (4.16)

(
1

3325
)


−4 −6 −6

0 0 0

9 4 4

⊗

−4 6 −6

0 0 0

−9 4 4

⊗

−4 −6 6

0 0 0

9 −4 4

+ (4.17)
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(
1

3325
)


4 −6 −6

0 0 0

9 4 −4

⊗

−4 −6 6

0 0 0

9 −4 4

⊗


4 −6 6

0 0 0

9 −4 −4

+ (4.18)

(
1

3325
)


−4 −6 6

0 0 0

9 −4 4

⊗

−4 6 6

0 0 0

−9 −4 4

⊗


4 6 6

0 0 0

−9 −4 −4

+ (4.19)

(
1

3325
)


−4 6 −6

0 0 0

−9 4 4

⊗

−4 −6 −6

0 0 0

9 4 4

⊗


4 −6 −6

0 0 0

9 4 −4

+ (4.20)

(
2

32
)


−1 0 0

0 0 0

0 0 1

⊗


0 0 3

0 0 0

0 −2 0

⊗


0 −2 0

0 0 0

3 0 0

 (4.21)

In an attempt to find a smaller rank decomposition, we found numerical evidence suggesting

that R(Tsl3) ≤ 18. The above method was unable to determine exact algebraic numbers for it to

be an honest border rank decomposition. We include the approximate border rank decomposition,

which was obtained as a numerical solution to machine precision using Newton’s method, in Ap-

pendix A. This decomposition is satisfies the equation Tsl3 =
∑18

k=1 ak(t) ⊗ bk(t) ⊗ ck(t) + O(t)

to a maximum error in each entry of 3.88578058618805 10−16 (`0 error). It also is satisfied with a

sum of squares error of 1.85900227125328 10−15 (`2 error), which is the square root of the sum of

the squares of all errors in each entry.
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5. CONCLUSION

We have found new bounds on the rank and border rank of Tsl3 as well as a lower bound on

Tsl4 . The lower bound on the border rank of Tsl3 is the first case of a tensor in Cm ⊗ Cm ⊗ Cm

with m < 13 and border rank at least 2m. We have used all available techniques to obtain these

bounds. The limitations going forward are computational as this tensor lives in a high dimensional

space. Future work to determine better bounds on border rank for sl3 is geared towards trying to

improve upon the implementation of border apolarity as that has given the best lower bound thus

far. Currently, we are applying border apolarity to test if R(Tsl3) > 16.

It is also ongoing work to find a lower bound on the border rank for Tsln for n in general. Since

koszul flattenings are sln-module maps, it suffices to find all highest weight vectors of sln⊗Λksl∗n

and see which highest weight vectors are in the kernel of the koszul flattening in order to determine

the rank of the koszul flattening. Currently, we are computing highest weight vectors of sln⊗Λ3sl∗n

for all n ≥ 6, which should help give us a lower bound on R(Tsln) for all n ≥ 6. One should note

that this is also a computationally difficult task as this is a high dimensional space even in the case

when n = 6.
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[19] W. Buczyńska and J. Buczyński, “Apolarity, border rank and multigraded hilbert scheme,”

2020, arXiv: 1910.01944 [math.AG].

[20] A. Conner, H. Huang, and J. M. Landsberg, “Bad and good news for strassen’s laser method:

Border rank of the 3x3 permanent and strict submultiplicativity,” 2020, arXiv: 2009.11391

[math.AG].
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APPENDIX A

APPROXIMATE BORDER RANK 18 DECOMPOSITION

## Approximate Border Rank 18 Decomposition for sl3. B is list of

↪→ length 18,

## Each element of B is 3 lists, one for each tensor factor

t = var(’t’)

decomp_sl3_br18 = [

[[0.8582131228193816*t^4, 1.0*t^3, -0.656183917735616, 0,

↪→ -0.6991867952664118*t^4, 0.48158077142326267*t, 0, 0],

[0.4276000554886944, 0, -0.18145759099190728*t^-4,

↪→ -0.615151864463497*t, 0.3663065358105463,

↪→ 0.41017982352375143*t^-3, 0.32919233217347255*t^4,

↪→ -0.37760897344619454*t^3],

[-0.1349207590097993*t^-4, -0.6002859548136603*t^-3, 1.0,

↪→ 0.5115159306456755*t^-5, -0.1595527810915205*t^-4,

↪→ -0.6048099252034903*t^-1, -0.7277947872836206*t^-8,

↪→ -0.40421722543545996*t^-7]],

[[-1.0*t^4, 0.35415463745033937*t^3, 0.0064263290832379735, 0,

↪→ -0.36545526641405424*t^4, -0.07853056373003943*t,

↪→ -0.032960816562400096*t^8, 0],

[0, 0, 1.0*t^-4, -0.2566348901375672*t, -0.22472886423613508, 0,

↪→ -1.5211311526049585*t^4, 0],

[0.8999601061346961*t^-4, 0, -0.9891997951816988,

↪→ 0.7757989654047442*t^-5, 0.6720573676204581*t^-4, 0,
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↪→ -0.7680275258871294*t^-8, 0.23098457888352464*t^-7]],

[[1.4652283519838352*t^4, 0, -0.49981037975335263,

↪→ -0.1095789691297215*t^5, 0, -0.39151017186719006*t,

↪→ -0.0035109361876165053*t^8, 0],

[-0.0370198277154002, -0.4868421872551675*t^-1,

↪→ -0.6112939642144736*t^-4, 1.0*t, 0, -0.2400052666531245*t

↪→ ^-3, 0.3994050510000636*t^4, 0.38578320751551654*t^3],

[-0.976481792017985*t^-4, -0.6067214925499242*t^-3, 0,

↪→ -0.723941360626237*t^-5, -1.0*t^-4, 0.5548674236521388*t

↪→ ^-1, 0.43144009347718587*t^-8, 0]],

[[0, 0, 0, 0.7384182957633163*t^5, 0, 0.644445145257651*t, 1.0*t

↪→ ^8, 0.14298165951600136*t^7],

[0.48917042278155703, -1.1676021066814524*t^-1,

↪→ 0.0742778280974771*t^-4, 0, 0, 0.43490564244204044*t^-3, 0,

↪→ -0.35107756870823037*t^3],

[0.35864016315209*t^-4, 0.08753789324397686*t^-3,

↪→ 0.09745671407220928, 0.8747382868849779*t^-5,

↪→ -0.08844676171127677*t^-4, 0, 1.0*t^-8,

↪→ 0.26767660269283405*t^-7]],

[[0, 0.7154062494455652*t^3, 0.753065093225573,

↪→ 0.25916815694138623*t^5, 1.0*t^4, -0.13328651389721624*t,

↪→ -0.43754268152319187*t^8, 0.33712746822644685*t^7],

[0.31175249346291917, 0.4893435772426664*t^-1,

↪→ -0.6750030230291015*t^-4, 0, 0, 0, -1.0*t^4,

↪→ 0.2730200083141182*t^3],

[-0.48768995751368266*t^-4, 0.3666405285647919*t^-3,

↪→ -0.509119354246841, -0.4700930934822484*t^-5,
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↪→ -0.22797281366964972*t^-4, -0.35924834770877284*t^-1,

↪→ 0.21574925698409564*t^-8, -0.4457498667959218*t^-7]],

[[-0.3726117655275953*t^4, -0.6850149555795361*t^3,

↪→ -0.47485190359116686, -0.3845493471094187*t^5,

↪→ 1.3294054010695648*t^4, 0, 0, -0.360876333169775*t^7],

[-0.20585599800494148, 0.14163424899135532*t^-1,

↪→ -0.07154541239160381*t^-4, 0, 0, 0.6161959625923827*t^-3,

↪→ -1.0*t^4, 1.1951737645411018*t^3],

[0.32862886361063015*t^-4, -1.0*t^-3, 0.02421044619636145,

↪→ -0.10037637090787854*t^-5, 0.8394716140987267*t^-4,

↪→ 0.6969300342438073*t^-1, 0.33915176005821984*t^-8,

↪→ -0.8710663402014699*t^-7]],

[[-0.26018060869681375*t^4, -0.5986510147484245*t^3, 0, 0,

↪→ 0.34975430620458303*t^4, 0.6295753676920407*t,

↪→ -0.008909285185907506*t^8, -1.0*t^7],

[0.1869896012120452, 0.21074450964709926*t^-1,

↪→ 0.15931993306826575*t^-4, -0.5916688936748106*t, -1.0,

↪→ 0.4704225477242227*t^-3, 0.4764298640490715*t^4, 0],

[-0.11381180152788646*t^-4, 0, -0.6321964884450085,

↪→ 1.1046891281785145*t^-5, 0, 1.0*t^-1, -0.39603240282608254*

↪→ t^-8, 0.9263232781144852*t^-7]],

[[0.5249458233325552*t^4, 0.48647993414509433*t^3,

↪→ 0.288317913855889, -0.6006289011129895*t^5,

↪→ -0.43339360309318065*t^4, -0.9021189701254521*t,

↪→ -0.3580507322918174*t^8, 0],

[0, -0.6140778368802516*t^-1, 0, 0.3157042904634412*t, 1.0,

↪→ 0.3354809468306432*t^-3, -0.4344836650252679*t^4,
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↪→ 0.3640820338419208*t^3],

[0, 0.021642017184031522*t^-3, 0, 1.0*t^-5, -0.16272749957295446*

↪→ t^-4, 0, 0.3302270185683934*t^-8, -0.5277803864906128*t

↪→ ^-7]],

[[0, 0.5078943260216121*t^3, -0.8437068467257393,

↪→ -0.16779079767696245*t^5, 0, -0.22773097773605452*t, 1.0*t

↪→ ^8, 0],

[-0.6816689949383756, 0, -0.5858467479048473*t^-4,

↪→ 0.4936500799168931*t, -1.0, -0.06688550512654293*t^-3, 0,

↪→ 0],

[0, 0.6059010244748405*t^-3, 0, 1.3353428165296193*t^-5, 0, 0,

↪→ -0.6434299512786738*t^-8, -0.4609346348556645*t^-7]],

[[0.5342376006675218*t^4, -0.6086422770257539*t^3, 0,

↪→ 0.4884368142723877*t^5, -0.718333221563019*t^4, 0, 0, -1.0*

↪→ t^7],

[0.4628574417338272, 0.8309327397168714*t^-1,

↪→ 0.21142383552160535*t^-4, -1.0560448029801677*t, 0, -1.0*t

↪→ ^-3, 0, 0.5907349063234486*t^3],

[-0.19068598535726494*t^-4, 1.251113151532601*t^-3, 0,

↪→ 0.801440153916977*t^-5, -0.4621883155369931*t^-4,

↪→ 0.649922008892636*t^-1, 0.4517624031930135*t^-8,

↪→ 0.6177441885560955*t^-7]],

[[-0.46119950535589427*t^4, 0.7406376078020875*t^3,

↪→ 0.29057187128303724, 0, 0.6143929403505343*t^4,

↪→ 0.4568692437943906*t, 1.0*t^8, 0.36703376745263416*t^7],

[0, 1.080760392781858*t^-1, -0.14934226596262576*t^-4, 0,

↪→ 0.463851046688496, -0.5286724400096557*t^-3, 0,
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↪→ -0.5122850384466106*t^3],

[0, -0.17675493191050737*t^-3, -0.7935243857498888,

↪→ 1.0525678466492765*t^-5, 0, 0, 0.8232503249794846*t^-8,

↪→ 1.0*t^-7]],

[[-0.1128613231857281*t^4, -1.004601481243395*t^3,

↪→ -0.18790258087897918, 0.40149916700646043*t^5,

↪→ -0.14415337265479422*t^4, 0, 0, 1.0*t^7],

[-0.6862576195287183, 0.5664746389899703*t^-1,

↪→ 0.2908675685084361*t^-4, 1.3714715312276369*t, 1.0,

↪→ -0.5713223321771269*t^-3, 0.5522456890804313*t^4, 0],

[-0.3006833454545763*t^-4, -1.5673937490149197*t^-3, 0, 0,

↪→ 0.38713909105007405*t^-4, 0.9955939462610987*t^-1,

↪→ 0.5677563588587456*t^-8, 0.5353436694572539*t^-7]],

[[-0.6245100623794343*t^4, 0, -1.0, 0.5065225347182659*t^5,

↪→ 0.5317253204886139*t^4, 0, 0, -0.3719669835035259*t^7],

[0.5699237870531472, -0.2500784148082814*t^-1, 0.442945128286494*

↪→ t^-4, 0.45638933734578824*t, 1.3973251849132609, 0, 0, 0],

[0, 0.5427787886626944*t^-3, 0.6987561651998788, 1.0*t^-5, 0,

↪→ 0.20324504499293194*t^-1, -0.21496324065341224*t^-8,

↪→ -0.35477523806474964*t^-7]],

[[0, -0.8732161724035096*t^3, -0.2040186481697669,

↪→ -1.2010646422303124*t^5, -0.23508531984800027*t^4,

↪→ 0.5654807700289866*t, 0, 1.0788666817176849*t^7],

[-1.0, 0.23352368487408065*t^-1, 0.2848223349469312*t^-4,

↪→ 0.1768073101741446*t, 1.1645543351076657, 0, 0, 0],

[0.4548846200775119*t^-4, 0, -1.0, 0.7165423092004359*t^-5,

↪→ -0.2616313451578387*t^-4, -1.2932734528263643*t^-1,

42



↪→ -0.30361754210884495*t^-8, 0.12055753515645255*t^-7]],

[[-0.36174656010597567*t^4, 0, 0, 1.0*t^5, 0,

↪→ -0.9529930944532633*t, 0, 0],

[-0.249684891380413, -0.48049270284391143*t^-1,

↪→ 0.27222663948587644*t^-4, 0.06402554598955673*t,

↪→ 0.32897469345165686, -0.29230508678584777*t^-3,

↪→ 0.3854984554913255*t^4, 1.084386049943073*t^3],

[0.5943543096084136*t^-4, 0, -0.4586866892423329, -1.0*t^-5,

↪→ -0.2869864460438895*t^-4, 0.7692509696955846*t^-1,

↪→ -0.5902387210012353*t^-8, -0.10600670730550378*t^-7]],

[[0.2878925845174677*t^4, 0.5281046432775963*t^3,

↪→ -0.2234313203594912, 0, -0.14791845243016916*t^4,

↪→ -0.33262458187432487*t, 1.108538091915835*t^8,

↪→ 0.2489733522919065*t^7],

[-0.19980163401634468, -0.4519313364099573*t^-1,

↪→ -0.9400278789365702*t^-4, 1.7023099438662026*t,

↪→ 0.47743291480661737, 0.40637104558436565*t^-3,

↪→ -0.9678003132293527*t^4, -1.0*t^3],

[1.0*t^-4, 0.391031885184312*t^-3, 0, -1.0*t^-5,

↪→ 0.8654063566747124*t^-4, 0, 0, 0]],

[[1.0110775513705723*t^4, -0.3307689454870473*t^3,

↪→ -0.45870287159609613, 0, -0.2918463909613691*t^4,

↪→ 0.30167345561087666*t, 0.582399773106054*t^8, 0],

[0, -1.0*t^-1, 0.7191039431350641*t^-4, 0.5392536432576923*t,

↪→ -0.39197591630294476, -0.7143544436146056*t^-3, 0,

↪→ 0.8086746481540814*t^3],

43



[0.4561800893644289*t^-4, -0.7356641704491395*t^-3,

↪→ 0.4710082951189216, 0, 0, 0.7109669616748934*t^-1, -1.0*t

↪→ ^-8, 0]],

[[-0.41687446856120663*t^4, 0.3197337020122604*t^3,

↪→ 0.3753986532686001, 0, -0.40495125990774045*t^4,

↪→ 0.2979428965247865*t, -0.6344817450528121*t^8,

↪→ -0.212014762523078*t^7],

[-0.2396929297153146, 0.7894128907681753*t^-1, 0, 0,

↪→ 0.2995112979592937, 1.0*t^-3, 0.09278089610904368*t^4,

↪→ 0.5160805291028968*t^3],

[0.4011063039077983*t^-4, 0, 0, 0.2503035377295029*t^-5, 1.0*t

↪→ ^-4, -0.9730216219558445*t^-1, 0.6637049194937615*t^-8,

↪→ -0.5073657590422873*t^-7]]

]
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