EQUATIONS FOR CHOW VARIETIES, THEIR SECANT VARIETIES AND OTHER VARIETIES ARISING IN COMPLEXITY THEORY

A Dissertation
by
YONGHUI GUAN

Submitted to the Office of Graduate and Professional Studies of Texas A\&M University
in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY

Chair of Committee, J.M. Landsberg
Committee Members, Frank Sottile
Colleen Robles
Christopher Pope
Head of Department, Emil Straube

August 2016

Major Subject: Department of Mathematics

Abstract

The Chow variety of polynomials that decompose as a product of linear forms has been studied for more than 100 years. Brill, Gordon, and others obtained settheoretic equations for the Chow variety. I compute Brill's equations as a $G L(V)$ module. I find new equations for Chow varieties, their secant varieties, and an additional variety by flattenings and Koszul Young flattenings. This enables a new lower bound for the symmetric border rank of $x_{1} x_{2} \cdots x_{d}$ when d is odd and a new complexity lower bound for the permanent. I use the method of prolongation to obtain equations for secant varieties of Chow varieties as $G L(V)$-modules. The goal of studying these varieties arising in complexity theory is to separate VP from VNP, which is an algebraic analog of the famous \mathbf{P} versus $\mathbf{N P}$ problem.

ACKNOWLEDGEMENTS

I would like to thank my committee chair, Dr. Joseph Landsberg, and my committee members, Dr. Frank Sottile, Dr. Colleen Robles and Dr. Christopher Pope, for the guidance and support throughout the course of this research.

I also would like to thank my friends, colleagues, the department faculty and staff for making my time at Texas A\&M University a great experience. I also thank the Simons Institute for the Theory of Computing, UC Berkeley for providing me a good research environment.

Finally, I would like to thank my parents and sisters for encouragement and love in my life.

TABLE OF CONTENTS

Page
ABSTRACT ii
ACKNOWLEDGEMENTS iii
TABLE OF CONTENTS iv

1. INTRODUCTION 1
1.1 Motivation 1
1.1.1 Motivation from algebraic geometry 1
1.1.2 Motivation from complexity theory 2
1.1.3 A geometric approach to Valiant's conjecture 3
1.2 Results 4
1.2.1 Brill's equations as a $G L(V)$-module 4
1.2.2 Symmetric border rank of monomials 5
1.2.3 A new lower complexity bound for the permanent 6
1.2.4 Equations for secant varieties of Chow varieties 6
1.3 Overview of methods 7
1.3.1 Computing the image of Brill's map 7
1.3.2 Flattenings, Koszul Young flattenings and determinantal equa- tions 8
1.3.3 Prolongation and equations for secant varieties 11
1.4 Organization 11
1.5 Notation 12
2. PRELIMINARIES 14
2.1 Polarization of a polynomial map 14
2.2 G-variety 15
2.3 Representation theory 16
2.3.1 Young tableaux and semi-standard tableaux 16
2.3.2 Irreducible representations of the symmetric group \mathfrak{S}_{d} and the group $G L(V)$ 17
2.3.3 The Littlewood-Richardson coefficients and Pieri's rule 18
2.3.4 Highest weight vectors of an irreducible $G L(V)$-module 19
2.4 Brill's equations 21
2.5 Foulkes-Howe map and the ideal of Chow variety 25
3. BRILL'S EQUATIONS AS A $G L(V)$-MODULE 26
3.1 Construction of Brill's map 26
3.2 Brill's map as a $G L(V)$-module map 29
3.3 Weight spaces and weight vectors of $S_{(d, d)} V \otimes S^{d^{2}-d} V$ and $S^{d+1}\left(S^{d} V\right)$ 30
3.4 Computing $\mathfrak{B}\left(v_{j}\right)$ 33
3.5 Orthogonal decomposition of $S_{(d, d) V} \otimes S^{d^{2}-d} V$ 39
4. DETERMINANTAL EQUATIONS FOR VARIETIES ARISING IN COM- PLEXITY THEORY 42
4.1 Koszul Young Flattenings of Chow varieties and their secant varieties 42
4.1.1 Disjoint linear maps 42
4.1.2 Koszul Young flattenings of Chow varieties 42
4.1.3 Koszul Young flattenings of secant varieties of Chow varieties 48
4.2 Flattenings of Veronese reembeddings of secant varieties of Veronese varieties 50
4.2.1 Flattenings of Veronese reembeddings of secant varieties of Veronese varieties 50
4.2.2 Comparison with the permanent 57
5. EQUATIONS FOR SECANT VARIETIES OF CHOW VARIETIES 59
5.1 Prolongations, multiprolongations and partial derivatives 59
5.1.1 Prolongations, multiprolongations and ideals of secant varieties 59
5.1.2 Partial derivatives and prolongations 63
5.2 The case when the degree is 3 68
5.3 The case when the degree is 4 71
5.4 General case for even degrees 73
5.5 A property of Plethysm coefficients 75
6. SUMMARY 76
REFERENCES 77
APPENDIX A. COMPLEXITY THEORY 83
A. 1 Valiant's Conjecture 83
A. 2 Shallow circuits 84
A. 3 Depth reduction 85

1. INTRODUCTION

1.1 Motivation

1.1.1 Motivation from algebraic geometry

There has been substantial recent interest in the equations of certain algebraic varieties that encode natural properties of polynomials (see e.g. [9, 29, 33, 35, 36]). Such varieties are usually preserved by algebraic groups and it is a natural question to understand the module structures of the spaces of equations. One variety of interest is the Chow variety of polynomials that decompose as a product of linear forms, which is defined by $C h_{d}(V)=\mathbb{P}\left\{z \in S^{d} V \mid z=w_{1} \cdots w_{d}\right.$ for some $\left.w_{i} \in V\right\} \subset \mathbb{P} S^{d} V$, where V is a finite-dimensional complex vector space and $\mathbb{P} S^{d} V$ is the projective space of homogeneous polynomials of degree d on the dual space V^{*}.

The ideal of the Chow variety of polynomials that decompose as a product of linear forms has been studied for over 100 years, dating back at least to Gordon [18] and Hadamard [25]. Let $S^{\delta}\left(S^{d} V\right)$ denote the space of homogeneous polynomials of degree δ on $S^{d} V^{*}$. The Foulkes-Howe map $h_{\delta, d}: S^{\delta}\left(S^{d} V\right) \rightarrow S^{d}\left(S^{\delta} V\right)$ (see $\S 2.5$ for the definition) was defined by Hermite [27] when $\operatorname{dim} V=2$, and Hermite proved the map is an isomorphism in his celebrated "Hermite reciprocity". Hadamard [24] defined the map in general and observed that its kernel is $I_{\delta}\left(C h_{d}\left(V^{*}\right)\right)$, the degree δ component of the ideal of the Chow variety. The conjecture that $h_{\delta, d}$ is always of maximal rank, which dates back to Hadamard [25], has become known as the "Foulkes-Howe conjecture" $[15,28]$. Müller and Neunhöffer [41] proved the conjecture is false by showing the map $h_{5,5}$ is not injective. Brion [4, 5] proved the FoulkesHowe conjecture is true asymptotically, giving an explicit, but very large bound for δ in terms of d and $\operatorname{dim} V$. This map is not understood when $d>4$ (see
$[4,5,15,25,28,38])$.
Brill and Gordon (see $[17,18,31]$) wrote down set-theoretic equations for the Chow variety of degree $d+1$, called "Brill's equations". Brill's equations give a geometric derivation of set-theoretic equations for the Chow variety, and it is a natural question to understand these equations as a $G L(V)$-module, where $G L(V)$ denotes the general linear group of invertible linear maps from V to V.

1.1.2 Motivation from complexity theory

Informally speaking, the \mathbf{P} versus NP problem (see e.g.[44]) asks whether every problem whose solution can be quickly verified by a computer can also be quickly solved by a computer. An early mention of it was a 1956 letter written by Kurt Gödel to John von Neumann. Gödel asked whether a certain NP-complete problem could be solved in quadratic or linear time [26]. The precise statement of the P versus NP problem was introduced in 1971 by Stephen Cook in [11] and is considered to be the most important open problem in theoretical computer science [14].

In computational complexity theory, a decision problem is a question in some formal system with a yes-or-no answer, depending on the values of input parameters. The class \mathbf{P} consists of all those decision problems that can be solved in an amount of time that is polynomial in the size of the input; the class NP consists of all those decision problems whose positive solutions can be verified in polynomial time given the right information. For example, given a set A of n integers and a subset B of A, the statement that " B adds up to zero" can be quickly verified with at most ($n-1$) additions. However, there is no known algorithm to find a subset of A adding up to zero in polynomial time.

Leslie Valiant [48] defined in 1979 an algebraic analogue of the \mathbf{P} versus NP problem The class VP is an algebraic analogue of the class \mathbf{P}, and the class VNP
is an algebraic analog of the class VP. Valiant Conjectured VP $\neq \mathbf{V N P}$. If Valiant Conjecture failed i.e. $\mathbf{V P}=\mathbf{V N P}$, then $\mathbf{P}=\mathbf{N P}[48,49]$. Valiant's Conjecture $\mathbf{V P} \neq \mathbf{V N P}$ [48] may be rephrased as "there does not exist polynomial size circuit that computes the permanent", defined by perm ${ }_{n}=\sum_{\sigma \in \mathfrak{G}_{\mathfrak{n}}} x_{1 \sigma(1)} x_{2 \sigma(2)} \cdots x_{n \sigma(n)} \in$ $S^{n} \mathbb{C}^{n^{2}}$, where $\mathfrak{S}_{\mathfrak{n}}$ is the symmetric group and $\mathbb{C}^{n^{2}}$ has a basis $\left\{x_{i j}\right\}_{1 \leq i, j \leq n}$. The readers can refer to Appendix A to learn more about circuits, complexity classes and Valiant's Conjecture.

1.1.3 A geometric approach to Valiant's conjecture

A geometric method to approach Valiant's conjecture implicitly proposed by Gupta, Kamath, Kayal and Saptharishicite [23] is to determine equations for certain secant varieties (defined below).

Let W be a complex vector space and $X \subset \mathbb{P} W$ be an algebraic variety, define $\sigma_{r}^{0}(X)=\bigcup_{p_{1}, \ldots, p_{r} \in X}\left\langle p_{1}, \ldots, p_{r}\right\rangle \subset \mathbb{P} W$, where $\left\langle p_{1}, \ldots, p_{r}\right\rangle$ denotes the projective plane spanned by p_{1}, \ldots, p_{r}. Define the r-th secant variety of X to be $\sigma_{r}(X)=\overline{\sigma_{r}^{0}(X)} \subset$ $\mathbb{P} W$, where the over line denotes closure in the Zariski topology.

Let $X \subset \mathbb{P} V$ be an algebraic variety, define the Veronese embedding $v_{d}(X) \subset$ $\mathbb{P} S^{d} V$ of X by $v_{d}(X)=\mathbb{P}\left\{z \in S^{d} V \mid z=w^{d}\right.$ for some $\left.[w] \in X\right\}, v_{d}(\mathbb{P} V)$ is called the Veronese variety.

Let h_{n} and g_{n} be two positive sequences, define $h_{n}=\omega\left(g_{n}\right)$ if $\lim _{n \rightarrow \infty} \frac{h_{n}}{g_{n}}=\infty$, define $h_{n}=\Omega\left(g_{n}\right)$ if $\lim _{n \rightarrow \infty} \frac{h_{n}}{g_{n}} \geq C$ for some positive constant C.

The following two theorems appeared in [32], they are geometric rephrasings of results in [23].

Theorem 1.1.1. [23, 32] If for all but a finite number of m, for all r, n with $r n<$
$2^{\omega(\sqrt{m} \log (m))}$,

$$
\left[l^{n-m} \operatorname{perm}_{m}\right] \notin \sigma_{r}\left(C h_{n}\left(\mathbb{C}^{m^{2}+1}\right)\right)
$$

then Valiant's Conjecture VP \neq VNP [48] holds.

Theorem 1.1.2. [23, 32] If for all but finite number of n, and for $\delta_{1}, \delta_{2} \sim \sqrt{n}$, for r, ρ with $r \rho<2^{\omega(\sqrt{n} \log (n))}$,

$$
\left[\operatorname{perm}_{n}\right] \notin \sigma_{\rho}\left(v_{\delta_{1}}\left(\sigma_{r}\left(v_{\delta_{2}}\left(\mathbb{P}^{n^{2}-1}\right)\right)\right)\right)
$$

then Valiant's conjecture VP $\neq \mathbf{V N P}$ [48] holds.

Theorems 1.1.1 and 1.1.2 motivated me to study the equations for $\sigma_{r}\left(C h_{d}(V)\right)$ and $\sigma_{\rho}\left(v_{\delta_{1}}\left(\sigma_{r}\left(v_{\delta_{2}}(\mathbb{P} V)\right)\right)\right.$. The results obtained here are not in the ranges needed to separate VP from VNP. However, the results come from a geometric perspective and are amenable to generalizations. For the first problem I obtain equations for secant varieties of Chow varieties using two different methods. For the second problem, this is the first time that equations for $\sigma_{\rho}\left(v_{\delta_{1}}\left(\sigma_{r}\left(v_{\delta_{2}}(\mathbb{P} V)\right)\right)\right.$ are approached geometrically.

1.2 Results

1.2.1 Brill's equations as a $G L(V)$-module

The group $G L(V)$ has an induced action on $S^{d} V$ (see $\S 2.2$). The Chow variety $C h_{d}(V)$ is invariant under the action of $G L(V)$, therefore the ideal of $C h_{d}(V)$ is a $G L(V)$-module (see $\S 2.2$). For any partition λ, let $S_{\lambda} V$ be the irreducible $G L(V)$ module determined by the partition λ (see $\S 2.3$). For example $S_{(d)} V=S^{d} V$, while $S_{\left(1^{d}\right)} V=\Lambda^{d} V$ is the d-th exterior power of V.

In Chapter 3, I prove

Theorem 1.2.1. Assume $\operatorname{dim} V \geq 3$ and $d \geq 2$. The degree $d+1$ equations for $C h_{d}(V)$ discovered by Brill, as a $G L(V)$-module, are:

$$
\begin{cases}S_{(7,3,2)} V^{*}, & \text { if } d=3 \\ \bigoplus_{j=2}^{d} S_{\left(d^{2}-j, d, j\right)} V^{*}, & \text { if } d \neq 3\end{cases}
$$

Remark 1.2.2. Compare the codimension of $C h_{d}\left(\mathbb{C}^{3}\right)$ with the dimension of all the modules in Theorem 3.2.1 that define $C h_{d}\left(\mathbb{C}^{3}\right)$ set- theoretically: When $d=2$, the codimension of $C h_{2}\left(\mathbb{C}^{3}\right)$ is 1 and the dimension of $S_{(2,2,2)} \mathbb{C}^{* 3}$ is 1 . When $d=3$, the codimension of $C h_{3}\left(\mathbb{C}^{3}\right)$ is 3 while the dimension of $S_{(7,3,2)} \mathbb{C}^{* 3}$ is 35 . In general the dominant term of the codimension of $C h_{d}\left(\mathbb{C}^{3}\right)$ is $\frac{d^{2}}{2}$, but the dominant term of the dimension of the modules from Brill's equations that define $C h_{d}\left(\mathbb{C}^{3}\right)$ is $\frac{d^{7}}{2}$. Therefore, the Chow variety is far from being a complete intersection.

1.2.2 Symmetric border rank of monomials

For a given polynomial $P \in S^{d} V$, the symmetric $\operatorname{rank} \mathbf{R}_{S}(P)$ of P is the smallest integer r such that $[P] \in \sigma_{r}^{0}\left(v_{d}(\mathbb{P} V)\right)$, and the symmetric border $\operatorname{rank} \underline{\mathbf{R}}_{S}(P)$ of P is the smallest integer r such that $[P] \in \sigma_{r}\left(v_{d}(\mathbb{P} V)\right)$. Notice that $\mathbf{R}_{S}(P) \geq \underline{\mathbf{R}}_{S}(P)$.

It is an open problem to determine the symmetric border rank of $x_{1} \cdots x_{d}$. Classical results show that $\underline{\mathbf{R}}_{S}\left(x_{1} \cdots x_{d}\right) \geq\binom{ d}{\left\lfloor\frac{d}{2}\right\rfloor} \sim \frac{2^{d}}{\sqrt{d}}$. Ranestad and Schreyer [42] showed $\mathbf{R}_{S}\left(x_{1} \cdots x_{d}\right)=2^{d-1}$. Therefore $\binom{d}{\left\lfloor\frac{d}{2}\right\rfloor} \leq \underline{\mathbf{R}}_{S}\left(x_{1} \cdots x_{d}\right) \leq \mathbf{R}_{S}\left(x_{1} \cdots x_{d}\right)=2^{d-1}$.

In $\S 4.1$ I prove a new lower bound for $\underline{\mathbf{R}}_{S}\left(x_{1} \cdots x_{2 n+1}\right)$ when $d=2 n+1$, which is $\binom{2 n+1}{n}$ plus an additional exponential term in n.

Theorem 1.2.3. $\underline{\mathbf{R}}_{S}\left(x_{1} \cdots x_{2 n+1}\right) \geq\binom{ 2 n+1}{n}\left(1+\frac{n^{2}}{(n+1)^{2}(2 n-1)}\right)$.

Remark 1.2.4. When $d=2 n$, I conjecture that with the same method one can show $\underline{\mathbf{R}}_{S}\left(x_{1} \cdots x_{2 n}\right) \geq\binom{ 2 n}{n}\left(1+\frac{C}{2 n}\right)$ for some constant C and for n big enough. I did not prove that, but I verified small cases with a computer. When $d=3, \underline{\mathbf{R}}_{S}\left(x_{1} x_{2} x_{3}\right) \geq 4$, so $\underline{\mathbf{R}}_{S}\left(x_{1} x_{2} x_{3}\right)=4>\binom{3}{1}$. When $d=5,\binom{5}{2}<13 \leq \underline{\mathbf{R}}_{S}\left(x_{1} x_{2} x_{3} x_{4} x_{5}\right) \leq 16$.
1.2.3 A new lower complexity bound for the permanent

In $\S 4.2$, I prove a new lower complexity bound for the permanent:

Theorem 1.2.5. Let $\delta_{1}, \delta_{2} \sim \sqrt{n}$ and $\operatorname{dim} V=n^{2}$, when $\frac{2 n-\sqrt{n} \log (r)}{\sqrt{n} \log (n)}=\omega(1)$, i.e. $r=2^{2 \sqrt{n}-\log (n) \omega(1)}$,

$$
\operatorname{perm}_{n} \notin \sigma_{\rho}\left(v_{\delta_{1}}\left(\sigma_{r}\left(v_{\delta_{2}}(\mathbb{P} V)\right)\right)\right)
$$

for $\rho<2^{\omega(\sqrt{n} \log (n))}$.

1.2.4 Equations for secant varieties of Chow varieties

Let W be a complex vector space and $X \subset \mathbb{P} W$ be an algebraic variety, and let $I_{d}(X)$ denote the degree d component of the ideal of X.

In §5.2, I prove:

Theorem 1.2.6. If $\operatorname{dim} V \leq 6$, then $I_{7}\left(\sigma_{2}\left(C h_{3}\left(V^{*}\right)\right)\right)=0$.

Remark 1.2.7. When $\operatorname{dim} V \leq 4, \sigma_{2}\left(C h_{3}\left(V^{*}\right)\right.$ is the ambient space and the ideal is 0 . When $\operatorname{dim} V \geq 7$, any module with 7 rows in $S^{7}\left(S^{3} V\right)$ is in $I_{7}\left(\sigma_{2}\left(C h_{3}\left(V^{*}\right)\right)\right)$.

Also I prove:
Theorem 1.2.8. If $\operatorname{dim} V \geq 6$, then $S_{(5,5,5,5,3,1)} V \subset I_{8}\left(\sigma_{2}\left(C h_{3}\left(V^{*}\right)\right)\right)$.

Remark 1.2.9. When $\operatorname{dim} V=5$, I expect $I_{8}\left(\sigma_{2}\left(C h_{3}\left(V^{*}\right)\right)\right)=0$, but I did not prove it. When $\operatorname{dim} V=6$, I expect $I_{8}\left(\sigma_{2}\left(C h_{3}\left(V^{*}\right)\right)\right)=S_{(5,5,5,5,3,1)} V$. When $\operatorname{dim} V \geq 7$,
any module with more than 7 rows in $S^{8}\left(S^{3} V\right)$ is in $I_{8}\left(\sigma_{2}\left(C h_{3}\left(V^{*}\right)\right)\right.$), in addition to the module $S_{(5,5,5,5,3,1)} V$.

In §5.3, I prove:

Theorem 1.2.10. Consider $\operatorname{dim} V \geq 4 r$,

$$
S_{\left(6,6,4^{4 r-2}\right)} V \subset I_{4 r+1}\left(\sigma_{r}\left(C h_{4}\left(V^{*}\right)\right)\right.
$$

Remark 1.2.11. The lowest degree in the ideal of $C h_{4}\left(V^{*}\right)$ is 5, and by Theorem 5.1.3, the lowest possible degree in the ideal of $\sigma_{r}\left(C h_{4}\left(V^{*}\right)\right)$ is $4 r+1$, so $I_{4 r}\left(\sigma_{r}\left(C h_{4}\left(V^{*}\right)\right)=0\right.$. When $\operatorname{dim} V=4 r$, I expect $S_{\left(6,6,4^{4 r-2}\right)} V=I_{4 r+1}\left(\sigma_{r}\left(C h_{4}\left(V^{*}\right)\right)\right.$. When $\operatorname{dim} V>4 r$, any module with $4 r+1$ rows in $S^{4 r+1}\left(S^{4} V\right)$ is in $I_{4 r+1}\left(\sigma_{r}\left(C h_{4}\left(V^{*}\right)\right)\right)$, in addition to the module $S_{\left(6,6,4^{4 r-2}\right)} V$.

In §5.4, I prove:

Theorem 1.2.12. The isotypic component of $S_{\left((2 m+2)^{m},(2 m)^{2 m r-m}\right)} V$ in $S^{2 m r+1}\left(S^{2 m} V\right)$ is in $I_{2 m r+1}\left(\sigma_{r}\left(C h_{2 m}\left(V^{*}\right)\right)\right)$.

1.3 Overview of methods

1.3.1 Computing the image of Brill's map

Brill's equations $[17,18,31]$ are set-theoretic equations for the Chow variety $C h_{d}(V)$. The Chow variety $C h_{d}(V)$ is the zero set of a polynomial map $\mathfrak{B}: S^{d} V \rightarrow$ $S_{(d, d)} V \otimes S^{d^{2}-d} V$ of degree $d+1$ (see $\S 2.4$). Brill's equations are the span of the coefficients of the polynomial map \mathfrak{B}. The polynomial map \mathfrak{B} is complicated and it is hard to write down the coefficients explicitly from Brill's presentation. I determine Brill's equations as a $G L(V)$-module to understand these equations and write down these equations explicitly.

The idea is to construct the polarization (see $\S 2.1) \overline{\mathfrak{B}}$ of \mathfrak{B}, where $\overline{\mathfrak{B}}: S^{d+1}\left(S^{d} V\right) \rightarrow$ $S_{(d, d)} V \otimes S^{d^{2}-d} V$, and then determine the image of $\overline{\mathfrak{B}}$, whose dual is isomorphic to the $G L(V)$-module corresponding to Brill's equations. I call $\overline{\mathfrak{B}}$ Brill's map.

Brill's map $\overline{\mathfrak{B}}$ is a $G L(V)$-module map, the space $S_{(d, d)} V \otimes S^{d^{2}-d} V$ can be decomposed by Pieri's rule (see e.g. [16] or $\S 2.3$),

$$
S_{(d, d)} V \otimes S^{d^{2}-d} V=\bigoplus_{j=0}^{d} S_{\left(d^{2}-j, d, j\right)} V,
$$

I determine which irreducible $G L(V)$-modules are in the image of Brill's map.

1.3.2 Flattenings, Koszul Young flattenings and determinantal equations

Equations for the secant varieties of Chow varieties are mostly unknown, and even for the secant varieties of Veronese varieties very little is known. One class of equations is obtained from the so-called flattenings or catalecticants, which date back to Sylvester: for any $1 \leq k \leq d$, there is an inclusion $F_{k, d-k}: S^{d} V \hookrightarrow S^{k} V \otimes S^{d-k} V$, called a polarization map. For any $P \in S^{d} V$, define the k-th polarization $P_{k, d-k}$ of P to be $F_{k, d-k}(P)$. Then $P_{k, d-k} \in S^{k} V \otimes S^{d-k} V$ can be seen as a linear map $P_{k, d-k}: S^{k} V^{*} \rightarrow S^{d-k} V$. The image of $P_{k, d-k}$ is the space spanned by all k-th order partial derivatives of P, and is studied in the computer science literature under the name the method of partial derivatives (see, e.g. [10] and the references therein). If $\left\{x_{1}, \ldots, x_{n}\right\}$ is a basis of V, then $\left\{\frac{\partial^{k}}{\partial x_{1}^{i_{1} \ldots \partial i_{n}^{i_{n}}}}\right\}_{i_{1}+\cdots+i_{n}=k}$ is a basis of $S^{k} V^{*}$, define $P_{k, d-k}\left(\frac{\partial^{k}}{\partial x_{1}^{i_{1}} \ldots \partial x_{n}^{i_{n}}}\right)=\frac{\partial^{k} P}{\partial x_{1}^{i_{1}} \ldots \partial x_{n}^{i_{n}}}$ and extend it linearly.

If $[P] \in v_{d}(\mathbb{P} V)$, the rank of $P_{k, d-k}$ is one, so the size $(r+1)$-minors of $P_{k, d-k}$ are in the ideal of $I_{r+1}\left(\sigma_{r}\left(v_{d}(\mathbb{P} V)\right)\right)$. If $[P] \in C h_{d}(V)$ with $\operatorname{dim} V \geq d$, then the rank of $P_{k, d-k}$ is $\binom{d}{k}$, so the size $r\binom{d}{k}+1$ minors are in the ideal of $\sigma_{r}\left(C h_{d}(V)\right)$.

Other equations come from Young flattenings, see [12, 13, 35] for a discussion
of the Young flattenings and the state of the art. For $P \in S^{d} V$, the Koszul Young flattening is a linear map $P_{k, d-k}^{\wedge p}: S^{k} V^{*} \otimes \Lambda^{p} V \rightarrow S^{d-k+1} V \otimes \Lambda^{p+1} V$, it is defined by the composition of the following two maps

$$
S^{k} V^{*} \otimes \Lambda^{p} V \rightarrow S^{d-k} V \otimes \Lambda^{p} V \rightarrow S^{d-k-1} V \otimes \Lambda^{p+1} V
$$

where the first map is defined by tensoring $P_{k, d-k}$ with the identity map $I d_{\Lambda^{p} V}$: $\Lambda^{p} V \rightarrow \Lambda^{p} V$, and the second map $\wedge_{d-k, p}: S^{d-k} V \otimes \Lambda^{p} V \rightarrow S^{d-k-1} V \otimes \Lambda^{p+1} V$ is defined as follows:

$$
l_{1} \cdots l_{d-k} \otimes m_{1} \wedge m_{2} \cdots \wedge m_{p} \mapsto \sum_{s=1}^{d-k} l_{1} l_{2} \cdots \hat{l}_{s} \cdots l_{d-k} \otimes l_{s} \wedge m_{1} \wedge m_{2} \cdots \wedge m_{p}
$$

then extend linearly to the whole space. In the tensor setting, Koszul Young flattenings have led to the current best lower bound for the border rank of matrix multiplication in [34, 37].

Another Young flattening $P_{k, d-k[l]}: S^{k} V^{*} \otimes S^{l} V \rightarrow S^{d-k+l} V$ is obtained by tensoring $P_{k, d-k}$ with the identity map $I d_{S^{l} V}: S^{l} V \rightarrow S^{l} V$, and projecting (symmetrizing) the image in $S^{d-k} V \otimes S^{l} V$ to $S^{d-k+l} V$. This map goes under the name "method of shifted partial derivatives" in the computer science literature. The method of shifted partial derivatives is studied in [22], where Gupta, Kamath, Kayal and Saptharishicite proved if $\delta_{1}, \delta_{2} \sim \sqrt{n}, \operatorname{dim} V=n^{2}$ and $\left[\operatorname{perm}_{n}\right] \in \sigma_{r}\left(v_{\delta_{1}}\left(\mathbb{P} S^{\delta_{2}} V\right)\right)$, then $r=2^{\Omega(\sqrt{n})}$.

By computing the Koszul Young flattenings of Chow varieties and their secant varieties, I obtain equations for these varieties.

Theorem 1.3.1. Let $V=\mathbb{C}^{d}$ with a basis $\left\{x_{1}, \ldots, x_{d}\right\}$ and $P=x_{1} \cdots x_{d}$, and let
$2 \leq k<\left\lceil\frac{d}{2}\right\rceil, p<\left\lceil\frac{d}{2}\right\rceil$. The map

$$
P_{k, d-k}^{\wedge p}: S^{k} V^{*} \otimes \Lambda^{p} V \rightarrow S^{d-k-1} V \otimes \Lambda^{p+1} V
$$

has rank

$$
\begin{align*}
\mathbf{S}(\mathbf{p}, \mathbf{d}, \mathbf{k}) & =\sum_{s=\max \{0, p-k\}}^{\min \{p, d-k-1\}}\binom{d}{s}\binom{d-s}{d-k+p-2 s}\binom{d-k+p-2 s-1}{p-s} \tag{1.1}\\
& =\frac{d!}{p!(d-p-1)!} \sum_{s=\max \{0, p-k\}}^{\min \{p, d-k-1\}} \frac{\binom{p}{s}\binom{d-1-p}{s+k-p}}{d-k+p-2 s} . \tag{1.2}
\end{align*}
$$

Therefore the $(\mathbf{S}(\mathbf{p}, \mathbf{d}, \mathbf{k})+1) \times(\mathbf{S}(\mathbf{p}, \mathbf{d}, \mathbf{k})+1)$ minors of $P_{k, d-k}^{\wedge p}$ are in the ideal of $C h_{d}(V)$.

Theorem 1.3.2. Let $V=\mathbb{C}^{r d}$ with a basis $\left\{x_{1}, \ldots, x_{r d}\right\}$ and $P=x_{1} \cdots x_{d}+$ $x_{d+1} \cdots x_{2 d}+\cdots+x_{(r-1) d+1} \cdots x_{r d}$. Assume $k<\left\lceil\frac{d}{2}\right\rceil, p<\left\lceil\frac{d}{2}\right\rceil, r \geq 2$. Then the map

$$
P_{k, d-k}^{\wedge p}: S^{k} V^{*} \otimes \Lambda^{p} V \rightarrow S^{d-k-1} V \otimes \Lambda^{p+1} V
$$

has rank

$$
\begin{equation*}
\operatorname{rank}\left(P_{k, d-k}^{\wedge p}\right) \leq r\left[\binom{d}{k}\left(\binom{d r}{p}-\binom{d}{p}\right)+\mathbf{S}(\mathbf{p}, \mathbf{k}, \mathbf{d})\right] . \tag{1.3}
\end{equation*}
$$

In particular, when $d \geq 2$, and $p=k=1$,

$$
\operatorname{rank}\left(P_{1, d-1}^{\wedge 1}\right) \leq d^{2} r^{2}-r
$$

Therefore the $\left(d^{2} r^{2}-r+1\right) \times\left(d^{2} r^{2}-r+1\right)$ minors of $P_{1, d-1}^{\wedge 1}$ are in the ideal of
$\sigma_{r}\left(C h_{d}(V)\right)$.

Remark 1.3.3. Theorems 1.2.3 and 1.3.2 are consequences of Theorem 1.3.1.

To prove Theorem 1.2.5, I compute the flattening rank of a generic polynomial in $v_{\delta_{1}}\left(\sigma_{r}\left(v_{\delta_{2}}(\mathbb{P} V)\right)\right) \subset \mathbb{P} S^{n} V$, where $\operatorname{dim} V=n^{2}$ and $\delta_{1}, \delta_{2} \sim \sqrt{n}$, and then I compare it to that of the permanent.

1.3.3 Prolongation and equations for secant varieties

Let W be a complex vector space and $X \subset \mathbb{P} W$ be an algebraic variety. Suppose we know the ideal of X. Then there is a systematic method called prolongation (see §5.1.1 for definition) to compute the ideal of $\sigma_{r}(X)$, but this method is difficult to implement. This method was studied by J. Sidman and S. Sullivant [43], and J.M. Landsberg and L. Manivel [33].

The group $G L(V)$ has an induced action on $S^{k}\left(S^{d} V\right)$, so $S^{k}\left(S^{d} V\right)$ can be decomposed into a direct sum of irreducible $G L(V)$-modules, the multiplicity of $S_{\lambda} V$ in $S^{k}\left(S^{d} V\right)$ is the plethysm coefficient $p_{\lambda}(k, d)$. To obtain equations for secant varieties, on one hand I compute prolongations directly via differential operators and representation theory. On the other hand, I rephrase prolongations and reduce computing prolongations to computing the polarization maps via plethysm coefficients and Littlewood-Richardson coefficients. This gives a path towards obtaining equations for secant varieties of Chow varieties and other varieties.

1.4 Organization

In Chapter 2, I include mathematical preliminaries for this dissertation, which are polarization of a polynomial map, G-variety, Brill's equations, representation theory and Foulkes-Howe map and the ideal of Chow variety.

In Chapter 3, I determine Brill's equations as a $G L(V)$-module.

In Chapter 4, I obtain determinantal equations for the Chow varieties, their secant varieties and secant varieties of Veronese reembedding of secant varieties of Veronese variety by flattenings and Koszul Young flattenings. Consequently, I get a new lower bound for the symmetric border rank of $x_{1} x_{2} \cdots x_{d}$ when d is odd, and a new complexity lower bound for the permanent.

In Chapter 5, I use the method of prolongation to obtain equations for secant varieties of Chow varieties as $G L(V)$-modules.

In Chapter 6, I give a summary of the dissertation.

1.5 Notation

1. $C h_{d}(V)$: Chow variety of polynomials that decompose as product of linear form.
2. $G L(V)$: the general linear group of invertible linear maps from V to V.
3. $S^{d} V$: the space of homogeneous polynomials of degree d on the dual space V^{*}.
4. $\Lambda^{d} V$: the d-th exterior power of V.
5. $S^{\delta}\left(S^{d} V\right)$: the space of homogeneous polynomials of degree δ on $S^{d} V^{*}$.
6. $\mathfrak{S}_{\mathfrak{n}}$: the symmetric group of order n.
7. perm $_{n}$: the permanent defined by perm ${ }_{n}=\sum_{\sigma \in \mathfrak{S}_{\mathfrak{n}}} x_{1 \sigma(1)} x_{2 \sigma(2)} \cdots x_{n \sigma(n)}$.
8. l^{n-m} perm $_{m}$: The padded permanent.
9. $\sigma_{r}(X)$: the r-th secant variety of X.
10. $v_{d}(X)$: Veronese embedding of X.
11. $v_{d}(\mathbb{P} V)$: the Veronese variety.
12. Let h_{n} and g_{n} be two positive sequences, define $h_{n}=\omega\left(g_{n}\right)$ if $\lim _{n \rightarrow \infty} \frac{h_{n}}{g_{n}}=\infty$, define $h_{n}=\Omega\left(g_{n}\right)$ if $\lim _{n \rightarrow \infty} \frac{h_{n}}{g_{n}} \geq C$ for some positive constant C.
13. A partition λ of order d and length $m: \lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ with $\lambda_{1} \geq \cdots \geq \lambda_{m}>$ $0, \lambda_{j} \in \mathbb{N}$ and $\sum_{i=1}^{m} \lambda_{i}=d$.
14. [λ]: irreducible \mathfrak{S}_{d} representation corresponding to the partition λ of order d.
15. $S_{\lambda} V$: irreducible $G L(V)$ representation corresponding to the partition λ.
16. A semi-standard tableau of shape λ and content $k \times d$: a semi-standard tableau associated to λ and filled with $\{1, \ldots, k\}$ such that each $i \in\{1, \ldots, k\}$ appears d times.
17. Lexicographic order of partitions: $\lambda>\mu$ if the first nonvanishing $\lambda_{i}-\mu_{i}$ is positive.
18. Dominance partial order of partitions: $\alpha>\beta$ if $\alpha_{1}+\cdots+\alpha_{i} \geq \beta_{1}+\cdots+$ β_{i} for each i.
19. $\mathbf{R}_{S}(P)$: the symmetric rank of P.
20. $\underline{\mathbf{R}}_{S}(P)$: the symmetric border rank of P.
21. $I_{d}(X)$: the degree d component of the ideal of X.
22. \bar{P} : the (complete) polarization of a polynomial map P.
23. $P_{k, d-k}$: the k-th polarization of $P \in S^{d} V$, or the k-th flattening of $P \in S^{d} V$.
24. $P_{k, d-k}^{\wedge p}$: Koszul Young flattening of $P \in S^{d} V$.

2. PRELIMINARIES

2.1 Polarization of a polynomial map

Definition 2.1.1. Let V_{1}, \ldots, V_{d} be complex vector spaces, define a map $\varphi: V_{1} \times$ $\cdots \times V_{d} \rightarrow V_{1} \otimes \cdots \otimes V_{d}$ by $\varphi\left(v_{1}, \ldots, v_{d}\right)=v_{1} \otimes \cdots \otimes v_{d}$. The universal property of tensors is the following: given a complex vector space W and a multi-linear map $h: V_{1} \times \cdots \times V_{d} \rightarrow W$, there is a unique linear map $\tilde{h}: V_{1} \otimes \cdots \otimes V_{d} \rightarrow W$, such that $h=\tilde{h} \circ \varphi$.

Definition 2.1.2. Let W be a complex vector space. A map $P: W \rightarrow \mathbb{C}^{m}$ is a polynomial map of degree k if $P=\left(P_{1}, \ldots, P_{m}\right)$, and each $P_{i}(i=1, \ldots, m)$ is called a homogenous polynomial of degree k on W.

Define the complete polarization $\bar{P}: W \times \cdots \times W \rightarrow \mathbb{C}^{m}$ of P to be

$$
\bar{P}\left(w_{1}, \cdots, w_{k}\right)=\frac{1}{k!} \sum_{I \subset[k], I \neq \emptyset}(-1)^{k-|I|} P\left(\sum_{i \in I} w_{i}\right) .
$$

Where $[k]=\{1, \ldots, k\}, w_{i} \in W$ and \bar{P} is a symmetric multi-linear map. By the universal property of tensors, \bar{P} is considered as a map $\bar{P}: W^{\otimes k} \rightarrow \mathbb{C}^{m}$. By the symmetry of \bar{P}, \bar{P} can be also seen as a map $\bar{P}: S^{k} W \rightarrow \mathbb{C}^{m}$, such that

$$
\begin{equation*}
\bar{P}\left(w_{1} \cdots w_{k}\right)=\frac{1}{k!} \sum_{I \subset[k], I \neq \emptyset}(-1)^{k-|I|} P\left(\sum_{i \in I} w_{i}\right), \tag{2.1}
\end{equation*}
$$

and it can be extended linearly to the whole space.

Example 2.1.3. Let $\operatorname{dim} V=2$, and let $\left\{e_{1}, e_{2}\right\}$ be a basis of V. Consider the poly-
nomial map $P: V \rightarrow \mathbb{C}^{2}$ defined by

$$
a_{1} e_{1}+a_{2} e_{2} \mapsto\left(a_{1}^{2}, a_{1}^{2}+a_{2}^{2}\right) .
$$

P is a polynomial map of degree 2, so by (2.1) $\bar{P}: S^{2} V \rightarrow \mathbb{C}^{2}$ is defined by

$$
\begin{aligned}
\bar{P}\left(\left(a_{1} e_{1}+a_{2} e_{2}\right)\left(a_{3} e_{1}+a_{4} e_{2}\right)\right)= & \frac{1}{2}\left[P\left(a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{1}+a_{4} e_{2}\right)\right. \\
& \left.-P\left(a_{1} e_{1}+a_{2} e_{2}\right)-P\left(a_{3} e_{1}+a_{4} e_{2}\right)\right] \\
= & \frac{1}{2}\left[\left(\left(a_{1}+a_{3}\right)^{2},\left(a_{1}+a_{3}\right)^{2}+\left(a_{2}+a_{4}\right)^{2}\right)\right. \\
& \left.-\left(a_{1}^{2}, a_{1}^{2}+a_{2}^{2}\right)-\left(a_{3}^{2}, a_{3}^{2}+a_{4}^{2}\right)\right] \\
= & \left(a_{1} a_{3}, a_{1} a_{3}+a_{2} a_{4}\right) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\bar{P}\left(a e_{1}^{2}+b e_{1} e_{2}+c e_{2}^{2}\right) & =a \bar{P}\left(e_{1}^{2}\right)+b \bar{P}\left(e_{1} e_{2}\right)+c \bar{P}\left(e_{2}^{2}\right) \\
& =(a, a)+(0,0)+(0, c) \\
& =(a, a+c) .
\end{aligned}
$$

2.2 G-variety

I follow the notation in $[31, \S 4.7]$.

Definition 2.2.1. Let W be a complex vector space. A variety $X \subset \mathbb{P} W$ is called a G-variety if W is a module for the group G and for all $g \in G$ and $x \in X, g \cdot x \in X$.

The group G has an induced action on $S^{d} W^{*}$ such that for any $P \in S^{d} W^{*}$ and $w \in W, g \cdot P(w)=P\left(g^{-1} \cdot w\right)$. The degree d component of the ideal of X $I_{d}(X)$ is a linear subspace of $S^{d} W^{*}$ that is invariant under the action of G. Define
$S^{\bullet} W^{*}:=\oplus_{d=0}^{\infty} S^{d} W^{*}$, then:

Proposition 2.2.2. If $X \subset \mathbb{P} W$ is a G-variety, then the ideal of X is a G-submodule of $S^{\bullet} W^{*}=\oplus_{d=0}^{\infty} S^{d} W^{*}$.

Example 2.2.3. The group $G L(V)$ has an induced action on $S^{d} V$ and $S^{k}\left(S^{d} V^{*}\right)$ similarly. $C h_{d}(V), v_{d}(\mathbb{P} V)$ and their secant varieties are invariant under the action of $G L(V)$, therefore they are $G L(V)$-varieties and their ideals are $G L(V)$-submodules of $S^{\bullet}\left(S^{d} V^{*}\right)=\oplus_{k=0}^{\infty} S^{k}\left(S^{d} V^{*}\right)$.

Let $X \subset \mathbb{P} W$ be a G-variety, and M be an irreducible submodule of $S^{\bullet} W^{*}$, then either $M \subset I(X)$ or $M \cap I(X)=\emptyset$. Thus to test if M gives equations for X, one only need to test one polynomial in M.

2.3 Representation theory

2.3.1 Young tableaux and semi-standard tableaux

I follow the notation in [16] and [31]. A partition λ of an integer d is $\lambda=$ $\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ with $\lambda_{1} \geq \cdots \geq \lambda_{m}>0, \lambda_{j} \in \mathbb{N}$ and $\sum_{i=1}^{m} \lambda_{i}=d$. We say d is the order of λ and m is the length of λ. We often denote this by $\lambda \vdash d$. To a partition $\lambda \vdash d$, we associate a Young diagram, which is a left aligned collection of boxes with λ_{i} boxes in row i.

A filling of a Young diagram using the numbers $\{1, \cdots, l\}$ is an assignment of one number to each box, with repetitions allowed. A filled Young diagram is called a Young tableau. A semi-standard filling is one in which the entries are strictly increasing in the columns and weakly increasing in the rows. Semi-standard tableau is similarly defined.

Let λ be a partition with order $k d$, a semi-standard tableau of shape λ and content $k \times d$ is a semi-standard tableau associated to λ and filled with $\{1, \ldots, k\}$ such that
each $i \in\{1, \ldots, k\}$ appears d times.
2.3.2 Irreducible representations of the symmetric group \mathfrak{S}_{d} and the group $G L(V)$

I follow the notation in [16] and [31]. For any partition λ of order d, we can construct the irreducible representations of the symmetric group \mathfrak{S}_{d} and the group $G L(V)$ as follows:

Definition 2.3.1. Let G be a finite Group with elements g_{1}, \ldots, g_{r}, define the group algebra $\mathbb{C}[G]$ of G to be a complex vector space with basis $\left\{e_{g_{1}}, \ldots, e_{g_{r}}\right\}$ and with the algebra structure $e_{g_{i}} e_{g_{j}}=e_{g_{i} g_{j}}$.

Let T_{λ} be a Young tableau of shape λ and filled with $\{1,2, \ldots, d\}$ without repetitions, the symmetric group \mathfrak{S}_{d} acts on T_{λ} in a natural way. Define $P_{T_{\lambda}}=\{g \in$ $\mathfrak{S}_{d}: g$ preserves each row $\}$, and $Q_{T_{\lambda}}=\left\{g \in \mathfrak{S}_{d}: g\right.$ preserves each colume $\}$. Define elements in $\mathbb{C}\left[\mathfrak{S}_{d}\right]: a_{\lambda}=\sum_{g \in P_{T_{\lambda}}} e_{g}, b_{\lambda}=\sum_{g \in Q_{T_{\lambda}}} \operatorname{sign}(g) e_{g}$, and $c_{T_{\lambda}}=a_{T_{\lambda}} \cdot b_{T_{\lambda}} \cdot c_{T_{\lambda}}$ is called a Young symmetrizer.

Theorem 2.3.2. $\mathbb{C}\left[\mathfrak{S}_{d}\right] c_{T_{\lambda}}$ is an irreducible representation of \mathfrak{S}_{d}. Moreover, if \tilde{T}_{λ} is another Young tableau of shape λ filled with $\{1,2, \cdots, d\}$ without repetitions, then $\mathbb{C}\left[\mathfrak{S}_{d}\right] c_{T_{\lambda}}$ and $\mathbb{C}\left[\mathfrak{S}_{d}\right] c_{\tilde{T}_{\lambda}}$ are isomorphic.

Definition 2.3.3. Given a partition λ of order d, the \mathfrak{S}_{d}-module $[\lambda]$ is defined to be the representation corresponding to any of $\mathbb{C}\left[\mathfrak{S}_{d}\right] c_{T_{\lambda}}$.

Example 2.3.4. If $\lambda=(d)$, then $[\lambda]=\mathbb{C} \sum_{g \in \mathfrak{S}_{d}} e_{g}$ is the trivial representation of \mathfrak{S}_{d}.

If $\lambda=\left(1^{d}\right)$, then $[\lambda]=\mathbb{C} \sum_{g \in \mathfrak{S}_{d}} \operatorname{sign}(g) e_{g}$ is the alternating representation of \mathfrak{S}_{d}. If $\lambda=(d-1,1)$, then $[\lambda]$ is the standard representation of \mathfrak{S}_{d}.

The group $G L(V)$ has a natural action on $V^{\otimes d}$ such that $g \cdot\left(v_{1} \otimes v_{2} \cdots \otimes v_{d}\right)=$ $g \cdot v_{1} \otimes \cdots \otimes g \cdot v_{d}$. While the group \mathfrak{S}_{d} has a right action on $V^{\otimes d}$ by $\left(v_{1} \otimes \cdots \otimes\right.$
$\left.v_{d}\right) \cdot g=v_{g^{-1}(1)} \otimes \cdots \otimes v_{g^{-1}(d)}$, which induces a right action of $\mathbb{C}\left[\mathfrak{S}_{d}\right]$ on $V^{\otimes d}$. Define $S_{T_{\lambda}} V:=V^{\otimes d} \cdot c_{T_{\lambda}} \subset V^{\otimes d}$.

Theorem 2.3.5. $S_{T_{\lambda}} V$ is an irreducible $G L(V)$-submodule of $V^{\otimes d}$. Moreover, if \tilde{T}_{λ} is another Young tableau of shape λ filled with $\{1,2, \ldots, d\}$ without repetitions, then $S_{T_{\lambda}} V$ and $S_{\tilde{T}_{\lambda}} V$ are isomorphic.

Definition 2.3.6. Given a partition λ of order d, the $G L(V)$-module $S_{\lambda} V$ is defined to be any of $S_{T_{\lambda}} V$.

Example 2.3.7. If $\lambda=(d)$, then $S_{\lambda} V=V^{\otimes d} \cdot \sum_{g \in \mathfrak{S}_{d}} e_{g}=S^{d} V$.
If $\lambda=\left(1^{d}\right)$, then $S_{\lambda} V=V^{\otimes d} \cdot \sum_{g \in \mathfrak{G}_{d}} \operatorname{sign}(g) e_{g}=\Lambda^{d} V$.

2.3.3 The Littlewood-Richardson coefficients and Pieri's rule

Let π and μ be two partitions, the tensor product $S_{\lambda} V \otimes S_{\mu} V$ is a $G L(V)$-module. The littlewood-Richardson coefficients $c_{\pi \mu}^{\nu}$ are defined to be the multiplicity of $S_{\nu} V$ in $S_{\lambda} V \otimes S_{\mu} V$, i.e. $S_{\lambda} V \otimes S_{\mu} V=\bigoplus_{\nu} c_{\pi \mu}^{\nu} S_{\nu} V$.

We order partitions lexicographically: $\lambda>\mu$ if the first nonvanishing $\lambda_{i}-\mu_{i}$ is positive. Necessary conditions for $c_{\pi \mu}^{\nu}$ to be positive are $|\nu|=|\pi|+|\mu|$ and ν is greater than π and μ.

In particular $S_{\lambda} V \otimes S^{d} V=c_{\lambda,(d)}^{\nu} S_{\nu} V$.

Theorem 2.3.8. (Pieri's rule)

$$
c_{\lambda,(d)}^{\nu}=\left\{\begin{array}{l}
1 \text { if } \nu \text { is obtained from } \lambda \text { by adding d boxes to } \\
\text { the rows of } \lambda \text { with no two in the same column; } \\
0 \text { otherwise. }
\end{array}\right.
$$

Example 2.3.9. By Pieri's rule,

$$
\begin{gathered}
S^{a} V \otimes S^{b} V=\bigoplus_{0 \leq t \leq s, s+t=a+b} S_{(s, t)} V . \\
S_{(d, d)} V \otimes S^{d^{2}-d} V=\bigoplus_{j=0}^{d} S_{\left(d^{2}-j, d, j\right)} V .
\end{gathered}
$$

2.3.4 Highest weight vectors of an irreducible $G L(V)$-module

I follow the notation in [16]. Let $\operatorname{dim} V=n$ and $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ be a basis of V. Recall that the group $G L(V)$ has a natural action on $V^{\otimes d}$ such that $g \cdot\left(v_{1} \otimes\right.$ $\left.v_{2} \cdots \otimes v_{d}\right)=g \cdot v_{1} \otimes \cdots \otimes g \cdot v_{d}$. Let $B \subset G L(V)$ be the subgroup of upper-triangular matrices (a Borel subgroup). For any partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ with order d, there is a unique line in $S_{\lambda} V \subset V^{\otimes d}$ that is preserved by B, called a highest weight line. Let $\mathfrak{g l}(V)$ be the Lie algebra of $G L(V)$, there is an induced action of $\mathfrak{g l}(V)$ on $V^{\otimes d}$. For $X \in \mathfrak{g l}(V)$,

$$
X .\left(v_{1} \otimes v_{2} \cdots \otimes v_{d}\right)=X . v_{1} \otimes v_{2} \cdots \otimes v_{d}+\cdots+v_{1} \otimes v_{2} \cdots \otimes v_{d-1} \otimes X . v_{d} .
$$

Let $E_{j}^{i} \in \mathfrak{g l}(V)$ such that $E_{j}^{i}\left(e_{j}\right)=e_{i}$ and $E_{j}^{i}\left(e_{k}\right)=0$ when $k \neq j$. If $i<j, E_{j}^{i}$ is called a raising operator; if $i>j, E_{j}^{i}$ is called a lowering operator.

A highest weight vector of a $G L(V)$-module is a weight vector that is killed by all raising operators. Each realization of the module $S_{\lambda} V$ has a unique highest weight line. Let W be a $G L(V)$-module, the multiplicity of $S_{\lambda} V$ in W is equal to the dimension of the highest weight space with respect to the partition λ.

Define the weight space $W_{\left(a_{1}, \ldots, a_{n}\right)} \subset S^{k}\left(S^{d} V\right)$ to be the set of all the weight vectors
whose weights are $\left(a_{1}, \ldots, a_{n}\right)$. Note that $S^{d} V$ has a natural basis $\left\{e_{1}^{\alpha_{1}} \cdots e_{n}^{\alpha_{n}}\right\}_{\alpha_{1}+\cdots+\alpha_{n}=d}$.

Example 2.3.10. $S_{(4,2)} V \subset S^{3}\left(S^{2} V\right)$ has multiplicity 1.

Proof. Let v be a highest weight vector of $S_{(4,2)} V$. The weight space $W_{(4,2)}$ has a basis $\left\{\left(e_{1}^{2}\right)^{2}\left(e_{2}^{2}\right),\left(e_{1}^{2}\right)\left(e_{1} e_{2}\right)^{2}\right\}$. Write $v=a\left(e_{1}^{2}\right)^{2}\left(e_{2}^{2}\right)+b\left(e_{1}^{2}\right)\left(e_{1} e_{2}\right)^{2}$, then $E_{2}^{1} v=0$ implies $(2 a+2 b)\left(e_{1}^{2}\right)^{2}\left(e_{1} e_{2}\right)=0$, therefore $a=-b$, so the multiplicity of $S_{(4,2)} V$ in $S^{3}\left(S^{2} V\right)$ is 1 .

Proposition 2.3.11. A highest weight vector f of $S_{\left(2^{k}\right)} V \subset S^{k}\left(S^{2} V\right)$ is the determinant of the $k \times k$ matrix M with $M_{i j}=e_{i} e_{j}$ for $1 \leq i, j \leq k$.

Proof. Since $S_{\left(2^{k}\right)} V \subset S^{k}\left(S^{2} V\right)$ is of multiplicity one, we only need to prove $\operatorname{det} M$ is killed by all raising operators $E_{i+1}^{i}(i=1,2, \ldots, k-1)$. By symmetry, we only need to prove $\operatorname{det} M$ is killed by the raising operator E_{2}^{1}. It is straightforward to verify $\operatorname{det} M$ is killed by the raising operator E_{2}^{1}.

Proposition 2.3.12. The highest weight vector f of $S_{(7,3,2)} V \subset S^{4}\left(S^{3} V\right)$ is

$$
\begin{aligned}
f= & \left(e_{1}^{3}\right)^{2}\left(e_{1} e_{2}^{2}\right)\left(e_{2} e_{3}^{2}\right)-2\left(e_{1}^{3}\right)^{2}\left(e_{1} e_{2} e_{3}\right)\left(e_{2}^{2} e_{3}\right)+\left(e_{1}^{3}\right)^{2}\left(e_{1} e_{3}^{2}\right)\left(e_{2}^{3}\right)-\left(e_{1}^{3}\right)\left(e_{1}^{2} e_{2}\right)^{2}\left(e_{2} e_{3}^{2}\right) \\
& +2\left(e_{1}^{3}\right)\left(e_{1}^{2} e_{2}\right)\left(e_{1}^{2} e_{3}\right)\left(e_{2}^{2} e_{3}\right)-4\left(e_{1}^{3}\right)\left(e_{1}^{2} e_{2}\right)\left(e_{1} e_{2}^{2}\right)\left(e_{1} e_{3}^{2}\right)+0\left(e_{1}^{3}\right)\left(e_{1}^{2} e_{3}\right)\left(e_{1} e_{2}^{2}\right)\left(e_{1} e_{2} e_{3}\right) \\
& +3\left(e_{1}^{2} e_{2}\right)^{3}\left(e_{1} e_{3}^{2}\right)+4\left(e_{1} e_{2} e_{3}\right)^{2}\left(e_{1}^{2} e_{2}\right)\left(e_{1}^{3}\right)-\left(e_{1}^{3}\right)\left(e_{1}^{2} e_{3}\right)^{2}\left(e_{2}^{3}\right)+3\left(e_{1}^{2} e_{2}\right)\left(e_{1} e_{2}^{2}\right)\left(e_{1}^{2} e_{3}\right)^{2} \\
& -6\left(e_{1}^{2} e_{2}\right)^{2}\left(e_{1}^{2} e_{3}\right)\left(e_{1} e_{2} e_{3}\right) .
\end{aligned}
$$

Proof. Let $f \in W_{(7,3,2)} \subset S^{4}\left(S^{3} V\right)$ be a weight vector. The weight space $W_{(7,3,2)} \subset$ $S^{4}\left(S^{3} V\right)$ has dimension 12. Write f as a linear combination of the basis vectors and apply E_{2}^{1} and E_{3}^{2} to f, we get two systems of linear equations. There is a unique solution up to scale.

Remark 2.3.13. The module $S_{(7,3,2)} V$ cuts out $C h_{3}\left(V^{*}\right)$ set-theoretically [19].

Proposition 2.3.14. The highest weight vector f of $S_{(5,4,2,1)} V \subset S^{4}\left(S^{3} V\right)$ is

$$
\begin{equation*}
f=e_{2}^{2} e_{4} h_{1}+e_{1} e_{3} e_{4} h_{2}+e_{1} e_{2} e_{4} h_{3}+e_{1}^{2} e_{4} h_{4} \tag{2.2}
\end{equation*}
$$

Here

$$
\begin{aligned}
h_{4} & =\left(e_{1}^{2} e_{2}\right)\left(e_{2}^{3}\right)\left(e_{1} e_{3}^{2}\right)-\left(e_{1} e_{2}^{2}\right)^{2}\left(e_{1} e_{3}^{2}\right)-\left(e_{1}^{2} e_{2}\right)\left(e_{1} e_{2} e_{3}\right)\left(e_{2}^{2} e_{3}\right) \\
& +\left(e_{1}^{2} e_{3}\right)\left(e_{1} e_{2}^{2}\right)\left(e_{2}^{2} e_{3}\right)-\left(e_{1} e_{2}^{2}\right)\left(e_{1} e_{2} e_{3}\right)^{2}-\left(e_{1}^{2} e_{3}\right)\left(e_{1} e_{2} e_{3}\right)\left(e_{2}^{3}\right)
\end{aligned}
$$

$h_{3}=-E_{2}^{1} h_{4}, h_{1}=\frac{1}{2} E_{2}^{1} E_{2}^{1} h_{4}$ is a highest weight vector of $S_{(5,2,2)} V \subset S^{3}\left(S^{3} V\right)$ and $h_{2}=E_{3}^{2} E_{2}^{1} h_{4}$ is a highest weight vector of $S_{(4,4,1)} V \subset S^{3}\left(S^{3} V\right)$.

2.4 Brill's equations

Following the idea in $\S 8.6$ in [31], I use the following notation to define Brill's equations. We first define two maps $\pi_{d, d}$ and Q_{d}, then use them to define Brill's equations.

Define the projection map $\pi_{d, d}: S^{d} V \otimes S^{d} V \rightarrow S_{(d, d)} V$ by

$$
\begin{equation*}
\left(l_{1} \cdots l_{d}\right) \otimes\left(m_{1} \cdots m_{d}\right) \mapsto \sum_{\sigma \in \mathfrak{S}_{d}}\left(l_{1} \wedge m_{\sigma(1)}\right) \cdot\left(l_{2} \wedge m_{\sigma(2)}\right) \cdots\left(l_{d} \wedge m_{\sigma(d)}\right) \tag{2.3}
\end{equation*}
$$

and then extend linearly to the whole space.
Recall $S^{\bullet} V=\oplus_{i=0}^{\infty} S^{i} V$. Define a multiplication on $S^{\bullet} V \otimes S^{\bullet} V$ by, for any $a, b, c, d \in S^{\bullet} V$,

$$
\begin{equation*}
(a \otimes b) \cdot(c \otimes d)=a c \otimes b d \tag{2.4}
\end{equation*}
$$

and this extends linearly to $S^{\bullet} V \otimes S^{\bullet} V$.

Let $f \in S^{\delta} V$ and let $f_{j, \delta-j} \in S^{j} V \otimes S^{\delta-j} V$ be the j-th polarization of f. Define maps

$$
\begin{aligned}
E_{j}: S^{\delta} V & \rightarrow S^{j} V \otimes S^{j(\delta-1)} V \\
f & \mapsto f_{j, \delta-j} \cdot\left(1 \otimes f^{j-1}\right)
\end{aligned}
$$

If $j>\delta$ define $E_{j}(f)=0$.

Example 2.4.1. Let $f=l_{1} l_{2} l_{3} \in S^{3} V$, then

$$
\begin{gathered}
E_{1}(f)=f_{1,2} \cdot(1 \otimes 1) \\
=l_{1} \otimes l_{2} l_{3}+l_{3} \otimes l_{1} l_{2}+l_{2} \otimes l_{1} l_{3} \\
E_{2}(f)=f_{2,1} \cdot\left(1 \otimes l_{1} l_{2} l_{3}\right) \\
=\left(l_{1} l_{2} \otimes l_{3}+l_{1} l_{3} \otimes l_{2}+l_{2} l_{3} \otimes l_{1}\right) \cdot\left(1 \otimes l_{1} l_{2} l_{3}\right) . \\
=l_{1} l_{2} \otimes l_{1} l_{2} l_{3}^{2}+l_{1} l_{3} \otimes l_{1} l_{2}^{2} l_{3}+l_{2} l_{3} \otimes l_{1}^{2} l_{2} l_{3} . \\
\\
E_{3}(f)=f_{3,0} \cdot\left(1 \otimes f^{2}\right) \\
=f \otimes f^{2} \\
=
\end{gathered}
$$

The elementary symmetric and power sum function are:

$$
e_{j}=e_{j}\left(x_{1}, \ldots, x_{\underline{v}}\right)=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{j} \leq \underline{v}} x_{i_{1}} \cdots x_{i_{j}}
$$

$$
p_{j}=p_{i}\left(x_{1}, \ldots, x_{\underline{v}}\right)=\sum_{i=1}^{\underline{v}} x_{i}^{j} .
$$

The power sum can be written in terms of symmetric function using Girard formula:

$$
\begin{align*}
& p_{k}= \tag{2.5}\\
& \mathcal{P}_{k}\left(e_{1}, \cdots, e_{d}\right)=\sum_{i_{1}+2 i_{2}+\cdots d i_{d}=k} k(-1)^{k+i_{1}+i_{2}+\cdots i_{d}} \frac{\left(i_{1}+i_{2}+\cdots i_{d}-1\right)!}{i_{1}!\cdots i_{d}!} e_{1}^{i_{1}} \cdots e_{d}^{i_{d}} .
\end{align*}
$$

Example 2.4.2. $p_{2}=\mathcal{P}_{2}\left(e_{1}, e_{2}\right)=e_{1}^{2}-2 e_{2} . p_{3}=\mathcal{P}_{3}\left(e_{1}, e_{2}, e_{3}\right)=e_{1}^{3}-3 e_{1} e_{2}+3 e_{3}$.

Next, we use Girard formula and E_{j} to define Q_{d}. Define polynomial maps

$$
Q_{d, \delta}: S^{\delta} V \longrightarrow S^{d} V \otimes S^{d(\delta-1)} V
$$

by

$$
\begin{equation*}
Q_{d, \delta}(f)=\mathcal{P}_{d}\left(E_{1}(f), \ldots, E_{d}(f)\right) . \tag{2.6}
\end{equation*}
$$

Write $Q_{d}=Q_{d, d}$. Explicitly

$$
\begin{align*}
& Q_{d}(f)= \\
& \sum_{i_{1}+2 i_{2}+\cdots+d i_{d}=d} d(-1)^{d+i_{1}+\cdots+i_{d}} \frac{\left(i_{1}+\cdots+i_{d}-1\right)!}{i_{1}!\cdots i_{d}!}\left(\prod_{j=1}^{d} f_{j, d-j}^{i_{j}}\right) \cdot\left(1 \otimes f^{d-\left(i_{1}+\cdots+i_{d}\right)}\right) . \tag{2.7}
\end{align*}
$$

Example 2.4.3. Let $d=2$, and $f \in S^{2} V$, by (2.7),

$$
Q_{2}(f)=f_{1,1}^{2}-2 f \otimes f
$$

Lemma 2.4.4. ($\S 8.6$ [31]) Let $l_{i} \in V$ for $i=1, \cdots, d$, then

$$
\begin{equation*}
Q_{d}\left(l_{1} \cdots l_{d}\right)=\sum_{j=1}^{d} l_{j}^{d} \otimes\left(l_{1}^{d} \cdots l_{j-1}^{d} l_{j+1}^{d} \cdots l_{d}^{d}\right) \tag{2.8}
\end{equation*}
$$

Now we define Brill's polynomial map $\mathfrak{B}: S^{d} V \rightarrow S_{(d, d)} V \otimes S^{d^{2}-d} V$ invariantly. It is the composition of the following two maps:

$$
S^{d} V \rightarrow S^{d} V \otimes S^{d} V \otimes S^{d^{2}-d} V \rightarrow S_{(d, d)} V \otimes S^{d^{2}-d} V
$$

where the first map sends $f \in S^{d} V$ to $f \otimes Q_{d}(f)$, and the second map is $\pi_{d, d} \otimes I d_{S^{d^{2}-d_{V}}}$. By Lemma 2.4.4,

$$
\begin{aligned}
\mathfrak{B}\left(l_{1} \cdots l_{d}\right) & =\pi_{d, d} \otimes I d_{S^{d^{2}-d} V}\left[\left(l_{1} \cdots l_{d}\right) \otimes \sum_{j=1}^{d} l_{j}^{d} \otimes\left(l_{1}^{d} \cdots l_{j-1}^{d} l_{j+1}^{d} \cdots l_{d}^{d}\right)\right] \\
& =0 .
\end{aligned}
$$

The converse is also true:

Theorem 2.4.5. (Brill,Gordon [18], Gelfand-Kapranov-Zelevinsky [17], Briand [3]) Consider the polynomial map

$$
\mathfrak{B}: S^{d} V \rightarrow S_{(d, d)} V \otimes S^{d^{2}-d} V
$$

given by

$$
\begin{equation*}
\mathfrak{B}(f)=\pi_{d, d} \otimes I d_{S^{d^{2}-d_{V}}}\left[f \otimes Q_{d}(f)\right] . \tag{2.9}
\end{equation*}
$$

Then $\mathfrak{B}(f)=0 \Leftrightarrow[f] \in C h_{d}(V)$.

Remark 2.4.6. There was a gap in Brill's argument, that was repeated in [17] and finally fixed by E. Briand in [3].

2.5 Foulkes-Howe map and the ideal of Chow variety

I follow notation in $[31, \S 8.6]$. Define the Foulkes-Howe map $F H_{\delta, d}: S^{\delta}\left(S^{d} V\right) \rightarrow$ $S^{d}\left(S^{\delta} V\right)$ as follows: First include $S^{\delta}\left(S^{d} V\right) \subset V^{\otimes \delta d}$. Next, regroup and symmetrize the blocks to $\left(S^{\delta} V\right)^{\otimes d}$. Finally, thinking of $S^{\delta} V$ as a single vector space, symmetrize again to land in $S^{\delta}\left(S^{d} V\right)$.

Example 2.5.1. $F H_{2,2}\left(x^{2} \cdot y^{2}\right)=(x y)^{2}$, and $F H_{2,2}\left((x y)^{2}\right)=\frac{1}{2}\left[x^{2} \cdot y^{2}+(x y)^{2}\right]$.
$F H_{\delta, d}$ is a $G L(V)$-module map and Hadamard [24] observed and Howe rediscovered the following relationship between Foulkes-Howe map and ideal of Chow variety.

Proposition 2.5.2. (Hadamard [24]) Ker $F H_{\delta, d}=I_{\delta}\left(C h_{d}\left(V^{*}\right)\right)$.

Corollary 2.5.3. When $\delta=d+1$, Ker $F H_{d+1, d}=I_{d+1}\left(C h_{d}\left(V^{*}\right)\right)$. Therefore as an abstract $G L(V)$-module, $I_{d+1}\left(C h_{d}\left(V^{*}\right)\right) \supset S^{d+1}\left(S^{d} V\right)-S^{d}\left(S^{d+1} V\right)$.

Proposition 2.5.4. (Hermite [27], Hadamard [25], J.Müler and M.Neunhöfer)[41]) When $d=2,3,4, F H_{d, d}$ are injective and hence surjective.

Proposition 2.5.5. (T. McKay [40]) If $F H_{\delta, d}$ is surjective, then $F H_{\delta+1, d}$ is surjective.

So when $d=2,3,4, F H_{d+1, d}$ are surjective, and $I_{d+1}\left(C h_{d}\left(V^{*}\right)\right)=S^{d+1}\left(S^{d} V\right)-$ $S^{d}\left(S^{d+1} V\right)$ as $G L(V)$ - modules.

3. BRILL'S EQUATIONS AS A $G L(V)$-MODULE

This chapter is based on [19], I first construct Brill's map by the polarization of Brill's polynomial map, and then compute the image of Brill's map to determine Brill's equations as a $G L(V)$-module.

3.1 Construction of Brill's map

First consider the polarization $\overline{Q_{d}}$ of Q_{d}, where $Q_{d}: S^{d} V \rightarrow S^{d} V \otimes S^{d^{2}-d} V$.

Example 3.1.1. Let $d=2$, and $f, g \in S^{2} V$, by (2.7)

$$
Q_{2}(f)=f_{1,1}^{2}-2 f \otimes f
$$

Therefore by (2.1), $\overline{Q_{2}}: S^{2}\left(S^{2} V\right) \rightarrow S^{2} V \otimes S^{2} V$ is defined by:

$$
\begin{aligned}
\bar{Q}_{2}(f \cdot g) & =\frac{1}{2}\left((f+g)_{1,1}^{2}-2(f+g) \otimes(f+g)-\left(f_{1,1}^{2}-2 f \otimes f\right)-\left(g_{1,1}^{2}-2 g \otimes g\right)\right) \\
& =f_{1,1} g_{1,1}-f \otimes g-g \otimes f
\end{aligned}
$$

So by (2.4)

$$
\begin{aligned}
\bar{Q}_{2}\left(e_{1} e_{2} \cdot e_{1} e_{2}\right) & =\left(e_{1} e_{2}\right)_{1,1}^{2}-2\left(e_{1} e_{2}\right) \otimes\left(e_{1} e_{2}\right) \\
& =\left(e_{1} \otimes e_{2}+e_{2} \otimes e_{1}\right)^{2}-2\left(e_{1} e_{2}\right) \otimes\left(e_{1} e_{2}\right) \\
& =e_{1}^{2} \otimes e_{2}^{2}+e_{2}^{2} \otimes e_{1}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{Q}_{2}\left(e_{1}^{2} \cdot e_{1} e_{2}\right)=\left(e_{1} e_{2}\right)_{1,1} \cdot\left(e_{1}^{2}\right)_{1,1}-\left(e_{1}^{2}\right) \otimes\left(e_{1} e_{2}\right)-\left(e_{1} e_{2}\right) \otimes\left(e_{1}^{2}\right) \\
&=\left(e_{1} \otimes e_{2}+e_{2} \otimes e_{1}\right) \cdot\left(2 e_{1} \otimes e_{1}\right)-\left(e_{1}^{2}\right) \otimes\left(e_{1} e_{2}\right)-\left(e_{1} e_{2}\right) \otimes\left(e_{1}^{2}\right) \\
&= e_{1}^{2} \otimes e_{1} e_{2}+e_{1} e_{2} \otimes e_{1}^{2} . \\
&=\left(e_{1} \otimes e_{2}+e_{2} \otimes e_{1}\right) \cdot\left(e_{1} \otimes e_{3}+e_{3} \otimes e_{1}\right) \\
& \bar{Q}_{2}\left(e_{1} e_{2} \cdot e_{1} e_{3}\right)=\left(e_{1} e_{2}\right)_{1,1} \cdot\left(e_{1} e_{3}\right)_{1,1}-\left(e_{1} e_{3}\right) \otimes\left(e_{1} e_{2}\right)-\left(e_{1} e_{2}\right) \otimes\left(e_{1} e_{3}\right) \\
& \quad-\left(e_{1} e_{3}\right) \otimes\left(e_{1} e_{2}\right)-\left(e_{1} e_{2}\right) \otimes\left(e_{1} e_{3}\right) \\
&= e_{1}^{2} \otimes e_{2} e_{3}+e_{2} e_{3} \otimes e_{1}^{2} \\
&=\left(e_{1} e_{2}\right)_{1,1} \cdot\left(e_{3}^{2}\right)_{1,1}-\left(e_{3}^{2}\right) \otimes\left(e_{1} e_{2}\right)-\left(e_{1} e_{2}\right) \otimes\left(e_{3}^{2}\right) \\
&=\left.2 e_{1} e_{3} \otimes e_{2} e_{3}+2 e_{2} e_{3} \otimes e_{1}\right) \cdot\left(2 e_{3} \otimes e_{3}\right)-\left(e_{3}^{2}\right) \otimes\left(e_{1}^{2} e_{2}\right)-\left(e_{1} e_{2}\right) \otimes\left(e_{1}^{2} e_{2}-e_{1} e_{2} \otimes e_{3}^{2} .\right.
\end{aligned}
$$

In general, $\overline{Q_{d}}: S^{d}\left(S^{d} V\right) \rightarrow S^{d} V \otimes S^{d^{2}-d} V$ is used to define Brill's map $\overline{\mathfrak{B}}$:

Lemma 3.1.2. The polarization of Brill's polynomial map \mathfrak{B}

$$
\overline{\mathfrak{B}}: S^{d+1}\left(S^{d} V\right) \rightarrow S_{(d, d)} V \otimes S^{d^{2}-d} V
$$

is

$$
\begin{equation*}
\overline{\mathfrak{B}}\left(f_{1} f_{2} \ldots f_{d+1}\right)=\frac{1}{d+1} \sum_{i=1}^{d+1} \pi_{d, d} \otimes I d_{S^{d^{2}-d V}}\left[f_{i} \otimes \overline{Q_{d}}\left(f_{1} \cdots \hat{f}_{i} \cdots f_{d+1}\right)\right] . \tag{3.1}
\end{equation*}
$$

Example 3.1.3. Consider Brill's map $\overline{\mathfrak{B}}: S^{3}\left(S^{2} V\right) \rightarrow S_{(2,2)} V \otimes S^{2} V$ for $d=2$. By

Lemma 3.1.2,

$$
\begin{aligned}
& \overline{\mathfrak{B}}\left(e_{1} e_{2} \cdot e_{1} e_{2} \cdot e_{1}^{2}\right)=\frac{1}{3} \pi_{2,2} \otimes I d_{S^{2} V}\left[e_{1}^{2} \otimes \overline{Q_{2}}\left(e_{1} e_{2} \cdot e_{1} e_{2}\right)\right] \\
& +\frac{2}{3} \pi_{2,2} \otimes I d_{S^{2} V}\left[e_{1} e_{2} \otimes \overline{Q_{2}}\left(e_{1} e_{2} \cdot e_{1}^{2}\right)\right] \\
& =\frac{1}{3} \pi_{2,2} \otimes I d_{S^{2} V}\left[e_{1}^{2} \otimes\left(e_{1}^{2} \otimes e_{2}^{2}+e_{2}^{2} \otimes e_{1}^{2}\right)\right] \\
& +\frac{2}{3} \pi_{2,2} \otimes I d_{S^{2} V}\left[e_{1} e_{2} \otimes\left(e_{1}^{2} \otimes e_{1} e_{2}+e_{1} e_{2} \otimes e_{1}^{2}\right)\right] \\
& =\frac{1}{3}\left[2\left(e_{1} \wedge e_{2}\right)^{2} \otimes e_{1}^{2}\right)+\frac{2}{3}\left(-\left(e_{1} \wedge e_{2}\right)^{2} \otimes e_{1}^{2}\right] \\
& =0 \text {. } \\
& \overline{\mathfrak{B}}\left(e_{1} e_{2} \cdot e_{1} e_{2} \cdot e_{1} e_{3}\right)=\frac{1}{3} \pi_{2,2} \otimes I d_{S^{2} V}\left[e_{1} e_{3} \otimes \overline{Q_{2}}\left(e_{1} e_{2} \cdot e_{1} e_{2}\right)\right] \\
& +\frac{2}{3} \pi_{2,2} \otimes I d_{S^{2} V}\left[e_{1} e_{2} \otimes \overline{Q_{2}}\left(e_{1} e_{2} \cdot e_{1} e_{3}\right)\right] \\
& =\frac{1}{3} \pi_{2,2} \otimes I d_{S^{2} V}\left[e_{1} e_{3} \otimes\left(e_{1}^{2} \otimes e_{2}^{2}+e_{2}^{2} \otimes e_{1}^{2}\right)\right] \\
& +\frac{2}{3} \pi_{2,2} \otimes I d_{S^{2} V}\left[e_{1} e_{2} \otimes\left(e_{1}^{2} \otimes e_{2} e_{3}+e_{2} e_{3} \otimes e_{1}^{2}\right)\right] \\
& \left.=\frac{1}{3}\left[2\left(e_{1} \wedge e_{2}\right)\left(e_{1} \wedge e_{3}\right) \otimes e_{1}^{2}\right)\right]+\frac{2}{3}\left[-\left(e_{1} \wedge e_{2}\right)\left(e_{1} \wedge e_{3}\right) \otimes e_{1}^{2}\right] \\
& =0 \text {. } \\
& \overline{\mathfrak{B}}\left(e_{1} e_{2} \cdot e_{1} e_{2} \cdot e_{3}^{2}\right)=\frac{1}{3} \pi_{2,2} \otimes I d_{S^{2} V}\left[e_{3}^{2} \otimes \overline{Q_{2}}\left(e_{1} e_{2} \cdot e_{1} e_{2}\right)\right] \\
& +\frac{2}{3} \pi_{2,2} \otimes I d_{S^{2} V}\left[e_{1} e_{2} \otimes \overline{Q_{2}}\left(e_{1} e_{2} \cdot e_{3}^{2}\right)\right] \\
& =\frac{1}{3} \pi_{2,2} \otimes I d_{S^{2} V}\left(e_{3}^{2} \otimes\left(e_{1}^{2} \otimes e_{2}^{2}+e_{2}^{2} \otimes e_{1}^{2}\right)\right) \\
& +\frac{2}{3} \pi_{2,2} \otimes I d_{S^{2} V}\left[e _ { 1 } e _ { 2 } \otimes \left(2 e_{1} e_{3} \otimes e_{2} e_{3}\right.\right. \\
& \left.\left.+2 e_{2} e_{3} \otimes e_{1} e_{3}-e_{3}^{2} \otimes e_{1} e_{2}-e_{1} e_{2} \otimes e_{3}^{2}\right)\right] \\
& =\frac{2}{3}\left[\left(e_{1} \wedge e_{3}\right)^{2} \otimes e_{2}^{2}+\left(e_{2} \wedge e_{3}\right)^{2} \otimes e_{1}^{2}+\left(e_{1} \wedge e_{2}\right)^{2} \otimes e_{3}^{2}\right. \\
& -2\left(e_{1} \wedge e_{2}\right)\left(e_{1} \wedge e_{3}\right) \otimes e_{2} e_{3}-2\left(e_{1} \wedge e_{2}\right)\left(e_{2} \wedge e_{3}\right) \otimes e_{1} e_{2} \\
& \left.-2\left(e_{1} \wedge e_{3}\right)\left(e_{2} \wedge e_{3}\right) \otimes e_{1} e_{2}\right] .
\end{aligned}
$$

3.2 Brill's map as a $G L(V)$-module map

Consider Brill's map $\overline{\mathfrak{B}}: S^{d+1}\left(S^{d} V\right) \rightarrow S_{(d, d)} V \otimes S^{d^{2}-d} V$. The image of Brill's map is isomorphic to dual of the $G L(V)$-module generated by Brill's equations. Therefore to prove Theorem 1.2.1, we only need to prove the following theorem:

Theorem 3.2.1. Assume $\operatorname{dim} V \geq 3$. Consider Brill's map

$$
\overline{\mathfrak{B}}: S^{d+1}\left(S^{d} V\right) \rightarrow S_{(d, d)} V \otimes S^{d^{2}-d} V .
$$

Then

$$
\operatorname{Im}(\overline{\mathfrak{B}})= \begin{cases}S_{(7,3,2)} V & d=3 \\ \bigoplus_{j=2}^{d} S_{\left(d^{2}-j, d, j\right)} V & d \neq 3\end{cases}
$$

Brill's map is a $G L(V)$-module map, therefore by Schur's lemma, the image of Brill's map is a $G L(V)$-submodule of $S_{(d, d)} V \otimes S^{d^{2}-d} V$. However since we do not know the general decomposition of $S^{d+1}\left(S^{d} V\right)$, it is impossible to compute the image of each isotypic component of $S^{d+1}\left(S^{d} V\right)$ directly. Fortunately, it is easy to decompose the space $S_{(d, d)} V \otimes S^{d^{2}-d} V$ by Pieri's rule, i.e.

$$
\begin{equation*}
S_{(d, d)} V \otimes S^{d^{2}-d} V=\bigoplus_{j=0}^{d} S_{\left(d^{2}-j, d, j\right)} V \tag{3.2}
\end{equation*}
$$

Each isotypic component $S_{(d, d)} V \otimes S^{d^{2}-d} V$ is of multiplicity 1, so the image of Brill's map is multiplicity free. Also, we only need to consider the modules with length no more than 3 , so we only need to consider V to be 3-dimensional from now on.
3.3 Weight spaces and weight vectors of $S_{(d, d)} V \otimes S^{d^{2}-d} V$ and $S^{d+1}\left(S^{d} V\right)$ Let $\left\{e_{1}, e_{2}, e_{3}\right\}$ be a basis of V .

Lemma 3.3.1. As a $G L_{3}$-module, $S^{d}\left(\wedge^{2} \mathbb{C}^{3}\right)$ is $S_{(d, d)} \mathbb{C}^{3}$.

Proof. First, since $\left(e_{1} \wedge e_{2}\right)^{d} \in S^{d}\left(\wedge^{2} \mathbb{C}^{3}\right)$ is a highest weight vector with weight (d, d), so $S_{(d, d)} \mathbb{C}^{3} \subset S^{d}\left(\wedge^{2} \mathbb{C}^{3}\right)$. Second, $\operatorname{dim} S_{d, d} \mathbb{C}^{3}=\operatorname{dim} S^{d}\left(\wedge^{2} \mathbb{C}^{3}\right)=\binom{d+2}{2}$. The result follows.

Definition 3.3.2. Given an integer j such that $j \in\{0, \ldots, d\}$. Define the weight space $W_{j} \subset S^{d+1}\left(S^{d} V\right)$ to be the set of all the degree $d+1$ homogenous polynomials on $S^{d} V^{*}$ such that each monomial has weight $\left(d^{2}-j, d, j\right)$.
Define the weight space $\widetilde{W_{j}} \subset S_{(d, d)} V \otimes S^{d^{2}-d} V=S^{d}\left(\wedge^{2} V\right) \otimes S^{d^{2}-d} V$ to be the set of all the weight vectors in $S^{d}\left(\wedge^{2} V\right) \otimes S^{d^{2}-d} V$ whose weights are $\left(d^{2}-j, d, j\right)$.

Lemma 3.3.3. The weight space $\widetilde{W}_{j} \subset S_{(d, d)} V \otimes S^{d^{2}-d} V=S^{d}\left(\wedge^{2} V\right) \otimes S^{d^{2}-d} V$ has indeed basis

$$
\left\{\left(e_{1} \wedge e_{2}\right)^{d+s-j-t}\left(e_{1} \wedge e_{3}\right)^{t}\left(e_{2} \wedge e_{3}\right)^{j-s} \otimes e_{1}^{d^{2}-d-s} e_{2}^{t} e_{3}^{s-t}\right\}_{0 \leq s \leq j, 0 \leq t \leq s}
$$

Proof. $S^{d}\left(\wedge^{2} V\right) \otimes S^{d^{2}-d} V$ has a indeed basis
$\left\{\left(e_{1} \wedge e_{2}\right)^{d-a_{1}-a_{2}}\left(e_{1} \wedge e_{3}\right)^{a_{1}}\left(e_{2} \wedge e_{3}\right)^{a_{2}} \otimes e_{1}^{d^{2}-d-a_{3}-a_{4}} e_{2}^{a_{3}} e_{3}^{a_{4}}\right\}_{0 \leq a_{1}+a_{2} \leq d, 0 \leq a_{3}+a_{4} \leq d^{2}-d}$.

Let $v \in W_{j}$ be a basis vector of $S^{d}\left(\wedge^{2} V\right) \otimes S^{d^{2}-d} V$. Then

$$
\left\{\begin{array}{r}
a_{1}+a_{2}+a_{4}=0 \tag{3.3}\\
a_{1}-a_{3}=0
\end{array}\right.
$$

Let $a_{3}=t, a_{3}+a_{4}=s$, then $0 \leq s \leq j, 0 \leq t \leq s$ and $v=\left(e_{1} \wedge e_{2}\right)^{d+s-j-t}\left(e_{1} \wedge\right.$ $\left.e_{3}\right)^{t}\left(e_{2} \wedge e_{3}\right)^{j-s} \otimes e_{1}^{d^{2}-d-s} e_{2}^{t} e_{3}^{s-t}$.

Lemma 3.3.4. The highest weight vector $\tilde{v_{j}} \in S_{\left(d^{2}-j, d, j\right)} V \subset S_{(d, d)} V \otimes S^{d^{2}-d} V=$ $S^{d}\left(\wedge^{2} V\right) \otimes S^{d^{2}-d} V$ is

$$
\begin{equation*}
\sum_{s=0}^{j} \sum_{t=0}^{s}(-1)^{t}\binom{j}{s}\binom{s}{t}\left(e_{1} \wedge e_{2}\right)^{d+s-j-t}\left(e_{1} \wedge e_{3}\right)^{t}\left(e_{2} \wedge e_{3}\right)^{j-s} \otimes e_{1}^{d^{2}-d-s} e_{2}^{t} e_{3}^{s-t} \tag{3.4}
\end{equation*}
$$

Proof. By Lemma 3.3.3, write

$$
\tilde{v}_{j}=\sum_{s=0}^{j} \sum_{t=0}^{s} a_{s t}\left(e_{1} \wedge e_{2}\right)^{d+s-j-t}\left(e_{1} \wedge e_{3}\right)^{t}\left(e_{1} \wedge e_{2}\right)^{j-s} \otimes e_{1}^{d^{2}-d-s} e_{2}^{t} e_{3}^{s-t}
$$

Apply raising operators E_{2}^{1} and E_{3}^{2} on $\tilde{v_{j}}$,

$$
\begin{aligned}
E_{2}^{1} \tilde{v}_{j}= & \sum_{s=0}^{j} \sum_{t=0}^{s} a_{s t}(j-s)\left(e_{1} \wedge e_{2}\right)^{d+s-j-t}\left(e_{1} \wedge e_{3}\right)^{t+1}\left(e_{1} \wedge e_{2}\right)^{j-s-1} \otimes e_{1}^{d^{2}-d-s} e_{2}^{t} e_{3}^{s-t} . \\
& +\sum_{s=0}^{j} \sum_{t=0}^{s} t a_{s t}\left(e_{1} \wedge e_{2}\right)^{d+s-j-t}\left(e_{1} \wedge e_{3}\right)^{t}\left(e_{2} \wedge e_{3}\right)^{j-s-1} \otimes e_{1}^{d^{2}-d-s+1} e_{2}^{t-1} e_{3}^{s-t} \\
= & \sum_{s=0}^{j-1} \sum_{t=1}^{s+1}\left(t a_{s+1, t}+(j-s) a_{s, t-1}\right)\left(e_{1} \wedge e_{2}\right)^{d+s-j-t}\left(e_{1} \wedge e_{3}\right)^{t}\left(e_{2} \wedge e_{3}\right)^{j-s-1} \\
& \otimes e_{1}^{d^{2}-d-s} e_{2}^{t-1} e_{3}^{s-t} .
\end{aligned}
$$

and

$$
\begin{aligned}
E_{3}^{2} \tilde{v}_{j}= & \sum_{s=0}^{j} \sum_{t=0}^{s} t a_{s t}\left(e_{1} \wedge e_{2}\right)^{d+s-j-t+1}\left(e_{1} \wedge e_{3}\right)^{t-1}\left(e_{1} \wedge e_{2}\right)^{j-s} \otimes e_{1}^{d^{2}-d-s} e_{2}^{t} e_{3}^{s-t} \\
& +\sum_{s=0}^{j} \sum_{t=0}^{s}(s-t) a_{s t}\left(e_{1} \wedge e_{2}\right)^{d+s-j-t}\left(e_{1} \wedge e_{3}\right)^{t}\left(e_{2} \wedge e_{3}\right)^{j-s} \otimes e_{1}^{d^{2}-d-s} e_{2}^{t-+} e_{3}^{s-t-1} \\
= & \sum_{s=1}^{j} \sum_{t=1}^{s}\left(t a_{s, t}+(s-t+1) a_{s, t-1}\right)\left(e_{1} \wedge e_{2}\right)^{d+s-j-t+1}\left(e_{1} \wedge e_{3}\right)^{t-1}\left(e_{2} \wedge e_{3}\right)^{j-s} \\
& \otimes e_{1}^{d^{2}-d-s} e_{2}^{t} e_{3}^{s-t} .
\end{aligned}
$$

we get two systems of equations for $\left\{a_{s t}\right\}_{0 \leq s \leq j, 0 \leq t \leq s}$:

$$
\left\{\begin{array}{l}
t a_{s+1, t}+(j-s) a_{s, t-1}=0 \tag{3.5}\\
t a_{s, t}+(s-t+1) a_{s, t-1}=0
\end{array}\right.
$$

And then solve for $\left\{a_{s t}\right\}_{0 \leq s \leq j, 0 \leq t \leq s}$, we get a unique solution $a_{s, t}=(-1)^{t}\binom{j}{s}\binom{s}{t}$ up to scale.

Since Brill's map is a $G L(V)$-module map, we only need to check whether $\tilde{v_{j}}$ is in the image of Brill's map.

For convenience, write

$$
\begin{equation*}
S^{d+1}\left(S^{d} V\right)=A_{d} \bigoplus\left(\bigoplus_{j=0}^{d} S_{\left(d^{2}-j, d, j\right)} V^{\oplus m_{j}}\right) \tag{3.6}
\end{equation*}
$$

Where A_{d} is the direct sum of the isotypic components of $S^{d+1}\left(S^{d} V\right)$ other than $S_{\left(d^{2}-j, d, j\right)} V$ for $j=0,1, \ldots, d$, which is certainly in the kernel of Brill's map.

The idea is to take $v_{j}=\left(e_{1}^{d-1} e_{2}\right)^{d}\left(e_{1}^{d-j} e_{3}{ }^{j}\right) \in W_{j}$, compute $\overline{\mathfrak{B}}\left(v_{j}\right)$, and see whether the projection of $\overline{\mathfrak{B}}\left(v_{j}\right)$ to $S_{\left(d^{2}-j, d, j\right)} V \subset S_{(d, d)} V \otimes S^{d^{2}-d} V$ is 0 .

Proposition 3.3.5. If the projection of $\overline{\mathfrak{B}}\left(v_{j}\right)$ to $S_{\left(d^{2}-j, d, j\right)} V \subset S_{(d, d)} V \otimes S^{d^{2}-d} V$ is not 0, then \tilde{v}_{j} is in the image of Brill's map, therefore $S_{\left(d^{2}-j, d, j\right)} V \subset S_{(d, d)} V \otimes S^{d^{2}-d} V$ is in the image of Brill's map.

Proof. Write $v_{j}=v_{j 1}+v_{j 2}+v_{j 3}$, where $v_{j 1} \in A_{d}, v_{j 2} \in \bigoplus_{k=0}^{j-1} S_{\left(d^{2}-k, d, k\right)} V^{\oplus m_{k}}$, and $v_{j 3} \in S_{\left(d^{2}-j, d, j\right)} V^{\oplus m_{j}}$ is a highest weight vector. By Schur's Lemma, $\overline{\mathfrak{B}}\left(v_{j 1}\right)=0$, $\overline{\mathfrak{B}}\left(v_{j 2}\right) \in \bigoplus_{k=0}^{j-1} S_{\left(d^{2}-k, d, k\right)} V$, and $\overline{\mathfrak{B}}\left(v_{j 3}\right) \in S_{\left(d^{2}-j, d, j\right)} V$, therefore the projection of $\overline{\mathfrak{B}}\left(v_{j}\right)$ to $S_{\left(d^{2}-j, d, j\right)} V$
$\subset S_{(d, d)} V \otimes S^{d^{2}-d} V$ is exactly $\overline{\mathfrak{B}}\left(v_{j 3}\right)$, by Schur's Lemma, if it is not 0 , it is \tilde{v}_{j} (see Lemma 3.3.4) up to scale.

3.4 Computing $\overline{\mathfrak{B}}\left(v_{j}\right)$

Brill's map is very complicated to compute in general. Fortunately, we are able to compute $\overline{\mathfrak{B}}\left(v_{j}\right)$.

$$
\begin{aligned}
\overline{\mathfrak{B}}\left(v_{j}\right)= & \overline{\mathfrak{B}}\left(\left(e_{1}^{d-1} e_{2}\right)^{d} \cdot\left(e_{1}^{d-j} e_{3}^{j}\right)\right) \\
= & \frac{1}{d+1} \pi_{d, d} \otimes I d_{S^{d^{2}-d} V}\left(\left(e_{1}^{d-j} e_{3}^{j}\right) \otimes \overline{Q_{d}}\left(\left(e_{1}^{d-1} e_{2}\right)^{d}\right)\right. \\
& +\frac{d}{d+1} \pi_{d, d} \otimes I d_{S^{d^{2}-d} V}\left(\left(e_{1}^{d-1} e_{2}\right) \otimes \overline{Q_{d}}\left(\left(e_{1}^{d-1} e_{2}\right)^{d-1} \cdot\left(e_{1}^{d-j} e_{3}^{j}\right)\right)\right. \\
= & \frac{1}{d+1} \pi_{d, d} \otimes I d_{S^{d^{2}-d} V}\left(\left(e_{1}^{d-j} e_{3}^{j}\right) \otimes Q_{d}\left(e_{1}^{d-1} e_{2}\right)\right) \\
& +\frac{d}{d+1} \pi_{d, d} \otimes I d_{S^{d^{2}-d} V}\left(\left(e_{1}^{d-1} e_{2}\right) \otimes \overline{Q_{d}}\left(\left(e_{1}^{d-1} e_{2}\right)^{d-1} \cdot\left(e_{1}^{d-j} e_{3}^{j}\right)\right)\right)
\end{aligned}
$$

First, I compute and $\pi_{d, d} \otimes I d_{S^{d^{2}-d} V}\left(\left(e_{1}^{d-j} e_{3}^{j}\right) \otimes Q_{d}\left(e_{1}^{d-1} e_{2}\right)\right)$. By Lemma 2.4.4,
Proposition 3.4.1. $\pi_{d, d} \otimes I d_{S^{d^{2}-d} V}\left(\left(e_{1}^{d-j} e_{3}^{j}\right) \otimes Q_{d}\left(e_{1}^{d-1} e_{2}\right)\right)$ is

$$
\left\{\begin{array}{lr}
d!\left(e_{1} \wedge e_{2}\right)^{d-j}\left(e_{3} \wedge e_{2}\right)^{j} \otimes e_{1}^{d^{2}-d} & j \neq d \tag{3.7}\\
d!\left(e_{3} \wedge e_{2}\right)^{d} \otimes\left(e_{1}^{d^{2}-d}\right)+(d-1) d!\otimes\left(e_{3} \wedge e_{1}\right)^{d} \otimes e_{1}^{d^{2}-2 d} e_{2}^{d} & j=d
\end{array}\right.
$$

Next, I compute $\pi_{d, d} \otimes I d_{S^{d^{2}-d} V}\left(\left(e_{1}^{d-1} e_{2}\right) \otimes \overline{Q_{d}}\left(\left(e_{1}^{d-1} e_{2}\right)^{d-1}\left(e_{1}^{d-j} e_{3}^{j}\right)\right)\right)$.
Lemma 3.4.2. If $h \in S^{d} V$ is divisible by e_{1}^{2}, then $\pi_{d, d}\left(h, e_{1}^{d-1} e_{2}\right)=0$.
Lemma 3.4.3. For any $f, g \in S^{d} V$, by polarizing (2.7),

$$
\begin{aligned}
\overline{Q_{d}}\left(f^{d-1} g\right)= & (-1)^{d} \sum_{i_{1}+2 i_{2}+\cdots+d i_{d}=d} d(-1)^{i_{1}+i_{2}+\cdots+i_{d}} \frac{\left(i_{1}+i_{2}+\cdots+i_{d}-1\right)!}{i_{1}!\cdots i_{d}!} \\
& \left(\sum_{s=1}^{d} \frac{i_{s}}{d}\left(\prod_{j=1, j \neq s}^{d} f_{j, d-j}^{i_{j}}\right) \cdot\left(f_{s, d-s}^{i_{s}-1} g_{s, d-s}\right) \cdot\left(1 \otimes f^{d-\left(i_{1}+\cdots+i_{d}\right)}\right)\right) \\
& +\left(\frac{d-\left(i_{1}+\cdots+i_{d}\right)}{d}\left(\prod_{j=1}^{d} f_{j, d-j}^{i_{j}}\right) \cdot\left(1 \otimes f^{d-\left(i_{1}+\cdots+i_{d}\right)-1} g\right)\right) .
\end{aligned}
$$

Now I use Lemma 3.4.3 to compute $\overline{Q_{d}}\left(\left(e_{1}^{d-1} e_{2}\right)^{d-1} \cdot\left(e_{1}^{d-j} e_{3}^{j}\right)\right)$. By lemma 3.4.2, terms of $\overline{Q_{d}}\left(\left(e_{1}^{d-1} e_{2}\right)^{d-1} \cdot\left(e_{1}^{d-j} e_{3}{ }^{j}\right)\right)$ whose first components are divisible by e_{1}^{2} are killed by $\left(e_{1}^{d-1} e_{2}\right)$ via $\pi_{d, d}$. Therefore, by Lemma 3.4.3, given i_{1}, \ldots, i_{d} with $i_{1}+2 i_{2}+$ $\cdots+d i_{d}=d$, we need $\#\left\{j \geq 3 \mid i_{j} \geq 1\right\} \leq 1$ so that the corresponding terms will not vanish. There are 2 possibilities, either some $i_{s}=1$ for some $s \geq 3$ or $i_{s} \equiv 0$ for all $s \geq 3$. More specifically, there are five cases for which $\overline{Q_{d}}\left(\left(e_{1}^{d-1} e_{2}\right)^{d-1}\left(e_{1}^{d-j} e_{3}^{j}\right)\right)$ may not vanish:

1. $i_{s}=1$ for some $s \geq 3$ and $i_{2}=0, i_{1}=d-s$;
2. $i_{s}=1$ for some $s \geq 3$ and $i_{2}=1, i_{1}=d-s-2$;
3. $i_{s} \equiv 0$ for all $s \geq 3$ and $i_{2}=0, i_{1}=d$;
4. $i_{s} \equiv 0$ for all $s \geq 3$ and $i_{2}=1, i_{1}=d-2$;
5. $i_{s} \equiv 0$ for all $s \geq 3$ and $i_{2}=2, i_{1}=d-4$.

I use the symbol \equiv to omit those terms of $\overline{Q_{d}}\left(\left(e_{1}^{d-1} e_{2}\right)^{d-1} \cdot\left(e_{1}^{d-j} e_{3}^{j}\right)\right)$ whose first components are divisible by e_{1}^{2}. I use the notation I_{1} to denote the terms of the
first case in $\overline{Q_{d}}\left(\left(e_{1}^{d-1} e_{2}\right)^{d-1}\left(e_{1}^{d-j} e_{3}^{j}\right)\right)$. For the first case, $i_{s}=1$ for some $s \geq 3$ and $i_{2}=0, i_{1}=d-s$, so the coefficient of the terms of the first case is

$$
(-1)^{d}(-1)^{i_{1}+i_{2}+\cdots i_{d}} \frac{\left(i_{1}+i_{2}+\cdots i_{d}-1\right)!}{i_{1}!\cdots i_{d}!}=(-1)^{d} d(-1)^{d-s-1} \frac{(d-s)!}{(d-s)!}=d(-1)^{s-1},
$$

and the corresponding monomial in $Q_{d}(f)$ is

$$
d(-1)^{s-1} f_{1, d-1}^{d-s} f_{s, d-s} \cdot\left(1 \otimes f^{s-1}\right)
$$

Since the first component of $\left(e_{1}^{d-1} e_{2}\right)_{s, d-s}$ is divisible by e_{1}^{2}, by lemma 3.4.2, in order that the terms will not be killed by $\left(e_{1}^{d-1} e_{2}\right)$ via $\pi_{d, d}, e_{1}^{d-j} e_{3}{ }^{j}$ should replace $\left(e_{1}^{d-1} e_{2}\right)$ in the position $f_{s, d-s}$. By Lemma 3.4.3,

$$
\begin{aligned}
I_{1} \equiv & \sum_{s=3}^{d} d(-1)^{s-1} \frac{1}{d}\left(e_{1}^{d-1} e_{2}\right)_{1, d-1}^{d-s}\left(e_{1}^{d-j} e_{3}^{j}\right)_{s, d-s} \cdot\left[1 \otimes\left(e_{1}^{d-1} e_{2}\right)^{s-1}\right] \\
= & \sum_{s=3}^{d}(-1)^{s-1}\left(e_{1}^{d-1} e_{2}\right)_{1, d-1}^{d-s}\left(e_{1}^{d-j} e_{3}^{j}\right)_{s, d-s} \cdot\left[1 \otimes\left(e_{1}^{d-1} e_{2}\right)^{s-1}\right] \\
\equiv & \sum_{s=3}^{d}(-1)^{s-1}\left[(d-1) e_{1} \otimes e_{1}^{d-2} e_{2}+e_{2} \otimes e_{1}^{d-1}\right]^{d-s}\left[\binom{j}{s} e_{3}^{s} \otimes e_{1}^{d-j} e_{3}^{j-s}\right. \\
& \left.+(d-j)\binom{j}{s-1} e_{1} e_{3}^{s-1} \otimes e_{1}^{d-j-1} e_{3}^{j-s+1}\right] \cdot\left[1 \otimes\left(e_{1}^{d-1} e_{2}\right)^{s-1}\right] \\
\equiv & \sum_{s=3}^{d}(-1)^{s-1}\left[(d-1)(d-s) e_{1} e_{2}^{d-s-1} \otimes e_{1}^{d-2} e_{2} e_{1}^{(d-1)(d-s-1)}+e_{2}^{d-s} \otimes e_{1}^{(d-1)(d-s)}\right] \\
& {\left[\binom{j}{s} e_{3}^{s} \otimes e_{1}^{d-j} e_{3}^{j-s}+(d-j)\binom{j}{s-1} e_{1} e_{3}^{s-1} \otimes e_{1}^{d-j-1} e_{3}^{j-s+1}\right] \cdot\left[1 \otimes\left(e_{1}^{d-1} e_{2}\right)^{s-1}\right] } \\
\equiv & \sum_{s=3}^{d}(-1)^{s-1}\left[\binom{j}{s} e_{2}^{d-s} e_{3}^{s} \otimes e_{1}^{d^{2}-j-d+1} e_{2}^{s-1} e_{3}^{j-s}\right. \\
& +(d-j)\binom{j}{s-1} e_{1} e_{2}^{d-s} e_{3}^{s-1} \otimes e_{1}^{d^{2}-j-d} e_{2}^{s} e_{3}^{j-s+1} \\
& \left.+(d-1)(d-s)\binom{j}{s} e_{1} e_{2}^{d-s-1} e_{3}^{s} \otimes e_{1}^{d^{2}-j-d} e_{2}^{s} e_{3}^{j-s}\right] .
\end{aligned}
$$

Similarly for the other four cases,

$$
\begin{aligned}
I_{2} \equiv & \sum_{s=3}^{d} d(-1)^{s}(d-s-1) \frac{1}{d}\left(e_{1}^{d-1} e_{2}\right)_{1, d-1}^{d-s-2}\left(e_{1}^{d-1} e_{2}\right)_{2, d-2}\left(e_{1}^{d-j} e_{3}^{j}\right)_{s, d-s} \cdot\left[1 \otimes\left(e_{1}^{d-1} e_{2}\right)^{s}\right] \\
\equiv & \sum_{s=3}^{d}(-1)^{s}(d-s-1)\left[(d-1) e_{1} \otimes e_{1}^{d-2} e_{2}+e_{2} \otimes e_{1}^{d-1}\right]^{d-s-2}\left((d-1) e_{1} e_{2} \otimes e_{1}^{d-2}\right) \\
& {\left[\binom{j}{s} e_{3}^{s} \otimes e_{1}^{d-j} e_{3}^{j-s}+(d-j)\binom{j}{s-1} e_{1} e_{3}^{s-1} \otimes e_{1}^{d-j-1} e_{3}^{j-s+1}\right] \cdot\left[1 \otimes\left(e_{1}^{d-1} e_{2}\right)^{s-1}\right] } \\
\equiv & \sum_{s=3}^{d}(-1)^{s}(d-s-1)(d-1)\binom{j}{s} e_{1} e_{2}^{d-s-1} e_{3}^{s} \otimes e_{1}^{d^{2}-d-j} e_{2}^{s} e_{3}^{j-s} . \\
I_{3} \equiv & \frac{d(d-3)}{2} \frac{2}{d}\left(e_{1}^{d-1} e_{2}\right)_{1, d-1}^{d-4}\left(e_{1}^{d-1} e_{2}\right)_{2, d-2}\left(e_{1}^{d-j} e_{3}^{j}\right)_{2, d-2} \cdot\left[1 \otimes\left(e_{1}^{d-1} e_{2}\right)^{2}\right] \\
\equiv & (d-3)\left[(d-1) e_{1} \otimes e_{1}^{d-2} e_{2}+e_{2} \otimes e_{1}^{d-1}\right]^{d-4}\left[(d-1) e_{1} e_{2} \otimes e_{1}^{d-2}\right] \\
& {\left[\binom{j}{2} e_{3}^{2} \otimes e_{1}^{d-j} e_{3}^{j-2}\right] \cdot\left[1 \otimes\left(e_{1}^{d-1} e_{2}\right)^{2}\right] } \\
\equiv & (d-3)(d-1)\binom{j}{s} e_{1} e_{2}^{d-3} e_{3}^{2} \otimes e_{1}^{d^{2}-d-j} e_{2}^{2} e_{3}^{j-2} .
\end{aligned}
$$

$$
\begin{aligned}
I_{4} \equiv & (2-d)\left(e_{1}^{d-1} e_{2}\right)_{1, d-1}^{d-3}\left(e_{1}^{d-j} e_{3}^{j}\right)_{1, d-1}\left(e_{1}^{d-1} e_{2}\right)_{2, d-2} \cdot\left[1 \otimes\left(e_{1}^{d-1} e_{2}\right)\right] \\
& -\left(e_{1}^{d-1} e_{2}\right)_{1, d-1}^{d-2}\left(e_{1}^{d-j} e_{3}^{j}\right)_{2, d-2} \cdot\left(1 \otimes\left(e_{1}^{d-1} e_{2}\right)\right) \\
& -\left(e_{1}^{d-1} e_{2}\right)_{1, d-1}^{d-2}\left(e_{1}^{d-1} e_{2}\right)_{2, d-2} \cdot\left[1 \otimes\left(e_{1}^{d-j} e_{3}^{j}\right)\right] \\
\equiv & -(d-2)\left[(d-1) e_{1} \otimes e_{1}^{d-2} e_{2}+e_{2} \otimes e_{1}^{d-1}\right]^{d-3}\left(j e_{3} \otimes e_{1}^{d-j} e_{3}^{j-1}\right) \\
& {\left[(d-1) e_{1} e_{2} \otimes e_{1}^{d-2}\right] \cdot\left[1 \otimes\left(e_{1}^{d-1} e_{2}\right)\right] } \\
& -\left[(d-1) e_{1} \otimes e_{1}^{d-2} e_{2}+e_{2} \otimes e_{1}^{d-1}\right]^{d-2} \\
& {\left[(d-j) j e_{1} e_{3} \otimes e_{1}^{d-j-1} e_{3}^{j-1}+\binom{j}{2} e_{3}^{2} \otimes e_{1}^{d-j} e_{3}^{j-2}\right] \cdot\left[1 \otimes\left(e_{1}^{d-1} e_{2}\right)\right] } \\
& -\left[(d-1) e_{1} \otimes e_{1}^{d-2} e_{2}+e_{2} \otimes e_{1}^{d-1}\right]^{d-2}\left[(d-1) e_{1} e_{2} \otimes e_{1}^{d-2}\right] \cdot\left[1 \otimes\left(e_{1}^{d-j} e_{3}^{j}\right)\right] \\
\equiv & -(d-2)\left(e_{2}^{d-3} \otimes e_{1}^{(d-1)(d-3)}\right)\left(j e_{3} \otimes e_{1}^{d-j} e_{3}^{j-1}\right)\left((d-1) e_{1} e_{2} \otimes e_{1}^{d-2}\right) \cdot\left(1 \otimes\left(e_{1}^{d-1} e_{2}\right)\right) \\
& -\left[e_{2}^{d-2} \otimes e_{1}^{(d-1)(d-2)}+(d-1)(d-2) e_{1} e_{2}^{d-2} \otimes e_{1}^{d^{2}-3 d+1} e_{2}\right] \\
& {\left[(d-j) j e_{1} e_{3} \otimes e_{1}^{d-j-1} e_{3}^{j-1}+\binom{j}{2} e_{3}^{2} \otimes e_{1}^{d-j} e_{3}^{j-2}\right] \cdot\left[1 \otimes\left(e_{1}^{d-1} e_{2}\right)\right] } \\
& -\left(e_{2}^{d-2} \otimes e_{1}^{(d-1)(d-2)}\right)\left[(d-1) e_{1} e_{2} \otimes e_{1}^{d-2}\right] \cdot\left(1 \otimes\left[e_{1}^{d-j} e_{3}^{j}\right)\right] \\
\equiv & {[-(d-2)(d-1) j-j(d-j)] e_{1} e_{2}^{d-2} e_{3} \otimes e_{1}^{d^{2}-d-j} e_{2} e_{3}^{j-1} } \\
& -\binom{j}{2} e_{2}^{d-2} e_{3}^{2} \otimes e_{1}^{d^{2}-j-d+1} e_{2} e_{3}^{j-2}-(d-2)(d-1)\binom{j}{2} e_{1} e_{2}^{d-3} e_{3}^{2} \otimes e_{1}^{d^{2}-j-d} e_{2}^{2} e_{3}^{j-2} \\
& -(d-1) e_{1} e_{2}^{d-1} \otimes e_{1}^{d^{2}-j-d} e_{3}^{j} .
\end{aligned}
$$

$$
\begin{aligned}
I_{5} \equiv & \left(e_{1}^{d-1} e_{2}\right)_{1, d-1}^{d-1}\left(e_{1}^{d-j} e_{3}{ }^{j}\right)_{1, d-1} \\
\equiv & {\left.\left[(d-1) e_{1} \otimes e_{1}^{d-2} e_{2}+e_{2} \otimes e_{1}^{d-1}\right)\right]^{d-1}\left[j e_{3} \otimes e_{1}^{d-j} e_{3}^{j-1}+(d-j) e_{1} \otimes e_{3}^{j} e_{1}^{d}\right] } \\
\equiv & {\left[e_{2}^{d-1} \otimes e_{1}^{(d-1)(d-1)}+(d-1)^{2} e_{1}^{d-2} e_{2} \otimes e_{1}^{(d-2)^{2}+d-1} e_{2}^{d-2}\right] } \\
& {\left[j e_{3} \otimes e_{1}^{d-j} e_{3}^{j-1}+(d-j) e_{1} \otimes e_{3}^{j} e_{1}^{d}\right] } \\
\equiv & j e_{2}^{d-1} e_{3} \otimes e_{1}^{d^{2}-j} e_{2} e_{3}^{j-1}+(d-j) e_{1} e_{2}^{d-1} \otimes e_{1}^{d^{2}-j-d} e_{3}^{j} \\
& +j(d-1)^{2} e_{1} e_{2}^{d-2} e_{3} \otimes e_{1}^{d^{2}-j-d} e_{2} e_{3}^{j-1} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\overline{Q_{d}}\left(\left(e_{1}^{d-1} e_{2}\right)^{d-1}\left(e_{1}^{d-j} e_{3}^{j}\right)\right) \equiv & \sum_{s=0}^{\min \{j, d-1\}}(-1)^{s}\binom{j}{s}(1-j) e_{1} e_{2}^{d-s-1} e_{3}^{s} \otimes e_{1}^{d^{2}-d-j} e_{2}^{s} e_{3}^{j-s} \\
& +\sum_{s=1}^{j}(-1)^{s-1}\binom{j}{s} e_{2}^{d-s} e_{3}^{s} \otimes e_{1}^{d^{2}-d-j+1} e_{2}^{s-1} e_{3}^{j-s} .
\end{aligned}
$$

This implies

Proposition 3.4.4.

$$
\begin{aligned}
& \pi_{d, d} \otimes I d_{S^{d^{2}-d} V}\left(\left(e_{1}^{d-1} e_{2}\right) \otimes \overline{Q_{d}}\left(\left(e_{1}^{d-1} e_{2}\right)^{d-1} \cdot\left(e_{1}^{d-j} e_{3}^{j}\right)\right)=\right. \\
& \sum_{s=0}^{\min \{j, d-1\}}(-1)^{s-1}\binom{j}{s}(1-j)(d-1)!\left(e_{1} \wedge e_{2}\right)^{d-s}\left(e_{1} \wedge e_{3}\right)^{s} \otimes e_{1}^{d^{2}-d-j} e_{2}^{s} e_{3}^{j-s} \\
& +\sum_{s=1}^{j}(-1)^{s-1}\binom{j}{s} s(d-1)!\left(e_{1} \wedge e_{2}\right)^{d-s}\left(e_{1} \wedge e_{3}\right)^{s-1}\left(e_{2} \wedge e_{3}\right) \otimes e_{1}^{d^{2}-d-j+1} e_{2}^{s-1} e_{3}^{j-s} .
\end{aligned}
$$

Proposition 3.4.1 and Proposition 3.4.4 imply:

Proposition 3.4.5.

$$
\begin{aligned}
& \overline{\mathfrak{B}}\left(\left(e_{1}^{d-1} e_{2}\right)^{d} \cdot\left(e_{1}^{d-j} e_{3}^{j}\right)\right)=\frac{d!}{d+1}\left(e_{1} \wedge e_{2}\right)^{d-j}\left(e_{3} \wedge e_{2}\right)^{j} \otimes\left(e_{1}^{d^{2}-d}\right) \\
& +\frac{d!}{d+1} \sum_{s=0}^{j}(-1)^{s-1}\binom{j}{s}(1-j)\left(e_{1} \wedge e_{2}\right)^{d-s}\left(e_{1} \wedge e_{3}\right)^{s} \otimes e_{1}^{d^{2}-d-j} e_{2}^{s} e_{3}^{j-s} \\
& +\frac{d!}{d+1} \sum_{s=1}^{j}(-1)^{s-1}\binom{j}{s} s\left(e_{1} \wedge e_{2}\right)^{d-s}\left(e_{1} \wedge e_{3}\right)^{s-1}\left(e_{2} \wedge e_{3}\right) \otimes e_{1}^{d^{2}-d-j+1} e_{2}^{s-1} e_{3}^{j-s} .
\end{aligned}
$$

3.5 Orthogonal decomposition of $S_{(d, d) V} \otimes S^{d^{2}-d} V$

Let e_{1}, e_{2}, e_{3} be a basis of V and define a Hermitian inner product on V such that

$$
<e_{i}, e_{j}>=\delta_{i, j}
$$

Extend the Hermitian inner product to $V^{\otimes\left(d^{2}+d\right)}$ naturally by

$$
<e_{i_{1}} \otimes \cdots \otimes e_{i_{d^{2}+d}}, e_{j_{1}} \otimes \cdots \otimes e_{j_{d^{2}+d}}>=\delta_{i_{1}, j_{1}} \cdots \delta_{i_{d^{2}+d}, j_{d^{2}+d}}
$$

One can decompose $V^{\otimes\left(d^{2}+d\right)}$ into direct sum of isotypic components as a $G L(V)$ module. Since the Hermitian inner product is unitary invariant, distinct isotypic components of $V^{\otimes\left(d^{2}+d\right)}$ are orthogonal (see e.g. [16]).

Consider $S_{(d, d)} V \otimes S^{d^{2}-d} V=S^{d}\left(\wedge^{2} V\right) \otimes S^{d^{2}-d} V$ as a subspace of $V^{\otimes\left(d^{2}+d\right)}$, the decomposition $S_{(d, d)} V \otimes S^{d^{2}-d} V=\bigoplus_{j=0}^{d} S_{\left(d^{2}-j, d, j\right)} V$ is an orthogonal decomposition with respect to the Hermitian inner product, therefore

Proposition 3.5.1. The projection of $\overline{\mathfrak{B}}\left(v_{j}\right)$ on $S_{\left(d^{2}-j, d, j\right)} V \subset S_{(d, d)} V \otimes S^{d^{2}-d} V$ is not 0 if and only if $<B\left(v_{j}\right), \tilde{v_{j}}>\neq 0$, where $\tilde{v_{j}}$ is defined in Lemma 3.3.4.

Lemma 3.5.2. If $a_{1}+a_{2}+a_{3}=d$ and $b_{1}+b_{2}+b_{3}=d^{2}-d$, then

$$
\begin{aligned}
& <\left(e_{1} \wedge e_{2}\right)^{a_{1}}\left(e_{1} \wedge e_{3}\right)^{a_{2}}\left(e_{2} \wedge e_{3}\right)^{a_{3}} \otimes e_{1}^{b_{1}} e_{2}^{b_{2}} e_{3}^{b_{3}},\left(e_{1} \wedge e_{2}\right)^{a_{1}}\left(e_{1} \wedge e_{3}\right)^{a_{2}}\left(e_{2} \wedge e_{3}\right)^{a_{3}} \\
& \otimes e_{1}^{b_{1}} e_{2}^{b_{2}} e_{3}^{b_{3}}>=\left(\frac{1}{2}\right)^{d} \frac{a_{1}!a_{2}!a_{3}!}{d!} \frac{b_{1}!b_{2}!b_{3}!}{\left(d^{2}-d\right)!}
\end{aligned}
$$

Recall by Lemma 3.3.4,

$$
\tilde{v_{j}}=\sum_{s=0}^{j} \sum_{t=0}^{s}(-1)^{t}\binom{j}{s}\binom{s}{t}\left(e_{1} \wedge e_{2}\right)^{d+s-j-t}\left(e_{1} \wedge e_{3}\right)^{t}\left(e_{1} \wedge e_{2}\right)^{j-s} \otimes e_{1}^{d^{2}-d-s} e_{2}^{t} e_{3}^{s-t}
$$

and by Proposition 3.4.5,

$$
\begin{aligned}
& \overline{\mathfrak{B}}\left(\left(e_{1}^{d-1} e_{2}\right)^{d} \cdot\left(e_{1}^{d-j} e_{3}^{j}\right)\right)=\frac{d!}{d+1}(-1)^{j}\left(e_{1} \wedge e_{2}\right)^{d-j}\left(e_{2} \wedge e_{3}\right)^{j} \otimes\left(e_{1}^{d^{2}-d}\right) \\
& +\frac{d!}{d+1} \sum_{t=0}^{j}(-1)^{t}\binom{j}{t}(j-1)\left(e_{1} \wedge e_{2}\right)^{d-t}\left(e_{1} \wedge e_{3}\right)^{t} \otimes e_{1}^{d^{2}-d-j} e_{2}^{t} e_{3}^{j-t} \\
& +\frac{d!}{d+1} \sum_{t=1}^{j}(-1)^{t-1}\binom{j}{t} t\left(e_{1} \wedge e_{2}\right)^{d-t}\left(e_{1} \wedge e_{3}\right)^{t-1}\left(e_{2} \wedge e_{3}\right) \otimes e_{1}^{d^{2}-d-j+1} e_{2}^{t-1} e_{3}^{j-t} .
\end{aligned}
$$

By Lemma 3.5.2,
Proposition 3.5.3. For any fixed $j \in\{0,1, \ldots, d\}$,

$$
\begin{aligned}
<B\left(v_{j}\right), \tilde{v}_{j}> & =\frac{\left(\frac{1}{2}\right)^{d}}{(d+1)\left(d^{2}-d\right)!}\left(\sum_{t=0}^{j} \frac{(j!)^{2}(j-1)(d-t)!\left(d^{2}-d-j\right)!}{(j-t)!}\right. \\
& \left.+\sum_{t=0}^{j-1} \frac{(j!)^{2}(d-t-1)!\left(d^{2}-d-j+1\right)!}{(j-t-1)!}+(-1)^{j}(d-j)!j!\left(d^{2}-d\right)!\right)
\end{aligned}
$$

$<B\left(v_{j}\right), \tilde{v}_{j}>=0$ only when

1. $j=0,1$ for all $d \geq 2$;
2. $j=3$ and $d=3$.

Proof. The ratio of $(d-j)!j!\left(d^{2}-d\right)!$ and $\frac{(j!)^{2}(j-1)(d-t)!\left(d^{2}-d-j\right)!}{(j-t)!}$ is $\frac{\binom{d^{2}-d}{j}}{(j-1)\binom{d-t}{j-t}}$, and the ratio of $(d-j)!j!\left(d^{2}-d\right)!$ and $\frac{(j!)^{2}(d-t-1)!\left(d^{2}-d-j+1\right)!}{(j-t-1)!}$ is $\frac{\binom{d^{2}-d}{j-1}}{j\binom{d-t-1}{j-t-1}}$. Therefore when d is large enough and $j \geq 2$, the term $(-1)^{j}(d-j)!j!\left(d^{2}-d\right)$! dominates. For small cases, one can check directly.

Combining all the results above, we prove Theorem 3.2.1 to prove Theorem 1.2.1.

Proof of Theorem 3.2.1. First, for $j=0$ and $d \geq 2, S_{\left(d^{2}, d\right)} V$ is not in the image of Brill's map because $C h_{d}\left(\mathbb{C}^{2}\right)=S^{d} \mathbb{C}^{2}$.

Second, for $j=1$ and all $d \geq 2, S_{\left(d^{2}-1, d, 1\right)} V$ is not in the image of Brill's map. If it were in the image of Brill's map, then $\mathfrak{B}\left(v_{1}\right)=\mathfrak{B}\left(v_{13}\right)=C \tilde{v_{1}} \neq 0$ (where v_{13} is defined in the proof of Proposition 3.3.5), so $<B\left(v_{1}\right), \tilde{v_{1}}>=<C \tilde{v_{1}}, \tilde{v_{1}}>\neq 0$, contradiction.

Third, when $d=3$ and $j=3$, the module $S_{(6,3,3)} V$ is not in the decomposition of $S^{4}\left(S^{3} V\right)$, so it is not in the image.

Finally, for other cases, $<B\left(v_{j}\right), \tilde{v}_{j}>\neq 0$, by Proposition 3.3.5 and Proposition 3.5.1, $S_{\left(d^{2}-j, d, j\right)} V$ is in the image of Brill's map.

4. DETERMINANTAL EQUATIONS FOR VARIETIES ARISING IN COMPLEXITY THEORY

This chapter is based on [20] and consists of two sections. In the first section, I compute Koszul Young Flattenings of Chow varieties and their secant varieties and obtain equations for these varieties, which enables a new lower bound for symmetric border rank of $x_{1} x_{2} \cdots x_{d}$ when d is odd. In the second section, I compute flattenings of Veronese reembeddings of secant varieties of Veronese varieties and obtain a new complexity lower bound for the permanent.
4.1 Koszul Young Flattenings of Chow varieties and their secant varieties

4.1.1 Disjoint linear maps

Definition 4.1.1. Let V and W to be two finite dimensional complex vector spaces and let $f: V \rightarrow W$ be a linear map. Let $V_{1}, V_{2}, \ldots V_{m}$ be subspaces of V such that $V=\bigoplus_{i=1}^{m} V_{i}$. The map f is called a disjoint map with respect to the decomposition $V=\bigoplus_{i=1}^{m} V_{i}$ if $f(V)=\bigoplus_{i=1}^{m} f\left(V_{i}\right)$.

Note that if $f: V \rightarrow W$ is a disjoint linear map with respect to the decomposition $V=\bigoplus_{i=1}^{m} V_{i}$, then $\operatorname{rank}(f)=\sum_{i=1}^{m} \operatorname{rank}\left(\left.f\right|_{V_{i}}\right)$.

4.1.2 Koszul Young flattenings of Chow varieties

Let $V=\mathbb{C}^{d}$ with basis $\left\{x_{1}, \ldots, x_{d}\right\}$. Let $P=x_{1} \cdots x_{d}$ and write $[d]=\{1, \ldots, d\}$. The following proposition is standard:

Proposition 4.1.2. Let $k \leq\left\lfloor\frac{d}{2}\right\rfloor$, then the image of

$$
P_{k, d-k}: S^{k} V^{*} \rightarrow S^{d-k} V
$$

is $\left(S^{d-k} V\right)$ reg $:=\operatorname{span}\left\{x_{i_{1}} x_{i_{2}} \cdots x_{i_{d-k}}\right\}_{1 \leq i_{1}<i_{2}<\cdots<i_{d-k} \leq d}$.

By Proposition 4.1.2,

Corollary 4.1.3. Let $k \leq\left\lfloor\frac{d}{2}\right\rfloor, p \leq\left\lfloor\frac{d}{2}\right\rfloor$. The image of

$$
P_{k, d-k}^{\wedge p}: S^{k} V^{*} \otimes \Lambda^{p} V \rightarrow S^{d-k-1} V \otimes \Lambda^{p+1} V
$$

is the image of $\left(S^{d-k} V\right)_{\mathrm{reg}} \otimes \Lambda^{p} V$ under the map

$$
\wedge_{d-k, p}: S^{d-k} V \otimes \Lambda^{p} V \rightarrow S^{d-k-1} V \otimes \Lambda^{p+1} V
$$

Since the map $\left.\wedge_{d-k, p}\right|_{\left(S^{d-k} V\right)_{\text {reg }} \otimes \Lambda^{p} V}$ preserves weights, it is helpful for us to decompose $\left(S^{d-k} V\right)_{\mathrm{reg}} \otimes \Lambda^{p} V$ into a direct sum of weight spaces.

Lemma 4.1.4. Let $W_{k_{1}, . ., k_{s} ; j_{1}, j_{2}, \cdots, j_{d-k+p-2 s}}$ be the span of $\left\{x_{k_{1}} \cdots x_{k_{s}} x_{m_{1}} \cdots x_{m_{d-k-s}} \otimes\right.$ $\left.x_{k_{1}} \wedge \cdots x_{k_{s}} \wedge x_{n_{1}} \wedge \cdots \wedge x_{n_{p-s}}\right\}_{\left\{m_{1}, \ldots, m_{d-k-s}, n_{1}, \ldots, n_{p-s}\right\}=\left\{j_{1}, j_{2}, \ldots, j_{d-k+p-2 s}\right\}}$. Then

$$
\begin{aligned}
& \left(S^{d-k} V\right)_{\mathrm{reg}} \otimes \Lambda^{p} V= \\
& \bigoplus_{\left\{k_{1}, ., k_{s}\right\} \subset[d]}^{\max \{0, p-k\} \leq s \leq \min \{p, d-k\}}\left\{\bigoplus_{\left\{j_{1}, j_{2}, \ldots, j_{d-k+p-2 s}\right\} \subset[d]-\left\{k_{1}, \ldots, k_{s}\right\}} W_{k_{1}, \ldots, k_{s} ; j_{1}, j_{2}, \ldots, j_{d-k+p-2 s}}\right.
\end{aligned}
$$

Moreover $\left.\wedge_{d-k, p}\right|_{\left(S^{d-k} V\right)_{\mathrm{reg}} \otimes \Lambda^{p} V}$ is a disjoint map with respect to this decomposition.

Example 4.1.5. Let $d=3$ and $k=p=1$, then

$$
\left(S^{2} V\right)_{\mathrm{reg}} \otimes V=\bigoplus_{1 \leq i, j \leq 3} W_{i ; j} \bigoplus W_{i, 1,3}
$$

Where $W_{i ; j}=\operatorname{span}\left\{x_{i} x_{j} \otimes x_{i}\right\}$, and $W_{; 1,2,3}=\operatorname{span}\left\{x_{1} x_{2} \otimes x_{3}, x_{1} x_{3} \otimes x_{2}, x_{2} x_{3} \otimes x_{1}\right\}$.

Lemma 4.1.6. Let $Q=\operatorname{span}\left\{y_{1}, \ldots, y_{u+v}\right\}$ and let

$$
A_{u, v} Q=\operatorname{span}\left\{y_{m_{1}} \cdots y_{m_{u}} \otimes y_{n_{1}} \wedge \cdots \wedge y_{n_{v}}\right\}_{\left\{m_{1}, \ldots, m_{u}, n_{1}, \ldots, n_{v}\right\}=[u+v]} .
$$

Then the rank of $\left.\wedge_{u, v}\right|_{A_{u, v} Q}: A_{u, v} Q \rightarrow A_{u-1, v+1} Q$ is $\binom{u+v-1}{v}$. Moreover

$$
\begin{aligned}
& \operatorname{rank}\left(\left.\wedge_{d-k, p}\right|_{\left.W_{k_{1}, \ldots, k_{s} ; j_{1}, j_{2}, \ldots, j_{d-k+p-2 s}}\right)}=\operatorname{rank}\left(\left.\wedge_{d-k-s, p-s}\right|_{A_{d-k-s, p-s} Q}\right)\right. \\
&=\binom{d-k+p-2 s-1}{p-s} .
\end{aligned}
$$

Proof. By [16] Exercise 4.6, $[u+v-1,1]$ is the standard representation of \mathfrak{S}_{u+v} and $\Lambda^{s}[u+v-1,1]=\left[u+v-s, 1^{s}\right]$. As a \mathfrak{S}_{u+v}-module, $A_{u, v} Q=\Lambda^{u}([u+v-1,1]+$ $\mathbb{C})=\Lambda^{u}[u+v-1,1]+\Lambda^{u-1}[u+v-1,1]=\left[u, 1^{v}\right] \oplus\left[u+1,1^{v-1}\right]$ and $A_{u-1, v+1} Q=$ $\left[u-1,1^{v+1}\right] \oplus\left[u, 1^{v}\right]$, since $\left.\wedge_{u, v}\right|_{A_{u, v} Q}$ is a \mathfrak{S}_{u+v}-module map, by Schur's lemma, $\operatorname{image}\left(\left.\wedge_{u, v}\right|_{A_{u, v} Q}\right)=\left[u, 1^{v}\right]$, with dimension $\binom{u+v-1}{v}$. Notice $\left.\wedge_{d-k, p}\right|_{W_{k_{1}, \ldots, k_{s} ; j_{1}, j_{2}, \ldots, j_{d-k+p-2 s}}}$ is essentially the same map as $\left.\wedge_{d-k-s, p-s}\right|_{A_{d-k-s, p-s} Q}$, so

$$
\begin{aligned}
\operatorname{rank}\left(\left.\wedge_{d-k, p}\right|_{W_{k_{1}}, \ldots, k_{s} ; j_{1}, j_{2}, \cdots, j_{d-k+p-2 s}}\right) & =\operatorname{rank}\left(\left.\wedge_{d-k-s, p-s}\right|_{A_{d-k-s, p-s} Q}\right) \\
& =\binom{d-k+p-2 s-1}{p-s}
\end{aligned}
$$

Proof of Theorem 1.3.1. By Corollary 4.1.3, we only need to compute the rank of

$$
\left.\wedge_{d-k, p}\right|_{\left(S^{d-k} V\right)_{\mathrm{reg}} \otimes \Lambda^{p} V}:\left(S^{d-k} V\right)_{\mathrm{reg}} \otimes \Lambda^{p} V \rightarrow S^{d-k-1} V \otimes \Lambda^{p+1} V
$$

By Lemma 4.1.6, $\operatorname{rank}\left(\left.\wedge_{d-k, p}\right|_{W_{k_{1}, \ldots, k_{s} ; j_{1}, j_{2}, \ldots, j_{d-k+p-2 s}}}\right)$ depends only on s. Consider the decomposition of $\left(S^{d-k} V\right)_{\mathrm{reg}} \otimes \Lambda^{p} V$ in (4.1), for any given s, the number of subspaces
$W_{k_{1}, \ldots, k_{s} ; j_{1}, j_{2}, \ldots, j_{d-k+p-2 s}}$ is $\binom{d}{s}\binom{d-s}{d-k+p-2 s}$. Therefore, by Lemma 4.1.4 and Lemma 4.1.6.

$$
\begin{align*}
\mathbf{S}(\mathbf{p}, \mathbf{d}, \mathbf{k}) & =\sum_{s=\max \{0, p-k\}}^{\min \{p, d-k\}}\binom{d}{s}\binom{d-s}{d-k+p-2 s} \operatorname{rank}\left(\left.\wedge_{d-k, p}\right|_{\left.W_{k_{1}, \ldots, k_{s} ; j_{1}, j_{2}, \ldots, j_{d-k+p-2 s}}\right)}\right. \\
& =\sum_{s=\max \{0, p-k\}}^{\min \{p, d-k-1\}}\binom{d}{s}\binom{d-s}{d-k+p-2 s}\binom{d-k+p-2 s-1}{p-s} \tag{4.2}\\
& =\frac{d!}{p!(d-p-1)!} \sum_{s=\max \{0, p-k\}}^{\min \{p, d-k-1\}} \frac{\binom{p}{s}\binom{d-1-p}{s+k-p}}{d-k+p-2 s} . \tag{4.3}
\end{align*}
$$

Lemma 4.1.7. Let $P=l^{d}$ for some linear form $l \in V$, then $\operatorname{rank}\left(P_{k, d-k}^{\wedge p}\right)=\binom{d-1}{p}$.
Proof. Let $P=l^{d}$, the image of

$$
P_{k, d-k}^{\wedge p}: S^{k} V^{*} \otimes \Lambda^{p} V \rightarrow S^{d-k-1} V \otimes \Lambda^{p+1} V
$$

is span $\left\{l^{d-k-1} \otimes\left(l \wedge x_{i_{1}} \wedge \cdots \wedge x_{i_{p}}\right)\right\}$. We can assume $l=x_{1}$, then $\operatorname{rank}\left(P_{k, d-k}^{\wedge p}\right)=$ $\binom{d-1}{p}$.

Proof of Theorem 1.2.3. When $d=2 n+1$ and $k=p=n$,

$$
\begin{equation*}
\mathbf{S}(\mathbf{n}, \mathbf{2 n}+\mathbf{1}, \mathbf{n})=\frac{(2 n+1)!}{(n!)^{2}} \sum_{s=0}^{n} \frac{\binom{n}{s}^{2}}{1+2 s} \tag{4.4}
\end{equation*}
$$

and by Lemma 4.1.7, $\underline{\mathbf{R}}_{S}\left(x_{1} \cdots x_{2 n}\right) \geq \frac{\mathbf{S}(\mathbf{n}, \mathbf{2 n + 1 , \mathbf { n })}}{\binom{n_{n} n}{n}}$.
Let

$$
\mathbf{A}=\sum_{s=0}^{n} \frac{\binom{n}{s}^{2}}{1+2 s}
$$

Then

$$
\begin{aligned}
2 \mathbf{A} & =\sum_{s=0}^{n} \frac{\binom{n}{s}^{2}}{1+2 s}+\sum_{s=0}^{n} \frac{\binom{n}{s}^{2}}{1+2 n-2 s} \\
& =\sum_{s=0}^{n}\binom{n}{s}^{2}\left(\frac{1}{1+2 s}+\frac{1}{1+2 n-2 s}\right) \\
& =\sum_{s=0}^{n}\binom{n}{s}^{2} \frac{2+2 n}{(1+2 s)(1+2 n-2 s)} .
\end{aligned}
$$

Notice that

$$
(1+2 s)(1+2 n-2 s) \leq(1+n)^{2} .
$$

So

$$
\begin{aligned}
\mathbf{A} & =\sum_{s=0}^{n}\binom{n}{s}^{2} \frac{1+n}{(1+2 s)(1+2 n-2 s)} \\
& =\sum_{s=0}^{n}\binom{n}{s}^{2}\left(\frac{1+n}{(1+2 s)(1+2 n-2 s)}-\frac{1}{1+n}+\frac{1}{1+n}\right) \\
& =\sum_{s=0}^{n}\binom{n}{s}^{2}\left(\frac{n^{2}-4 n s+4 s^{2}}{(n+1)(1+2 s)(1+2 n-2 s)}+\frac{1}{1+n}\right) \\
& \geq \sum_{s=0}^{n}\binom{n}{s}^{2}\left(\frac{n^{2}-4 n s+4 s^{2}}{(n+1)^{3}}+\frac{1}{1+n}\right) \\
& =\sum_{s=0}^{n}\binom{n}{s}^{2} \frac{n^{2}-4 n s+4 s^{2}}{(n+1)^{3}}+\binom{2 n}{n} \frac{1}{1+n} .
\end{aligned}
$$

Since

$$
\sum_{s=0}^{n} s\binom{n}{s}^{2}=n\binom{2 n-1}{n}
$$

and

$$
\sum_{s=0}^{n} s(s-1)\binom{n}{s}^{2}=n(n-1)\binom{2 n-2}{n}
$$

we have

$$
\sum_{s=0}^{n} s^{2}\binom{n}{s}^{2}=n(n-1)\binom{2 n-2}{n}+n\binom{2 n-1}{n}
$$

This implies

$$
\begin{aligned}
\mathbf{A} & \geq \sum_{s=0}^{n}\binom{n}{s} \frac{n^{2}-4 n s+4 s^{2}}{(n+1)^{3}}+\binom{2 n}{n} \frac{1}{1+n} \\
& =\frac{n^{2}\binom{2 n}{n}+4 n(n-1)\binom{2 n-2}{n}+4 n\binom{2 n-1}{n}-4 n^{2}\binom{2 n-1}{n}}{(n+1)^{3}}+\binom{2 n}{n} \frac{1}{1+n} \\
& =\frac{\binom{2 n}{n}}{(n+1)^{3}}\left[n^{2}+4 n(n-1) \frac{n(n-1)}{2 n(2 n-1)}+\left(4 n-4 n^{2}\right) \frac{n}{2 n}\right]+\binom{2 n}{n} \frac{1}{1+n} \\
& =\frac{\binom{2 n}{n}}{(n+1)^{3}}\left(\frac{2 n(n-1)^{2}}{2 n-1}-n^{2}+2 n\right)+\binom{2 n}{n} \frac{1}{1+n} \\
& =\frac{\binom{2 n}{n}}{(n+1)^{3}} \frac{2 n(n-1)^{2}-\left(n^{2}-2 n\right)(2 n-1)}{2 n-1}+\binom{2 n}{n} \frac{1}{1+n} \\
& =\frac{\binom{2 n}{n}}{(n+1)^{3}} \frac{n^{2}}{2 n-1}+\binom{2 n}{n} \frac{1}{1+n} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \frac{\mathbf{S}(\mathbf{n}, \mathbf{2 n}+\mathbf{1}, \mathbf{n})}{\binom{2 n}{n}\binom{2 n+1}{n}}=\frac{(2 n+1)!}{(n!)^{2}} \frac{\mathbf{A}}{\binom{2 n}{n}\binom{2 n+1}{n}} \\
& \geq \frac{(2 n+1)!}{(n!)^{2}} \frac{\binom{2 n}{n}}{(n+1)^{3}} \frac{n^{2}}{2 n-1}+\binom{2 n}{n} \frac{1}{1+n} \\
&\binom{2 n}{n}\binom{2 n+1}{n} \\
&=\frac{(2 n+1)!}{(n!)^{2}} \frac{1}{\binom{2 n+1}{n}}\left(\frac{1}{1+n}+\frac{n^{2}}{(n+1)^{3}(2 n-1)}\right) \\
&=(n+1)\left(\frac{1}{1+n}+\frac{n^{2}}{(n+1)^{3}(2 n-1)}\right) \\
&=1+\frac{n^{2}}{(n+1)^{2}(2 n-1)} .
\end{aligned}
$$

Therefore $\underline{\mathbf{R}}_{S}\left(x_{1} \cdots x_{2 n}\right) \geq \frac{\mathbf{S}(\mathbf{n}, \mathbf{2 n} \mathbf{n}, \mathbf{n})}{\binom{2 n}{n}} \geq\binom{ 2 n+1}{n}\left(1+\frac{n^{2}}{(n+1)^{2}(2 n-1)}\right)$.

4.1.3 Koszul Young flattenings of secant varieties of Chow varieties

I study equations for secant varieties of Chow varieties from the perspective of Koszul Young flattenings.

Proposition 4.1.8. Let $V=\mathbb{C}^{d r}$ with a basis $\left\{x_{1}, \ldots, x_{d r}\right\}$. Let $P=x_{1} \cdots x_{d}+$ $x_{d+1} \cdots x_{2 d}+\cdots+x_{(r-1) d+1} \cdots x_{r d}$. For any $k \leq\left\lfloor\frac{d}{2}\right\rfloor$, the map $P_{k, d-k}: S^{k} V^{*} \rightarrow S^{d-k} V$ has rank

$$
\operatorname{rank}\left(P_{k, d-k}\right)=r\binom{d}{k}
$$

Therefore the $\left(r\binom{d}{k}+1\right) \times\left(r\binom{d}{k}+1\right)$ minors of the linear map $P_{k, d-k}$ are in the ideal of $\sigma_{r}\left(C h_{d}(V)\right)$. In particular, when $k=2$ and $d \geq 4, r\binom{d}{2}<\binom{r d+1}{2}$, so we obtain equations for $\sigma_{r}\left(C h_{d}(V)\right)$ of degree $r\binom{d}{2}+1$.

While we can not obtain equations of $\sigma_{r}\left(C h_{3}\left(\mathbb{C}^{3 r}\right)\right)$ just by usual flattenings, we can obtain equations for $\sigma_{r}\left(C h_{3} \mathbb{C}^{3 r}\right)$ by Koszul Young flattenings in Theorem 1.3.2.

Proof of Theorem 1.3.2. Let $V_{i}=\operatorname{span}\left\{x_{(i-1) d+1}, \ldots, x_{(i-1) d+d}\right\}$, for $i=1,2, \ldots, r$. Then $V=\oplus_{i=1}^{r} V_{i}$. The image of the map

$$
P_{k, d-k}^{\wedge p}: S^{k} V^{*} \otimes \Lambda^{p} V \rightarrow S^{d-k-1} V \otimes \Lambda^{p+1} V
$$

is the image of the map

$$
\wedge_{d-k, p}: \bigoplus_{i=1}^{r}\left(S^{d-k} V_{i}\right)_{\mathrm{reg}} \otimes \Lambda^{p} V \rightarrow S^{d-k-1} V \otimes \Lambda^{p+1} V
$$

Write $\Lambda^{p} V=\Lambda^{p} V_{i} \oplus W_{i}$, where W_{i} is the complement of $\Lambda^{p} V_{i}$ with respect to the basis $\left\{x_{i_{1}} \wedge \cdots \wedge x_{i_{p}}\right\}_{1<i_{1}<i_{2}<\cdots<i_{p} \leq d r}$. Rewrite the map as

$$
\wedge_{d-k, p}: \bigoplus_{i=1}^{r}\left(S^{d-k} V_{i}\right)_{\mathrm{reg}} \otimes\left(\Lambda^{p} V_{i} \oplus W_{i}\right) \rightarrow S^{d-k-1} V \otimes \Lambda^{p+1} V
$$

Then

$$
\begin{aligned}
\operatorname{rank}\left(P_{k, d-k}^{\wedge p}\right) & \leq \sum_{i=1}^{r} \operatorname{rank}\left(\left.\wedge_{d-k, p}\right|_{\left(S^{d-k} V_{i}\right) \operatorname{reg} \otimes \Lambda^{p} V_{i}}\right)+\operatorname{rank}\left(\left.\wedge_{d-k, p}\right|_{\left(S^{d-k} V_{i}\right) \operatorname{reg} \otimes W_{i}}\right) \\
& \leq r\left[\mathbf{S}(\mathbf{p}, \mathbf{k}, \mathbf{d})+\binom{d}{k}\left(\binom{d r}{p}-\binom{d}{p}\right)\right] .
\end{aligned}
$$

In particular, when $d \geq 2$, and $p=k=1$,

$$
\operatorname{rank}\left(P_{1, d-1}^{\wedge 1}\right) \leq d^{2} r^{2}-r
$$

Therefore the $\left(d^{2} r^{2}-r+1\right) \times\left(d^{2} r^{2}-r+1\right)$ minors of $P_{1, d-1}^{\wedge 1}$ are in the ideal of $\sigma_{r}\left(C h_{d}(V)\right)$.
4.2 Flattenings of Veronese reembeddings of secant varieties of Veronese varieties
4.2.1 Flattenings of Veronese reembeddings of secant varieties of Veronese varieties

Let $\left\{x_{1}, \ldots, x_{r}\right\}$ be a basis of V, and $\left\{y_{1}, \ldots, y_{r}\right\}$ be the dual basis of V^{*}. Let $P=\left(x_{1}^{\delta_{2}}+\cdots+x_{r}^{\delta_{2}}\right)^{\delta_{1}} \in S^{d} V$, where $d=\delta_{1} \delta_{2}$, note that $[P]$ is a generic polynomial in $v_{\delta_{1}}\left(\sigma_{r}\left(v_{\delta_{2}}\left(\mathbb{P}^{r-1}\right)\right)\right)$. The goal is to compute the rank of its $(k, d-k)$-flattening $P_{k, d-k}: S^{k} V^{*} \rightarrow S^{d-k} V$, where $k \leq\left\lfloor\frac{d}{2}\right\rfloor$.

Definition 4.2.1. Let $y_{1}^{\alpha_{1}} \cdots y_{r}^{\alpha_{r}} \in S^{k} V^{*}$, the support of $P_{k, d-k}\left(y_{1}^{\alpha_{1}} \cdots y_{r}^{\alpha_{r}}\right)$ is the set of all monomials appearing in $P_{k, d-k}\left(y_{1}^{\alpha_{1}} \cdots y_{r}^{\alpha_{r}}\right)$.

Example 4.2.2. Consider $\delta_{1}=\delta_{2}=r=k=2$, then $P=\left(x_{1}^{2}+x_{2}^{2}\right)^{2}, P_{2,2}\left(y_{1}^{2}\right)=$ $12 x_{1}^{2}+x_{2}^{2}$, the support of $P_{2,2}\left(y_{1}^{2}\right)$ is $\left\{x_{1}^{2}, x_{2}^{2}\right\}$, Similarly the support of $P_{2,2}\left(y_{2}^{2}\right)$ is $\left\{x_{1}^{2}, x_{2}^{2}\right\}$, and the support of $P_{2,2}\left(y_{1} y_{2}\right)$ is $\left\{x_{1} x_{2}\right\}$.

Proposition 4.2.3. Let $y_{1}^{\alpha_{1}} \cdots y_{r}^{\alpha_{r}}$ and $y_{1}^{\eta_{1}} \cdots y_{r}^{\eta_{r}} \in S^{k} V^{*}$, then $P_{k, d-k}\left(y_{1}^{\alpha_{1}} \cdots y_{r}^{\alpha_{r}}\right)$ and $P_{k, d-k}\left(y_{1}^{\eta_{1}} \cdots y_{r}^{\eta_{r}}\right)$ have the same support in $S^{d-k} V$ if and only if $\alpha_{i}-\eta_{i}=n_{i} \delta_{2}$ for some integers n_{i} and for each $i=1, \ldots, r$.

Proof.

$$
\begin{aligned}
P & =\left(x_{1}^{\delta_{2}}+\cdots+x_{r}^{\delta_{2}}\right)^{\delta_{1}} \\
& =\sum_{t_{1}+\cdots+t_{r}=\delta_{1}}\binom{\delta_{1}}{t_{1}, \cdots, t_{r}} x_{1}^{t_{1} \delta_{2}} x_{2}^{t_{2} \delta_{2}} \cdots x_{r}^{t_{r} \delta_{2}} .
\end{aligned}
$$

Therefore

$$
P_{k, d-k}\left(y_{1}^{\alpha_{1}} \cdots y_{r}^{\alpha_{r}}\right)=\sum_{t_{1}+\cdots+t_{r}=\delta_{1}} C\left(t_{1}, \ldots, t_{r} ; \alpha_{1}, \ldots, \alpha_{r}\right) x_{1}^{t_{1} \delta_{2}-\alpha_{1}} x_{2}^{t_{2} \delta_{2}-\alpha_{2}} \cdots x_{r}^{t_{r} \delta_{2}-\alpha_{r}} .
$$

Where $C\left(t_{1}, \ldots, t_{r} ; \alpha_{1}, \ldots, \alpha_{r}\right)$ depends on $\left(t_{1}, \ldots, t_{r}\right)$ and $\left(\alpha_{1}, \ldots, \alpha_{r}\right)$.

$$
P_{k, d-k}\left(y_{1}^{\eta_{1}} \cdots y_{r}^{\eta_{r}}\right)=\sum_{t_{1}+\cdots+t_{r}=\delta_{1}} C\left(t_{1}, \ldots, t_{r} ; \eta_{1}, \ldots, \eta_{r}\right) x_{1}^{t_{1} \delta_{2}-\eta_{1}} x_{2}^{t_{2} \delta_{2}-\eta_{2}} \cdots x_{r}^{t_{r} \delta_{2}-\eta_{r}}
$$

Therefore $P_{k, d-k}\left(y_{1}^{\alpha_{1}} \cdots y_{r}^{\alpha_{r}}\right)$ and $P_{k, d-k}\left(y_{1}^{\eta_{1}} \cdots y_{r}^{\eta_{r}}\right)$ have the same support in $S^{d-k} V$ if and only if $\alpha_{i}-\eta_{i}=n_{i} \delta_{2}$ for some integers n_{i} and for each $i=1, \ldots, r$.

Definition 4.2.4. For any $\alpha_{1}+\cdots+\alpha_{r}=k$, define the subspace $A\left[\alpha_{1}, \ldots, \alpha_{r}\right] \subset$ $S^{k} V^{*}$ by
$A\left[\alpha_{1}, \ldots, \alpha_{r}\right]=$
$\operatorname{span}\left\{y_{1}^{\eta_{1}} \cdots y_{r}^{\eta_{r}} \in S^{k} V^{*} \mid \alpha_{i}-\eta_{i}=n_{i} \delta_{2}\right.$ for some integer n_{i} and for each $\left.i=1, \cdots, r\right\}$.

Define $B\left[\alpha_{1}, \ldots, \alpha_{r}\right]$ to be the subspace of $S^{d-k} V$ spanned by the support of $P_{k, d-k}\left(y_{1}^{\alpha_{1}} \cdots y_{r}^{\alpha_{r}}\right)$.
Remark 4.2.5. With the notation above, $S^{k} V^{*}$ can be decomposed as a direct sum of subspaces $A\left[\alpha_{1}, \cdots, \alpha_{r}\right]$ and by Proposition 4.2.3 $P_{k, d-k}$ is a disjoint map with respect to this decomposition.

Definition 4.2.6. For each subspace $A\left[\alpha_{1}, \ldots, \alpha_{r}\right]$, write $\alpha_{i}=\beta_{i}+s_{i} \delta_{2}$, where $0 \leq$ $\beta_{i}<\delta_{2}$, easy to see each β_{i} and $\sum_{i=1}^{r} s_{i}$ are invariant for the basis vectors. Define two functions

$$
\begin{equation*}
A\left(\alpha_{1}, \ldots, \alpha_{r}\right)=\sum_{i=1}^{r} s_{i}=\sum_{i=1}^{r}\left\lfloor\frac{\alpha_{i}}{\delta_{2}}\right\rfloor . \tag{4.5}
\end{equation*}
$$

and

$$
\begin{equation*}
B\left(\alpha_{1}, \ldots, \alpha_{r}\right)=\delta_{1}-\sum_{i=1}^{r}\left\lceil\frac{\alpha_{i}}{\delta_{2}}\right\rceil \tag{4.6}
\end{equation*}
$$

One can check $0 \leq A\left(\alpha_{1}, \cdots, \alpha_{r}\right) \leq\left\lfloor\frac{k}{\delta_{2}}\right\rfloor$ and

$$
\begin{equation*}
B\left(\alpha_{1}, \ldots, \alpha_{r}\right)=\delta_{1}-A\left(\alpha_{1}, \ldots, \alpha_{r}\right)-\#\left\{\beta_{i}>0\right\} \tag{4.7}
\end{equation*}
$$

Proposition 4.2.7. Consider

$$
\left.P_{k, d-k}\right|_{A\left[\alpha_{1}, \ldots, \alpha_{r}\right]}: A\left[\alpha_{1}, \ldots, \alpha_{r}\right] \rightarrow B\left[\alpha_{1}, \ldots, \alpha_{r}\right]
$$

then $\operatorname{dim} A\left[\alpha_{1}, \ldots, \alpha_{r}\right]=\binom{A\left(\alpha_{1}, \ldots, \alpha_{r}\right)+r-1}{A\left(\alpha_{1}, \ldots, \alpha_{r}\right)}$ and $\operatorname{dim} B\left[\alpha_{1}, \ldots, \alpha_{r}\right]=\binom{B\left(\alpha_{1}, \ldots, \alpha_{r}\right)+r-1}{B\left(\alpha_{1}, \ldots, \alpha_{r}\right)}$.
Proof. Write $\alpha_{i}=\beta_{i}+s_{i} \delta_{2}$, where $0 \leq \beta_{i}<\delta_{2}$. Then

$$
\begin{aligned}
& A\left[\alpha_{1}, \ldots, \alpha_{r}\right]=\operatorname{span}\left\{y_{1}^{\eta_{1}} \cdots y_{r}^{\eta_{r}} \in S^{k} V^{*} \mid \eta_{i}=n_{i} \delta_{2}+\beta_{i}\right. \\
& \text { for some nonegetive integer } \left.n_{i} \text { such that } n_{1}+\cdots+n_{r}=\sum_{i=1}^{r} s_{i}=A\left(\alpha_{1}, \ldots, \alpha_{r}\right)\right\}
\end{aligned}
$$

Therefore $\operatorname{dim} A\left[\alpha_{1}, \ldots, \alpha_{r}\right]=\binom{A\left(\alpha_{1}, \ldots, \alpha_{r}\right)+r-1}{A\left(\alpha_{1}, \ldots, \alpha_{r}\right)}$.
Similarly let

$$
\theta_{i}=\left\{\begin{array}{l}
\delta_{2}-\beta_{i} \beta_{i} \neq 0 \\
0 \quad \beta_{i}=0
\end{array}\right.
$$

Let $x_{1}^{\zeta_{1}} \cdots x_{r}^{\zeta_{r}} \in B\left[\alpha_{1}, \ldots, \alpha_{r}\right]$, then $\zeta_{i}=m_{i} \delta_{2}+\theta_{i}$ for some nonnegative integer m_{i},
and

$$
\begin{aligned}
\sum_{i=1}^{r}\left(m_{i} \delta_{2}+\theta_{i}\right) & =\delta_{1} \delta_{2}-k \\
& =\delta_{1} \delta_{2}-\sum_{i=1}^{r} \alpha_{i} \\
& =\delta_{1} \delta_{2}-\sum_{i=1}^{r}\left(\beta_{i}+s_{i} \delta_{2}\right) \\
& =\delta_{1} \delta_{2}-A\left(\alpha_{1}, \ldots, \alpha_{r}\right) \delta_{2}-\sum_{i=1}^{r} \beta_{i} \\
& =\left(\delta_{1}-A\left(\alpha_{1}, \ldots, \alpha_{r}\right)-\#\left\{\beta_{i}>0\right\}\right) \delta_{2}+\sum_{i=1}^{r} \theta_{i}
\end{aligned}
$$

So

$$
m_{1}+\cdots+m_{r}=\delta_{1}-A\left(\alpha_{1}, \ldots, \alpha_{r}\right)-\#\left\{\beta_{i}>0\right\}=B\left(\alpha_{1}, \ldots, \alpha_{r}\right)
$$

Therefore

$$
B\left[\alpha_{1}, \ldots, \alpha_{r}\right]=\operatorname{span}\left\{x_{1}^{\zeta_{1}} \cdots x_{r}^{\zeta_{r}} \in S^{d-k} V \mid \zeta_{i}=m_{i} \delta_{2}+\theta_{i}\right.
$$

for some nonnegative integer m_{i} such that $\left.m_{1}+\cdots+m_{r}=B\left(\alpha_{1}, \ldots, \alpha_{r}\right)\right\}$.
and $\operatorname{dim} B\left[\alpha_{1}, \ldots, \alpha_{r}\right]=\binom{B\left(\alpha_{1}, \ldots, \alpha_{r}\right)+r-1}{B\left(\alpha_{1}, \ldots, \alpha_{r}\right)}$.
Remark 4.2.8. Spaces $A\left[\alpha_{1}, \ldots, \alpha_{r}\right]$ and $B\left[\alpha_{1}, \ldots, \alpha_{r}\right]$ are essentially determined by $\left(\beta_{1}, \ldots, \beta_{r}\right)$ with $0 \leq \beta_{i}<\delta_{2}(i=1, \ldots, r)$.

Definition 4.2.9. Define $\operatorname{NUM}(A, B)$ to be the number of subspaces $A\left[\alpha_{1}, \ldots, \alpha_{r}\right]$ of $S^{k} V^{*}$ such that $A\left(\alpha_{1}, \ldots, \alpha_{r}\right)=A$ and $B\left(\alpha_{1}, \ldots, \alpha_{r}\right)=B$.

One can decompose

$$
\begin{equation*}
S^{k} V^{*}=\bigoplus_{A=0}^{\left\lfloor\frac{k}{\left.\delta_{2}\right\rfloor}\right.} \bigoplus_{B \leq \delta_{1}-A} W(A, B)^{\oplus \operatorname{NUM}(A, B)} \tag{4.8}
\end{equation*}
$$

such that $W(A, B)$ is a copy of subspace $A\left[\alpha_{1}, \ldots, \alpha_{r}\right]$ in $S^{k} V^{*}$ with $A\left(\alpha_{1}, \ldots, \alpha_{r}\right)=$ A and $B\left(\alpha_{1}, \ldots, \alpha_{r}\right)=B$. Furthermore $P_{k, d-k}$ is a disjoint map with respect to this decomposition.

Proposition 4.2.10. $\operatorname{NUM}(A, B)=\#\left\{\left(\beta_{1}, \ldots, \beta_{r}\right) \mid \beta_{1}+\cdots+\beta_{r}=k-A \delta_{2}, \#\left\{\beta_{i}>\right.\right.$ $0\}=\delta_{1}-B-A$ and $0 \leq \beta_{i}<\delta_{2}$ for $\left.i=1, \ldots, r\right\}$. Moreover we have the following bounds for the rank of $P_{k, d-k}$,

$$
\begin{align*}
\operatorname{NUM}(0,0) & \leq \operatorname{rank}\left(P_{k, d-k}\right) \tag{4.9}\\
& \leq \sum_{A=0}^{\left\lfloor\frac{k}{\left.\delta_{2}\right\rfloor} \sum_{B=0}^{\delta_{1}-A}\right.} \min \left\{\binom{A+r-1}{A},\binom{B+r-1}{B}\right\} \operatorname{NUM}(A, B) . \tag{4.10}
\end{align*}
$$

Proof. First let $A\left[\alpha_{1}, \ldots, \alpha_{r}\right]$ be a subspace of $S^{k} V^{*}$ such that $A\left(\alpha_{1}, \ldots, \alpha_{r}\right)=A$ and $B\left(\alpha_{1}, \ldots, \alpha_{r}\right)=B$. Write $\alpha_{i}=\beta_{i}+n_{i} \delta_{2}$, where $0 \leq \beta_{i}<\delta_{2}$, then

$$
\begin{aligned}
k & =\sum_{i=1}^{r} n_{i} \delta_{2}+\beta_{i} \\
& =A \delta_{2}-\sum_{i=1}^{r} \beta_{i}
\end{aligned}
$$

Therefore $\beta_{1}+\cdots+\beta_{r}=k-A \delta_{2}$. By (4.7), $\#\left\{\beta_{i}>0\right\}=\delta_{1}-B-A$ and $0 \leq \beta_{i}<\delta_{2}$. On the other hand, since $\left(\beta_{1}, \ldots, \beta_{r}\right)$ determine the class $A\left[\alpha_{1}, \ldots, \alpha_{r}\right]$ uniquely, $\operatorname{NUM}(A, B)=\#\left\{\left(\beta_{1}, \ldots, \beta_{r}\right) \mid \beta_{1}+\cdots+\beta_{r}=k-A \delta_{2}, \#\left\{\beta_{i}>0\right\}\right)=\delta_{1}-B-A$ and $0 \leq$ $\beta_{i}<\delta_{2}$ for $\left.i=1, \ldots, r\right\}$.

Second, by (4.8) one can decompose $S^{k} V^{*}=\bigoplus_{A=0}^{\left\lfloor\frac{k}{\delta_{2}}\right\rfloor} \bigoplus_{B \leq \delta_{1}-A} W(A, B)^{\oplus \operatorname{NUM}(A, B)}$
such that $W(A, B)$ is a copy of subspace $A\left[\alpha_{1}, \ldots, \alpha_{r}\right]$ in $S^{k} V^{*}$ with $A\left(\alpha_{1}, \ldots, \alpha_{r}\right)=$ A and $B\left(\alpha_{1}, \ldots, \alpha_{r}\right)=B$, and $P_{k, d-k}$ is a disjoint map with respect to the decomposition. Since when $B<0,\left.P_{k, d-k}\right|_{W(A, B)}$ is the zero map,

$$
\begin{aligned}
\operatorname{rank}\left(P_{k, d-k}\right) & =\sum_{A=0}^{\left\lfloor\frac{k}{\left.\delta_{2}\right\rfloor} \sum_{B=0}^{\delta_{1}-A} \operatorname{rank}\left(P_{k, d-k} \mid W(A, B)\right) \operatorname{NUM}(A, B)\right.} \\
& \leq \sum_{A=0}^{\left\lfloor\frac{k}{\left.\delta_{2}\right\rfloor}\right.} \sum_{B=0}^{\delta_{1}-A} \min \left\{\binom{A+r-1}{A},\binom{B+r-1}{B}\right\} \operatorname{NUM}(A, B) .
\end{aligned}
$$

On the other hand, consider the subspaces $A\left[\alpha_{1}, \ldots, \alpha_{r}\right]$ such that $A\left(\alpha_{1}, \ldots, \alpha_{r}\right)=0$ and $B\left(\alpha_{1}, \ldots, \alpha_{r}\right)=0$, the map $\left.P_{k, d-k}\right|_{A\left[\alpha_{1}, \ldots, \alpha_{r}\right]}: A\left[\alpha_{1}, \ldots, \alpha_{r}\right] \rightarrow B\left[\alpha_{1}, \ldots, \alpha_{r}\right]$ is just a linear map from a one-dimensional space to another one-dimensional space. Therefore

$$
\begin{aligned}
\operatorname{rank}\left(P_{k, d-k}\right) & =\sum_{A=0}^{\left\lfloor\frac{k}{\delta_{2}}\right\rfloor} \sum_{B=0}^{\delta_{1}-A} \operatorname{rank}\left(P_{k, d-k} \mid W(A, B)\right) \operatorname{NUM}(A, B) \\
& \geq \operatorname{NUM}(0,0) .
\end{aligned}
$$

Corollary 4.2.11. Let $\delta_{1} \delta_{2}=d$ with $\delta_{1}, \delta_{2} \sim \sqrt{d}, k=\left\lfloor\frac{d}{2}\right\rfloor$ and $r \geq 2 \delta_{1}$, then

$$
\begin{equation*}
\binom{r}{\delta_{1}} \leq \operatorname{rank}\left(P_{k, d-k}\right) \leq 2\binom{r}{\delta_{1}}\binom{k}{\delta_{1}} . \tag{4.11}
\end{equation*}
$$

Proof. By Proposition 4.2.10,

$$
\begin{aligned}
\operatorname{rank}\left(P_{k, d-k}\right) \geq & \operatorname{NUM}(0,0) \\
= & \#\left\{\left(\beta_{1}, \ldots, \beta_{r}\right) \mid \beta_{1}+\cdots+\beta_{r}=k, \#\left\{\beta_{i}>0\right\}\right)=\delta_{1} \\
& \text { and } \left.0 \leq \beta_{i}<\delta_{2} \text { for } i=1, \ldots, r\right\} \\
= & \binom{r}{\delta_{1}} \#\left\{\left(\beta_{1}, \ldots, \beta_{\delta_{1}}\right) \mid \beta_{1}+\cdots+\beta_{\delta_{1}}=k, 0<\beta_{i}<\delta_{2} \text { for } i=1, \ldots, \delta_{1}\right\} \\
\geq & \binom{r}{\delta_{1}}
\end{aligned}
$$

To prove the second inequality, notice that each monomial of $P=\left(x_{1}^{\delta_{2}}+\cdots+x_{r}^{\delta_{2}}\right)^{\delta_{1}}$ is of the form $x_{i_{1}}^{\delta_{2}} \cdots x_{i_{1}}^{\delta_{2}}$. Let $y_{1}^{\alpha_{1}} \cdots y_{r}^{\alpha_{r}} \in S^{k} V^{*}$, if the number of positive α_{i} is greater than δ_{1}, then each monomial of P vanishes, i.e. $x_{i_{1}}^{\delta_{2}} \cdots x_{i_{\delta_{1}}}^{\delta_{2}}\left(y_{1}^{\alpha_{1}} \cdots y_{r}^{\alpha_{r}}\right)=0$, so $P_{k, d-k}\left(y_{1}^{\alpha_{1}} \cdots y_{r}^{\alpha_{r}}\right)=0$ under this condition. Therefore
$\operatorname{rank}\left(P_{k, d-k}\right) \leq \#\left\{\left(\alpha_{1}, \ldots, \alpha_{r}\right) \mid\right.$ where $\alpha_{1}+\cdots+\alpha_{r}=k$ and $\left.\#\left\{\alpha_{i}>0\right\} \leq \delta_{1}\right\}$.

So

$$
\begin{aligned}
\operatorname{rank}\left(P_{k, d-k}\right) & \leq \sum_{s=1}^{\delta_{1}}\binom{r}{s}\binom{k-1}{s-1} \\
& \leq \delta_{1}\binom{r}{\delta_{1}}\binom{k-1}{\delta_{1}-1} \\
& \sim 2\binom{r}{\delta_{1}}\binom{k}{\delta_{1}}
\end{aligned}
$$

Remark 4.2.12. While we can get better bounds for $\operatorname{rank}\left(P_{k, d-k}\right)$, it is always the case that r is much bigger than $d=\delta_{1} \delta_{2}$, therefore the term $\binom{r}{\delta_{1}}$ dominates.

4.2.2 Comparison with the permanent

Let $\left\{x_{1}, \ldots, x_{n^{2}}\right\}$ be a basis of V and $r \geq n$, and let $[P]=\left[\left(l_{1}^{\delta_{2}}+\cdots+l_{r}^{\delta_{2}}\right)^{\delta_{1}}\right] \in$ $v_{\delta_{1}}\left(\sigma_{r}\left(v_{\delta_{2}}(\mathbb{P} V)\right)\right) \subset \mathbb{P} S^{n} V$ be generic, where $\delta_{1}, \delta_{2} \sim \sqrt{n}$ and $k=\left\lfloor\frac{n}{2}\right\rfloor$. I compute the rank of the flattening $P_{k, n-k}: S^{k} V^{*} \rightarrow S^{n-k} V$ and compare it with $\operatorname{rank}\left(\left(\operatorname{perm}_{n}\right)_{k, n-k}\right)$.

For any $0 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor, \operatorname{rank}\left(\operatorname{perm}_{n}\right)_{k, n-k}=\binom{n}{k}^{2}$.
Lemma 4.2.13. Let \tilde{A}, \tilde{B} be two complex vector spaces, let A be a subspace of \tilde{A} and B be a subspace of \tilde{B}. If $\widetilde{T} \in \tilde{A} \otimes \tilde{B}$ and $T \in A \otimes B$ is the linear projection of \tilde{T}, then $R(\tilde{T}) \geq R(T)$.

Corollary 4.2.14. Let $[P]=\left[\left(l_{1}^{\delta_{2}}+\cdots+l_{r}^{\delta_{2}}\right)^{\delta_{1}}\right] \in v_{\delta_{1}}\left(\sigma_{r}\left(v_{\delta_{2}}(\mathbb{P} V)\right)\right) \subset \mathbb{P} S^{n} V$, where $\delta_{1}, \delta_{2} \sim \sqrt{n}$ and $k=\left\lfloor\frac{n}{2}\right\rfloor$, then $\operatorname{rank}\left(P_{k, n-k}\right) \leq 2\binom{r}{\delta_{1}}\binom{k}{\delta_{1}} \leq(r k)^{\delta_{1}}$.

Proof. Assume that l_{1}, \ldots, l_{r} are linearly independent and let $W=\operatorname{span}\left\{l_{1}, \ldots, l_{r}\right\}$, By Corollary 4.2.11 the rank of the new flattening $\tilde{P}_{k, n-k}: S^{k} W^{*} \rightarrow S^{n-k} W$. By Lemma 4.2.13 $\operatorname{rank}\left(P_{k, n-k}\right) \leq \operatorname{rank}\left(\tilde{P}_{k, n-k}\right)$.

By Corollary 4.2.11,

$$
\begin{aligned}
\operatorname{rank}\left(P_{k, n-k}\right) & \leq \operatorname{rank}\left(\tilde{P}_{k, n-k}\right) \\
& \leq 2\binom{r}{\delta_{1}}\binom{k}{\delta_{1}} \\
& \leq(r k)^{\delta_{1}}
\end{aligned}
$$

Proof of Theorem 1.2.5. Let $k=\left\lfloor\frac{n}{2}\right\rfloor$, by Corollary 4.2.14,

$$
\begin{aligned}
\frac{\left.\operatorname{rank}\left(\operatorname{perm}_{n}\right)_{k, n-k}\right)}{\operatorname{rank}\left(P_{k, n-k}\right)} & \geq \frac{\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}}{(r k)^{\delta_{1}}} \\
& \sim \frac{2^{2 n}}{2^{\sqrt{n} \log (r n / 2)}} \\
& =2^{2 n-\sqrt{n} \log (r)-\sqrt{n} \log (n / 2)} \\
& =2^{\sqrt{n} \log (n) \omega(1)-\sqrt{n} \log (n / 2)} \\
& =2^{\sqrt{n} \log (n) \omega(1)}
\end{aligned}
$$

5. EQUATIONS FOR SECANT VARIETIES OF CHOW VARIETIES

This chapter is based on [21], I use the method of prolongation to obtain equations for secant varieties of Chow varieties as $G L(V)$-modules.
5.1 Prolongations, multiprolongations and partial derivatives
5.1.1 Prolongations, multiprolongations and ideals of secant varieties

I study prolongations, multiprolongations and how they relate to ideals of secant varieties. Let W be a complex vector space with a basis $\left\{e_{1}, \ldots, e_{n}\right\}$. I follow the notation in [31].

Definition 5.1.1. For $A \subset S^{d} W$, define the p-th prolongation of A to be:

$$
A^{(p)}=\left(A \otimes S^{p} W\right) \cap S^{p+d} W
$$

It is equivalent to saying that

$$
A^{(p)}=\left\{f \in S^{p+d} W \left\lvert\, \frac{\partial^{p} f}{\partial e^{\beta}} \in A\right. \text { any } \beta \in \mathbb{N}^{n} \text { with }|\beta|=p\right\}
$$

Here are properties of prolongation:

Proposition 5.1.2. For $A \subset S^{d} W, A^{(p)}$ is the inverse image of $A \otimes S^{p} W$ under the polarization map $F_{d, p}: S^{d+p} W \rightarrow S^{d} W \otimes S^{p} W$.

Proof. For any $f \in S^{(p+d)} W$,

$$
F_{d, p}(f)=\sum_{|\alpha|=p} \frac{\partial^{p} f}{\partial e^{\alpha}} \otimes e^{\alpha} .
$$

Hence

$$
F_{d, p}(f)=\sum_{|\alpha|=p} \frac{\partial^{p} f}{\partial e^{\alpha}} \otimes e^{\alpha} \in A \otimes S^{p} W \Leftrightarrow \frac{\partial^{p} f}{\partial e^{\alpha}} \in A \text { for any }|\alpha|=p \Leftrightarrow f \in A^{(p)}
$$

Theorem 5.1.3. (J. Sidman, S. Sullivant [43]) Let $X \in \mathbb{P} W^{*}$ be an algebraic variety and let d be the integer such that $I_{d-1}(X)=0$ and $I_{d}(X) \neq 0$. Then $I_{r(d-1)}\left(\sigma_{r}(X)\right)=$ 0 and $I_{r(d-1)+1}\left(\sigma_{r}(X)\right)=I_{d}(X)^{(r-1)(d-1)}$.

Remark 5.1.4. Theorem 5.1 .3 bounds the lowest degree of an element in the ideal of $\sigma_{r}(X)$ if we know generators of the ideal of X.

Proposition 5.1.5. Let $X \subset \mathbb{P} W^{*}$ be a variety, then $I_{d}(X)^{(p)} \subset I_{d+1}(X)^{(p-1)}$.
Proof. Let $f \in I_{d}(X)^{(p)} \subset S^{d+p} W$, consider $\frac{\partial^{p-1} f}{\partial e^{\alpha}}$ with $|\alpha|=p-1$,

$$
\frac{\partial^{p-1} f}{\partial e^{\alpha}}=\sum_{i=1}^{n} \frac{\partial^{p} f}{\partial\left(e^{\alpha} e_{i}\right)} e_{i} \in I_{d+1}(X)
$$

Example 5.1.6. Consider $C h_{3}\left(V^{*}\right)$ with $\operatorname{dim} V \geq 4$, by Proposition 2.5.4 and Proposition 2.5.5, $I_{3}\left(C h_{3}\left(V^{*}\right)\right)=0$ and

$$
\begin{equation*}
I_{4}\left(C h_{3}\left(V^{*}\right)\right)=S^{4}\left(S^{3} V\right)-S^{3}\left(S^{4} V\right)=S_{(7,3,2)} V+S_{(6,2,2,2)} V+S_{(5,4,2,1)} V \tag{5.1}
\end{equation*}
$$

Therefore by Theorem 5.1.3 $I_{6}\left(\sigma_{2}(X)\right)=0$ and $I_{7}\left(\sigma_{2}(X)\right)=I_{4}(X)^{(3)}$.
The following proposition is about multiprolongations:

Proposition 5.1.7. (Multiprolongation [31]) Let $X \subset P W^{*}$ be an algebraic variety, a polynomial $P \in S^{\delta} W$ is in $I_{\delta}\left(\sigma_{r}(X)\right)$ if and only if for any nonnegative decreasing
sequence $\left(\delta_{1}, \delta_{2}, \ldots, \delta_{r}\right)$ with $\delta_{1}+\delta_{2}+\cdots+\delta_{r}=\delta$,

$$
\bar{P}\left(v_{1}, \ldots, v_{1}, v_{2}, \ldots, v_{2}, \ldots, v_{r}, \ldots, v_{r}\right)=0
$$

for all $v_{i} \in \hat{X}$, where the number of $v_{i}^{\prime} s$ appearing in the formula is m_{i}.

The following proposition rephrases multiprolongations.
Proposition 5.1.8. Let $X \subset P W^{*}$ be an algebraic variety, for any positive integer δ and r, and for any decreasing sequence $\vec{\delta}=\left(\delta_{1}, \delta_{2}, \ldots, \delta_{r}\right)$ with $\delta_{1}+\delta_{2}+\cdots+\delta_{r}=\delta$, consider the following polarization maps

$$
F_{\delta_{1}, \delta_{2}, \cdots, \delta_{r}}: S^{\delta} W \rightarrow S^{\delta_{1}} W \otimes S^{\delta_{2}} W \otimes \cdots \otimes S^{\delta_{r}} W
$$

Let $A_{\vec{\delta}, i}=S^{\delta_{1}} W \otimes \cdots \otimes S^{\delta_{i-1}} W \otimes I_{\delta_{i}}(X) \otimes S^{\delta_{i+1}} W \otimes \cdots \otimes S^{\delta_{r}} W \subset S^{\delta_{1}} W \otimes S^{\delta_{2}} W \otimes$ $\cdots \otimes S^{\delta_{r}} W$, then

$$
I_{\delta}\left(\sigma_{r}(X)\right)=\bigcap_{\delta_{1}+\delta_{2}+\cdots+\delta_{r}=\delta} F_{\delta_{1}, \delta_{2}, \ldots, \delta_{r}}^{-1}\left(A_{\vec{\delta}, 1}+\cdots+A_{\vec{\delta}, r}\right)
$$

Corollary 5.1.9. $I_{d}(X)^{((r-1)(d-1))} \subset I_{r(d-1)+1}\left(\sigma_{r}(X)\right)$.
Proof. By Proposition 5.1.8,

$$
\begin{aligned}
I_{r(d-1)+1}\left(\sigma_{r}(X)\right) & =\bigcap_{\delta_{1}+\delta_{2}+\cdots+\delta_{r}=r(d-1)+1, \delta_{1} \geq \delta_{2} \geq \cdots \geq \delta_{r}} F_{\delta_{1}, \delta_{2}, \ldots, \delta_{r}}^{-1}\left(A_{\vec{\delta}, 1}+\cdots+A_{\vec{\delta}, r}\right) \\
& \supset \bigcap_{\delta_{1}+\delta_{2}+\cdots+\delta_{r}=r(d-1)+1, \delta_{1} \geq \delta_{2} \geq \cdots \geq \delta_{r}} F_{\delta_{1}, \delta_{2}, \ldots, \delta_{r}}^{-1}\left(A_{\vec{\delta}, 1}\right) .
\end{aligned}
$$

By similar arguments as Proposition 5.1.2, $F_{\delta_{1}, \delta_{2}, \ldots, \delta_{r}}^{-1}\left(A_{\vec{\delta}, 1}\right)=I_{\delta_{1}}(X)^{\left(r(d-1)+1-\delta_{1}\right)}$. Since $\delta_{1} \geq d$, by Proposition 5.1.5, $I_{d}(X)^{((r-1)(d-1))} \subset I_{\delta_{1}}(X)^{\left(r(d-1)+1-\delta_{1}\right)}$, therefore
$I_{d}(X)^{((r-1)(d-1))} \subset I_{r(d-1)+1}\left(\sigma_{r}(X)\right)$.

A new proof of Theorem 5.1.3. First, by Proposition 5.1.8,

$$
I_{r(d-1)}\left(\sigma_{r}(X)\right)=\bigcap_{\delta_{1}+\delta_{2}+\cdots+\delta_{r}=r(d-1)} F_{\delta_{1}, \delta_{2}, \ldots, \delta_{r}}^{-1}\left(A_{\vec{\delta}, 1}+\cdots+A_{\vec{\delta}, r}\right) .
$$

In particular, when $\delta_{1}=\delta_{2}=\cdots=\delta_{r}=(d-1), A_{\vec{\delta}, i}=0$ for $i=1, \ldots, r$, so $F_{\delta_{1}, \delta_{2}, \cdots, \delta_{r}}^{-1}\left(A_{\vec{\delta}, 1}+\cdots+A_{\vec{\delta}, r}\right)=0$. Therefore $I_{r(d-1)}\left(\sigma_{r}(X)\right)=0$.

Second, by Proposition 5.1.8,

$$
I_{r(d-1)+1}\left(\sigma_{r}(X)\right)=\bigcap_{\delta_{1}+\delta_{2}+\cdots+\delta_{r}=r(d-1)+1} F_{\delta_{1}, \delta_{2}, \cdots, \delta_{r}}^{-1}\left(A_{\vec{\delta}, 1}+\cdots+A_{\vec{\delta}, r}\right) .
$$

In particular, when $\delta_{1}=d, \delta_{2}=\cdots=\delta_{r}=d-1, A_{\vec{\delta}, i}=0$ for $i=2, \ldots, r$. so

$$
F_{\delta_{1}, \delta_{2}, \cdots, \delta_{r}}^{-1}\left(A_{\vec{\delta}, 1}+\cdots+A_{\vec{\delta}, r}\right)=F_{\delta_{1}, \delta_{2}, \cdots, \delta_{r}}^{-1}\left(A_{\vec{\delta}, 1}\right)=I_{d}(X)^{((r-1)(d-1))} .
$$

Therefore $I_{r(d-1)+1}\left(\sigma_{r}(X)\right) \subset I_{d}(X)^{((r-1)(d-1))}$.
On the other hand, by Corollary 5.1.9, $I_{d}(X)^{((r-1)(d-1))} \subset I_{r(d-1)+1}\left(\sigma_{r}(X)\right)$, so equality holds.

Theorem 5.1.3, small examples and intuition lead to the following conjecture:

Conjecture 5.1.10. Let $X \in P W^{*}$ be an algebraic variety, and $\delta=k r+l$ with $0 \leq l<r$, take $\vec{\delta}$ such that $\delta_{1}=\cdots=\delta_{l}=k+1$ and $\delta_{l+1}=\cdots=\delta_{r}=k$, then

$$
I_{\delta}\left(\sigma_{r}(X)\right)=F_{\delta_{1}, \delta_{2}, \ldots, \delta_{r}}^{-1}\left(A_{\vec{\delta}, 1}+\cdots+A_{\vec{\delta}, r}\right)
$$

Example 5.1.11. Consider the variety $C h_{3}\left(V^{*}\right)$, by Example 5.1.6, $I_{3}\left(C h_{3}\left(V^{*}\right)\right)=0$
and $I_{4}\left(C h_{3}\left(V^{*}\right)\right)=S_{(7,3,2)} V+S_{(6,2,2,2)} V+S_{(5,4,2,1)} V$. Consider the polarization maps

$$
F_{\delta, 8-\delta}: S^{8}\left(S^{3} V\right) \rightarrow S^{\delta}\left(S^{3} V\right) \otimes S^{8-\delta}\left(S^{3} V\right)
$$

By Propositions 5.1.8 and 5.1.5,

$$
\begin{align*}
I_{8}\left(\sigma_{2}\left(C h_{3}\left(V^{*}\right)\right)\right)= & \bigcap_{\delta=4}^{8} F_{\delta, 8-\delta}^{-1}\left[S^{\delta}\left(S^{3} V\right) \otimes I_{8-\delta}\left(C h_{3}\left(V^{*}\right)\right)+I_{\delta}\left(C h_{3}\left(V^{*}\right)\right) \otimes S^{8-\delta}\left(S^{3} V\right)\right] \\
= & \bigcap_{\delta=5}^{8} I_{\delta}\left(C h_{3}\left(V^{*}\right)\right)^{(8-\delta)} \bigcap F_{4,4}^{-1}\left[I_{4}\left(C h_{3}\left(V^{*}\right)\right) \otimes S^{4}\left(S^{3} V\right)\right. \\
& \left.+S^{4}\left(S^{3} V\right) \otimes I_{4}\left(C h_{3}\left(V^{*}\right)\right)\right] \\
= & I_{5}\left(C h_{3}\left(V^{*}\right)\right)^{(3)} \bigcap F_{4,4}^{-1}\left[I_{4}\left(C h_{3}\left(V^{*}\right)\right) \otimes S^{4}\left(S^{3} V\right)\right. \\
& \left.+S^{4}\left(S^{3} V\right) \otimes I_{4}\left(C h_{3}\left(V^{*}\right)\right)\right] \tag{5.2}
\end{align*}
$$

5.1.2 Partial derivatives and prolongations

Let $V=\operatorname{span}\left\{e_{1}, \ldots, e_{n}\right\}, S^{d} V$ has a natural basis $\left\{e_{1}^{\alpha_{1}} \cdots e_{n}^{\alpha_{n}}:=e^{\alpha}\right\}_{\alpha_{1}+\cdots+\alpha_{n}=d}$. Assume $e_{1}>e_{2}>\cdots>e_{n}$. Define the dominance partial order on the natural basis of $S^{d} V$ such that

$$
e^{\alpha}>e^{\beta} \Leftrightarrow \alpha_{1}+\cdots+\alpha_{i} \geq \beta_{1}+\cdots+\beta_{i} \text { for each } i .
$$

It is equivalent to saying

$$
e^{\alpha}>e^{\beta} \Leftrightarrow \text { one can get } e^{\alpha} \text { from } e^{\beta} \text { via raising operators. }
$$

Let $f \in W_{\left(a_{1}, \cdots, a_{n}\right)} \subset S^{k}\left(S^{d} V\right)$, let α be the index of the last d elements in $\left(a_{1}, \cdots, a_{n}\right)$, then $\frac{\partial}{\partial e^{\alpha}}$ is the lowest possible partial derivative of f with respect to the dominance partial order.

Example 5.1.12. Let $f \in W_{(5,4,4,2)} \subset S^{5}\left(S^{3} V\right)$, then $\alpha=(0,0,1,2)$ and the lowest possible partial derivative of f is $\frac{\partial f}{\partial e e_{4}^{2}}$.

Definition 5.1.13. Let $e^{\alpha}=e_{1}^{\alpha_{1}} \cdots e_{j}^{\alpha_{j}} e_{j+1}^{\alpha_{j+1}} \cdots e_{n}^{\alpha_{n}}$, for $j=1, \ldots, n-1$, define the normalized lowering operators

$$
\tilde{E}_{j}^{j+1} e^{\alpha}=e_{1}^{\alpha_{1}} \cdots e_{j}^{\alpha_{j}-1} e_{j+1}^{\alpha_{j+1}+1} \cdots e_{n}^{\alpha_{n}}
$$

The following proposition gives the relationship between raising operators and partial derivatives of polynomials in $S^{k}\left(S^{d} V\right)$.

Proposition 5.1.14. Let $f \in S^{k}\left(S^{d} V\right)$ and e^{α} be a basis vector of $S^{d} V$, then

$$
\left[\frac{\partial}{\partial e^{\alpha}}, E_{j+1}^{j}\right] f=\left(1+\alpha_{j+1}\right) \frac{\partial f}{\partial\left(\tilde{E}_{j}^{j+1} e^{\alpha}\right)} .
$$

Where $\tilde{E}_{j}^{j+1}(j=1, \cdots, n-1)$ are the normalized lowering operators.
Proof. Since all the operators here are linear, we only to prove the case when f is a monomial. Let $e^{\alpha}=e_{1}^{\alpha_{1}} \cdots e_{j}^{\alpha_{j}} e_{j+1}^{\alpha_{j+1}} \cdots e_{n}^{\alpha_{n}}$, so $\tilde{E}_{j}^{j+1} e^{\alpha}=e_{1}^{\alpha_{1}} \cdots e_{j}^{\alpha_{j}-1} e_{j+1}^{\alpha_{j+1}+1} \cdots e_{n}^{\alpha_{n}}=$ e^{β}. Write $f=g\left(e^{\alpha}\right)^{m}\left(e^{\beta}\right)^{n}$, where g is not divisible by e^{α} or e^{β}. Then

$$
\begin{aligned}
E_{j}^{j+1} f= & \left(E_{j}^{j+1} g\right)\left(e^{\alpha}\right)^{m}\left(e^{\beta}\right)^{n}+g E_{j}^{j+1}\left(\left(e^{\alpha}\right)^{m}\right)\left(e^{\beta}\right)^{n}+g\left(e^{\alpha}\right)^{m} E_{j}^{j+1}\left(\left(e^{\beta}\right)^{n}\right) \\
= & \left(E_{j}^{j+1} g\right)\left(e^{\alpha}\right)^{m}\left(e^{\beta}\right)^{n}+m g\left(e^{\alpha}\right)^{m-1} E_{j}^{j+1}\left(e^{\alpha}\right)\left(e^{\beta}\right)^{n} \\
& +n\left(1+\alpha_{j+1}\right) g\left(e^{\alpha}\right)^{m+1}\left(e^{\beta}\right)^{n-1} .
\end{aligned}
$$

So

$$
\begin{align*}
\frac{\partial\left(E_{j}^{j+1} f\right)}{\partial e^{\alpha}}= & m\left(E_{j}^{j+1} g\right)\left(e^{\alpha}\right)^{m-1}\left(e^{\beta}\right)^{n}+m(m-1) g\left(e^{\alpha}\right)^{m-2} E_{j}^{j+1}\left(e^{\alpha}\right)\left(e^{\beta}\right)^{n}+ \\
& n(m+1)\left(1+\alpha_{j+1}\right) g\left(e^{\alpha}\right)^{m}\left(e^{\beta}\right)^{n-1} . \tag{5.3}
\end{align*}
$$

On the other hand

$$
\begin{gather*}
\frac{\partial f}{\partial e^{\alpha}}=m g\left(e^{\alpha}\right)^{m-1}\left(e^{\beta}\right)^{n} \\
E_{j}^{j+1}\left(\frac{\partial f}{\partial e^{\alpha}}\right)=m\left(E_{j}^{j+1} g\right)\left(e^{\alpha}\right)^{m-1}\left(e^{\beta}\right)^{n}+m(m-1) g\left(e^{\alpha}\right)^{m-2} E_{j}^{j+1}\left(e^{\alpha}\right)\left(e^{\beta}\right)^{n}+ \\
n m\left(1+\alpha_{j+1}\right) g\left(e^{\alpha}\right)^{m}\left(e^{\beta}\right)^{n-1} . \tag{5.4}
\end{gather*}
$$

Combining (5.3) and (5.4), we conclude:

$$
\frac{\partial\left(E_{j}^{j+1} f\right)}{\partial e^{\alpha}}-E_{j+1}^{j}\left(\frac{\partial f}{\partial e^{\alpha}}\right)=n\left(1+\alpha_{j+1}\right) g\left(e^{\alpha}\right)^{m}\left(e^{\beta}\right)^{n-1}=\left(1+\alpha_{j+1}\right) \frac{\partial f}{\partial\left(\tilde{E}_{j}^{j+1} e^{\alpha}\right)}
$$

In particular if $f \in S^{k}\left(S^{d} V\right)$ is a highest weight vector of some $G L(V)$-module, then

$$
\begin{equation*}
E_{j+1}^{j}\left(\frac{\partial f}{\partial e^{\alpha}}\right)=-\left(1+\alpha_{j+1}\right) \frac{\partial f}{\partial\left(\tilde{E}_{j}^{j+1} e^{\alpha}\right)} . \tag{5.5}
\end{equation*}
$$

Therefore
Lemma 5.1.15. If $f \in S^{k+1}\left(S^{d} V\right)$ is a highest weight vector for some $G L(V)$ module $S_{\left(a_{1}, \cdots, a_{n}\right)} V=S_{a} V$, then the lowest possible partial derivative $\frac{\partial f}{\partial e^{\alpha}}$ is killed by all the raising operators, i.e. either $\frac{\partial f}{\partial e^{\alpha}}$ is 0 or a highest weight vector of $S_{a-\alpha} V \subset S^{k}\left(S^{d} V\right)$.

By induction on dominance partial order, I conclude
Proposition 5.1.16. If $f \in S^{k+1}\left(S^{d} V\right)$ is a highest weight vector for some module $S_{\left(a_{1}, \cdots, a_{n}\right)} V=S_{a} V$, then there exists a basis vector e^{β} of $S^{d} V$ such that $\frac{\partial f}{\partial e^{\beta}}$ is a highest vector of $S_{a-\beta} V \subset S^{k}\left(S^{d} V\right)$.

By Proposition 5.1.16,

Corollary 5.1.17. Let $f \in S^{k+1}\left(S^{d} V\right)$ be a highest weight vector for some module $S_{\left(a_{1}, \cdots, a_{n}\right)} V=S_{a} V$, if we can find all the e^{β} such that $\frac{\partial f}{\partial e^{\beta}}$ is a highest vector of $S_{a-\beta} V \subset S^{k}\left(S^{d} V\right)$, the sum of all these modules is the smallest possible module such that $S_{a} V$ lies in its first prolongation.

For simplicity, write $\frac{\partial f}{\partial e^{\beta}}=f_{e^{\beta}}$ from now on.

Example 5.1.18. Let f be the highest weight vector of $S_{(7,3,2)} V \subset S^{4}\left(S^{3} V\right)$ in Example 2.3.12, then $f_{e_{2} e_{3}^{2}}=\left(e_{1}^{3}\right)^{2}\left(e_{1} e_{2}^{2}\right)-e_{1}^{3}\left(e_{1}^{2} e_{2}\right)^{2}$, which is a highest weight vector of $S_{(7,2)} V \subset S^{3}\left(S^{3} V\right)$.

The following proposition, tells us which prolongation a given module lies in.

Proposition 5.1.19. If $S_{a} V \subset S^{k+1}\left(S^{d} V\right)$ with multiplicity $m_{a}>0$, let

$$
\begin{aligned}
M_{a}= & \left\{b \mid S_{a} V \subset S_{b} V \otimes S^{d} V\right. \text { as abstract modules by Pieri's rule } \\
& \text { and } \left.S_{b} V \subset S^{k}\left(S^{d} V\right) \text { with multiplicity } m_{b}>0\right\}
\end{aligned}
$$

then

$$
\left(S_{a} V\right)^{\oplus m_{a}} \subset\left(\bigoplus_{b \in M_{a}}\left(S_{b} V\right)^{\oplus m_{b}}\right)^{(1)}
$$

In particular,

$$
m_{a} \leq \sum_{b \in M_{a}} m_{b}
$$

Proof. Consider the polarization map

$$
P_{k, 1}: S^{k+1}\left(S^{d} V\right) \rightarrow S^{k}\left(S^{d} V\right) \otimes S^{d} V
$$

By Schur's lemma

$$
P_{k, 1}\left(\left(S_{a} V\right)^{\oplus m_{a}}\right) \subset\left(\bigoplus_{b \in M_{a}}\left(S_{b} V\right)^{\oplus m_{b}}\right) \otimes S^{d} V
$$

By Proposition 5.1.2

$$
\left(S_{a} V\right)^{\oplus m_{a}} \subset\left(\bigoplus_{b \in M_{a}}\left(S_{b} V\right)^{\oplus m_{b}}\right)^{(1)}
$$

Since $P_{k, 1}$ is injective,

$$
m_{a} \leq \sum_{b \in M_{a}} m_{b}
$$

Proposition 5.1.20. The module $S_{(5,4,4,2)} V \subset S^{5}\left(S^{3} V\right)$ is contained in $\left(S_{(5,4,2,1)} V \oplus\right.$ $\left.S_{(4,4,4)} V\right)^{(1)}$. Let $f \in S_{(5,4,4,2)} V \subset S^{5}\left(S^{3} V\right)$ be a highest weight vector, then $f_{e_{1} e_{4}^{2}}$ is a highest weight vector of $S_{(4,4,4)} V \subset S^{4}\left(S^{3} V\right)$ and $f_{e_{3}^{2} e_{4}}$ is a highest weight vector of $S_{(5,4,2,1)} V \subset S^{4}\left(S^{3} V\right)$. Therefore $S_{(5,4,4,2)} V$ is not contained in the first prolongation of $S_{(4,4,4)} V$ or $S_{(5,4,2,1)} V$.

Proof. Since

$$
\begin{aligned}
S^{4}\left(S^{3} V\right)= & S_{(12)} V+S_{(10,2)} V+S_{(9,3)} V+S_{(8,4)} V+ \\
& S_{(8,2,2)} V+S_{(7,4,1)} V+S_{(7,3,2)} V+S_{(6,6)} V+ \\
& S_{(6,4,2)} V+S_{(6,2,2,2)} V+S_{(5,4,2,1)} V+S_{(4,4,4)} V
\end{aligned}
$$

By Proposition 5.1.19, $S_{(5,4,4,2)} \subset\left(S_{(5,4,2,1)} V \oplus S_{(4,4,4)} V\right)^{(1)}$. By induction on the dominance partial order, $f_{e_{1} e_{4}^{2}}$ and $f_{e_{3}^{2} e_{4}}$ are killed by all raising operators. Let h_{1} be a highest weight vector of $S_{(4,4,4)} V \subset S^{4}\left(S^{3} V\right)$ and h_{2} be a highest weight vector of $S_{(5,4,2,1)} V \subset S^{4}\left(S^{3} V\right)$. Set $f_{e_{1} e_{4}^{2}}=c_{1} h_{1}$ and $f_{e_{3}^{2} e_{4}}=c_{2} h_{2}$, where c_{1} and c_{2} are constants, then c_{1}, c_{2} can not be both 0 by Proposition 5.1.16.

Since $f_{e_{3}^{3}} \in S_{(5,4,2,1)} V \oplus S_{(4,4,4)} V$ with weight $(5,4,1,2), f_{e_{3}^{3}}=c_{3} E_{3}^{4} f_{e_{3}^{2} e_{4}}$, where c_{3} is a constant. By (5.5), $E_{4}^{3} f_{e_{3}^{3}}=-f_{e_{3}^{2} e_{4}}$, so $c_{3} E_{4}^{3} E_{3}^{4} f_{e_{3}^{2} e_{4}}=-f_{e_{3}^{2} e_{4}}$, which implies $c_{3}\left(E_{3}^{3}-E_{4}^{4}\right) f_{e_{3}^{2} e_{4}}=-f_{e_{3}^{2} e_{4}}$, so $c_{3}=-1$. Since $\left(f_{e_{1} e_{4}^{2}}\right)_{e_{3}^{3}}=\left(f_{e_{3}^{3}}\right)_{e_{1} e_{4}^{2}}$,

$$
\begin{aligned}
c_{1}\left(h_{1}\right)_{e_{3}^{3}} & =\left(-E_{3}^{4} f_{e_{3}^{2} e_{4}}\right)_{e_{1} e_{4}^{2}} \\
& =-c_{2}\left(E_{3}^{4} h_{2}\right)_{e_{1} e_{4}^{2}} \\
& =-c_{2}\left(E_{3}^{4}\left(h_{2}\right)_{e_{1} e_{4}^{2}}-\left(h_{2}\right)_{e_{1} e_{3} e_{4}}\right) \\
& =c_{2}\left(h_{2}\right)_{e_{1} e_{3} e_{4}}
\end{aligned}
$$

By Proposition 2.3.14, $\left(h_{1}\right)_{e_{3}^{3}}$ and $\left(h_{2}\right)_{e_{1} e_{3} e_{4}}$ are both highest weight vectors of $S_{(4,4,1)} V \subset$ $S^{4}\left(S^{3} V\right)$, by rescaling, we may assume they are equal, so $c_{1}=c_{2}$, so c_{1} and c_{2} are both nonzero, therefore $f_{e_{1} e_{4}^{2}}$ is a highest weight vector of $S_{(4,4,4)} V \subset S^{4}\left(S^{3} V\right)$ and $f_{e_{3}^{2} e_{4}}$ is a highest weight vector of $S_{(5,4,2,1)} V \subset S^{4}\left(S^{3} V\right)$.

5.2 The case when the degree is 3

Consider $\sigma_{2}\left(C h_{3}\left(V^{*}\right)\right)$, without loss of generality we assume $\operatorname{dim} V=6$.

Proposition 5.2.1.

$$
\begin{aligned}
& I_{4}\left(C h_{3}\left(V^{*}\right)\right)^{(1)}=S_{(7,2,2,2)} V \oplus S_{(6,4,2,21)} V \oplus S_{(5,5,3,1,1)} V \\
& I_{4}\left(C h_{3}\left(V^{*}\right)\right)^{(2)}=S_{(8,2,2,2,2,2)} V \oplus S_{(7,4,2,2,2,1)} V \oplus S_{(6,5,3,2,2,1)} V \oplus S_{(5,5,5,1,1,1)} V \\
& I_{4}\left(C h_{3}\left(V^{*}\right)\right)^{(3)}=0
\end{aligned}
$$

Proof. First we claim

$$
\begin{equation*}
I_{4}\left(C h_{3}\left(V^{*}\right)\right)^{(1)}=S_{(7,2,2,2,2)} V \oplus S_{(6,4,2,2,1)} V \oplus S_{(5,5,3,1,1)} V \tag{5.6}
\end{equation*}
$$

By (5.1),

$$
I_{4}\left(C h_{3}\left(V^{*}\right)\right)=S_{(7,3,2)} V+S_{(6,2,2,2)} V+S_{(5,4,2,1)} V .
$$

By computer softwares (e.g. Lie),

$$
\begin{aligned}
S^{4}\left(S^{3} V\right)= & S_{(12)} V+S_{(10,2)} V+S_{(9,3)} V+S_{(8,4)} V+ \\
& S_{(8,2,2)} V+S_{(7,4,1)} V+S_{(7,3,2)} V+S_{(6,6)} V+ \\
& S_{(6,4,2)} V+S_{(6,2,2,2)} V+S_{(5,4,2,1)} V+S_{(4,4,4)} V .
\end{aligned}
$$

and

$$
\begin{aligned}
S^{5}\left(S^{3} V\right)= & S_{(15)} V+S_{(13,2)} V+S_{(12,3)} V+S_{(11,4)} V+S_{(11,2,2)} V+S_{(10,5)} V+S_{(10,4,1)} V \\
& +S_{(10,3,2)} V+S_{(9,6)} V+2 S_{(9,4,2)} V+S_{(9,2,2,2)} V+S_{(8,6,1)} V+S_{(8,5,2)} V+S_{(8,4,3)} V \\
& +S_{(8,4,2,1)} V+S_{(8,3,2,2)} V+S_{(7,6,2)} V+S_{(7,5,2,1)} V+S_{(7,4,4)} V+S_{(7,4,3,1)} V \\
& +S_{(7,4,2,2)} V+S_{(7,2,2,2,2)} V+S_{(6,6,3)} V+S_{(6,5,2,2)} V+S_{(6,4,4,1)} V+S_{(6,4,2,2,1)} V \\
& +S_{(5,5,3,1,1)} V+S_{(5,4,4,2)} V .
\end{aligned}
$$

Since $I_{4}\left(C h_{3}\left(V^{*}\right)\right)$ contains all the modules with length 4 in $S^{4}\left(S^{3} V\right)$, by Proposition 5.1.19 any module with length 5 in $S^{5}\left(S^{3} V\right)$ is in $I_{4}\left(C h_{3}\left(V^{*}\right)^{(1)}\right.$.

On the other hand, the other modules with length no more than 4 in $S^{5}\left(S^{3} V\right)$ are not in $I_{4}\left(C h_{3}\left(V^{*}\right)^{(1)}\right.$: By Proposition 5.1.16, for any module with length no more than 4 in $S^{5}\left(S^{3} V\right)$, one can find a partial derivative of a highest weight vector of this module such that it is a highest weight vector of a module in $S^{4}\left(S^{3} V\right)$ but not in $I_{4}\left(C h_{3}\left(V^{*}\right)\right.$. For most modules, we can check directly, but for some modules, we need to verify carefully. For example, By Proposition 5.1.20, $S_{(5,4,4,2)} \subset\left(S_{(5,4,2,1)} \oplus\right.$ $\left.S_{(4,4,4)} V\right)^{(1)}$, but $f_{e_{1} e_{4}^{2}}$ is a highest weight vector of $S_{(4,4,4)} V \subsetneq I_{4}\left(C h_{3}\left(V^{*}\right)\right)$, so $S_{(5,4,4,2)}$ is not not in $I_{4}\left(C h_{3}\left(V^{*}\right)^{(1)}\right.$. I conclude

$$
\begin{aligned}
I_{4}\left(C h_{3}\left(V^{*}\right)\right)^{(2)} & =S_{(8,2,2,2,2)} V \oplus S_{(7,4,2,2,2)} V \oplus S_{(6,5,3,2,2)} V \oplus S_{(5,5,5,1,1,1)} V \\
I_{4}\left(C h_{3}\left(V^{*}\right)^{(3)}\right. & =0 .
\end{aligned}
$$

Therefore by Proposition 5.2.1 and Theorem 5.1.3,

Theorem 5.2.2. (restatement of Theorem 1.2.6) $I_{7}\left(\sigma_{2}\left(C h_{3}\left(V^{*}\right)\right)\right)=I_{4}\left(C h_{3}\left(V^{*}\right)\right)^{(3)}$ $=0$.

Also

Theorem 5.2.3. (restatement of Theorem 1.2.8) $I_{8}\left(\sigma_{2}\left(C h_{3}\left(V^{*}\right)\right)\right) \supset S_{(5,5,5,5,3,1)} V$.
Proof. By Example 5.1.8, $I_{8}\left(\sigma_{2}\left(C h_{3}\left(V^{*}\right)\right)\right)=I_{5}\left(C h_{3}\left(V^{*}\right)\right)^{(3)} \bigcap F_{4,4}^{-1}\left[I_{4}\left(C h_{3}\left(V^{*}\right)\right) \otimes\right.$ $\left.S^{4}\left(S^{3} V\right)+S^{4}\left(S^{3} V\right) \otimes I_{4}\left(C h_{3}\left(V^{*}\right)\right)\right]$. Since all the modules with 5 columns in $S^{5}\left(S^{3} V\right)$ are contained in $I_{5}\left(C h_{3}\left(V^{*}\right)\right)$, by Proposition 5.1.2 and Schur's lemma,

$$
\begin{equation*}
S_{(5,5,5,5,3,1)} V \subset I_{5}\left(C h_{3}\left(V^{*}\right)^{(3)}\right. \tag{5.7}
\end{equation*}
$$

Consider the map

$$
F_{4,4}: S^{8}\left(S^{3} V\right) \rightarrow S^{4}\left(S^{3} V\right) \otimes S^{4}\left(S^{3} V\right)
$$

Let $I_{4}\left(C h_{3}\left(V^{*}\right)\right)^{c}$ denote the complement to $I_{4}\left(C h_{3}\left(V^{*}\right)\right)$ in $S^{4}\left(S^{3} V\right)$. Since

$$
\begin{aligned}
I_{4}\left(C h_{3}\left(V^{*}\right)\right)^{c}= & S_{(12)} V+S_{(10,2)} V+S_{(9,3)} V+S_{(8,4)} V+ \\
& S_{(8,2,2)} V+S_{(7,4,1)} V+S_{(6,6)} V+S_{(6,4,2)} V+S_{(4,4,4)} V
\end{aligned}
$$

and $S_{(5,5,5,5,3,1)} V \nsubseteq S_{(4,4,4)} V \otimes S_{(4,4,4)} V$, by the Littlewood-Richardson rule,

$$
S_{(5,5,5,5,3,1)} V \nsubseteq I_{4}\left(C h_{3}\left(V^{*}\right)\right)^{c} \otimes I_{4}\left(C h_{3}\left(V^{*}\right)\right)^{c}
$$

Therefore by Schur's lemma

$$
S_{(5,5,5,5,3,1)} V \subset F_{4,4}^{-1}\left(I_{4}\left(C h_{3}\left(V^{*}\right)\right) \otimes S^{4}\left(S^{3} V\right)+S^{4}\left(S^{3} V\right) \otimes I_{4}\left(C h_{3}\left(V^{*}\right)\right)\right)
$$

The result follows.

Remark 5.2.4. Since $\sigma_{2}\left(C h_{3}\left(\mathbb{C}^{5 *}\right)\right)$ is a proper subset of $\mathbb{P} S^{3}\left(\mathbb{C}^{5 *}\right)$, by inheritance [31], the ideal of $\sigma_{2}\left(C h_{3}\left(V^{*}\right)\right)$ contains modules with length 5. So $S_{(5,5,5,5,3,1)} V$ is not enough to cut out $\sigma_{2}\left(C h_{3}\left(V^{*}\right)\right)$ set-theoretically. We know that $\operatorname{dim} S_{(5,5,5,5,3,1)} V=$ 1134 and codim $\sigma_{2}\left(C h_{3}\left(V^{*}\right)\right)=24$, therefore $\sigma_{2}\left(C h_{3}\left(V^{*}\right)\right)$ is very far from being a complete intersection. Obviously $\mathbb{P} S^{3}\left(\mathbb{C}^{5 *}\right)$ with dimension 34 is in the zero set of $S_{(5,5,5,5,3,1)} V$, while the dimension of $\sigma_{2}\left(C h_{3}\left(V^{*}\right)\right)$ is 31, the next question is: what is the difference between the dimension of $\sigma_{2}\left(C h_{3}\left(V^{*}\right)\right)$ and the zero set of $S_{(5,5,5,5,3,1)} V$?
5.3 The case when the degree is 4

Consider $\sigma_{r}\left(C h_{4}\left(V^{*}\right)\right) \subset S^{4}\left(V^{*}\right)$, where $\operatorname{dim} V \geq 4 r$, prolongations enable one to find modules in the ideal of $\sigma_{r}\left(C h_{4}\left(V^{*}\right)\right)$.

Theorem 5.3.1. (restatement of Theorem 1.2.10) When $\operatorname{dim} V \geq 4 r$,

$$
I_{4 r+1}\left(\sigma_{r}\left(C h_{4}\left(V^{*}\right)\right)\right)=I_{5}\left(C h_{4}\left(V^{*}\right)\right)^{(4 r-4)}
$$

and

$$
S_{\left(6,6,4^{4 r-2}\right)} V \subset I_{4 r+1}\left(\sigma_{r}\left(C h_{4}\left(V^{*}\right)\right)\right)
$$

Proof. By Proposition 2.5.2, Proposition 2.5.4 and Proposition 2.5.5, $I_{4}\left(C h_{4}\left(V^{*}\right)\right)=$ 0 and $I_{5}\left(C h_{4}\left(V^{*}\right)\right)=S^{5}\left(S^{4} V\right)-S^{4}\left(S^{5} V\right)$, so $I_{5}\left(C h_{4}\left(V^{*}\right)\right)^{c}=S^{4}\left(S^{5} V\right)$. By Theorem
5.1.3,

$$
I_{4 r+1}\left(\sigma_{r}\left(C h_{4} V^{*}\right)\right)=I_{5}\left(C h_{4} V^{*}\right)^{(4 r-4)} .
$$

Consider the polarization map

$$
F_{4 r-4,5}: S^{4 r+1}\left(S^{4} V\right) \rightarrow S^{4 r-4}\left(S^{4} V\right) \otimes S^{5}\left(S^{4} V\right)
$$

by Proposition 5.1.2,

$$
I_{5}\left(C h_{4} V^{*}\right)^{(4 r-4)}=F_{4 r-4,5}^{-1}\left(S^{4 r-4}\left(S^{4} V\right) \otimes I_{5}\left(C h_{4}\left(V^{*}\right)\right)\right) .
$$

Since $S_{(6,6,6,2)} \subset S^{4}\left(S^{5} V\right)$ has the lowest highest weight vector with respect to the lexicographic order among all the modules in $S^{4}\left(S^{5} V\right)$, by the Littlewood-Richardson rule,

$$
S_{\left(6,6,4^{4 r-2}\right)} V \subsetneq S^{4 r-4}\left(S^{4} V\right) \otimes I_{5}\left(C h_{4}\left(V^{*}\right)\right)^{c}=S^{4 r-4}\left(S^{4} V\right) \otimes S^{4}\left(S^{5} V\right)
$$

Therefore by Schur's lemma

$$
S_{\left(6,6,4^{4 r-2}\right)} V \subset I_{5}\left(C h_{4} V^{*}\right)^{(4 r-4)}=I_{4 r+1}\left(\sigma_{r}\left(C h_{4}\left(V^{*}\right)\right) .\right.
$$

Remark 5.3.2. Consider $r=2$ and $\operatorname{dim} V=8$. Since $\sigma_{2}\left(C h_{4} \mathbb{C}^{4 *}\right)$) is a proper subset $\mathbb{P} S^{4}\left(\mathbb{C}^{4 *}\right)$, by inheritance (see [31]), the ideal of $\sigma_{2}\left(C h_{4}\left(V^{*}\right)\right)$ contains modules with length 4. So $S_{(6,6,4,4,4,4,4,4)} V$ is not enough to cut out $\sigma_{2}\left(C h_{4}\left(V^{*}\right)\right)$ settheoretically. We know that $\operatorname{dim} S_{(6,6,4,4,4,4,4,4)} V=336$ and $\operatorname{codim} \sigma_{2}\left(C h_{3}\left(V^{*}\right)\right)=$

272, therefore $\sigma_{2}\left(C h_{4}\left(V^{*}\right)\right)$ is far from being a complete intersection. Obviously $\mathbb{P} S^{4}\left(\mathbb{C}^{7 *}\right)$ with dimension 210 is in the zero set of $S_{(6,6,4,4,4,4,4,4)} V$, while the dimension of $\left.\sigma_{2}\left(C h_{4} \mathbb{C}^{4 *}\right)\right)$ is 57 , The next question is: what is the difference between the dimension of $\sigma_{2}\left(C h_{4}\left(V^{*}\right)\right)$ and the zero set of $S_{(6,6,4,4,4,4,4)} V$?

5.4 General case for even degrees

Proposition 5.4.1. [6] Let λ be a partition with order $k d$ with d odd, then the multiplicity of λ in $S^{k}\left(S^{d} V\right)$ is less than or equal to the number of semi-standard tableaux of shape λ and content $k \times d$ with the additional property : for each pair $(i, j), 1 \leq i \neq j \leq k$, the set of columns of i is not exactly the columns of j.

Proposition 5.4.2. [39] Let λ be a partition with order $k d$ and let u be even, then

$$
\operatorname{mult}\left(S_{\lambda} V, S^{k}\left(S^{d} V\right)\right)=\operatorname{mult}\left(S_{\lambda+\left(u^{k}\right)} V, S^{k}\left(S^{d+u} V\right)\right)
$$

Theorem 5.4.3. The module $S_{\left((2 m+2)^{2 m-1}, 2\right)} V$ is contained in $S^{2 m}\left(S^{2 m+1} V\right)$, with multiplicity 1, and $S_{\left((2 m+2)^{2 m-1}, 2\right)} V$ is the smallest module with respect to the lexicographic order among all the modules in the decomposition of $S^{2 m}\left(S^{2 m+1} V\right)$.

Proof. First, let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{2 m}\right)$ be a partition with order $4 m^{2}+2 m$ and smaller than $\left((2 m+2)^{2 m-1}, 2\right)$ with respect to the lexicographic order, then $\lambda_{1} \leq 2 m+2$ and $\lambda_{2 m} \geq 3$. Consider the semi-standard tableaux with content $2 m \times(2 m+1)$; the first 3 columns must be filled with $\{1, \ldots, 2 m\}$. Therefore there are $\binom{\lambda_{1}-3}{2 m-2} \leq 2 m-1$ possible sets of columns, but there are $2 m$ numbers to be filled in the semi-standard tableaux, so by Proposition 5.4.1, mult $\left(S_{\lambda} V, S^{2 m}\left(S^{2 m+1} V\right)\right)=0$.

Second, consider the partition $\lambda=\left((2 m+2)^{2 m-1}, 2\right)$, by Proposition 5.4.2, I conclude mult $\left(S_{\lambda} V, S^{2 m}\left(S^{2 m+1} V\right)\right)=\operatorname{mult}\left(S_{\left(2 m^{2 m-1}\right)} V, S^{2 m}\left(S^{2 m-1} V\right)\right)$. By [28] formula (80), $\operatorname{mult}\left(S_{\left(2 m^{2 m-1}\right)} V, S^{2 m}\left(S^{2 m-1} V\right)\right)=1$.

Let $d=2 m \geq 4$ and $\operatorname{dim} V \geq 2 m r$, consider the variety $\sigma_{r}\left(C h_{2 m}\left(V^{*}\right)\right) \subset S^{2 m} V^{*}$. A partition is an even partition if all the components of the partition are even numbers. When d is even, any even partition with length no more than k has positive plethysm coefficients in $S^{k}\left(S^{d} V\right)$ [7].

Theorem 5.4.4. (restatement of Theorem 1.2.12) The isotypic component of the module $S_{\left((2 m+2)^{m},(2 m)^{2 m r-m}\right)} V$ in $S^{2 m r+1}\left(S^{2 m} V\right)$ is contained in $I_{2 m r+1}\left(\sigma_{r}\left(C h_{2 m}\left(V^{*}\right)\right)\right)$. Moreover any module with even partition and smaller than $\left((2 m+2)^{2 m-1}, 2\right)$ (with respect to the lexicographic order) is in $I_{2 m r+1}\left(\sigma_{r}\left(C h_{2 m}\left(V^{*}\right)\right)\right)$.

Proof. By Theorem 5.4.3, $S_{\left((2 m+2)^{2 m-1}, 2\right)} V$ is the smallest module (with respect to the lexicographic order) in the decomposition of $S^{2 m}\left(S^{2 m+1} V\right)$. Therefore by Corollary 2.5.3, any module smaller than $S_{\left((2 m+2)^{2 m-1}, 2\right)} V$ (with respect to the lexicographic order) is not in $I_{2 m+1}\left(C h_{2 m}\left(V^{*}\right)\right)^{c} \subset S^{2 m+1}\left(S^{2 m} V\right)$.

Consider the polarization map

$$
F_{2 m r-2 m, 2 m+1}: S^{2 m r+1}\left(S^{2 m} V\right) \rightarrow S^{2 m r-2 m}\left(S^{2 m} V\right) \otimes S^{2 m+1}\left(S^{2 m} V\right)
$$

By Proposition 5.1.2,
$I_{2 m+1}\left(C h_{2 m}\left(V^{*}\right)\right)^{(2 m(r-1))}=F_{2 m r-2 m, 2 m+1}^{-1}\left(S^{2 m r-2 m}\left(S^{2 m} V\right) \otimes I_{2 m+1}\left(C h_{2 m}\left(V^{*}\right)\right)\right)$.

By the Littlewood-Richardson rule,

$$
S_{\left((2 m+2)^{m},(2 m)^{2 m r-m}\right)} V \subsetneq S^{2 m r-2 m}\left(S^{2 m} V\right) \otimes I_{2 m+1}\left(C h_{2 m}\left(V^{*}\right)\right)^{c}
$$

Moreover any module in $S^{2 m r+1}\left(S^{2 m} V\right)$ with even partition and smaller than $((2 m+$ $\left.2)^{2 m-1}, 2\right)$ is not contained in $S^{2 m r-2 m}\left(S^{2 m} V\right) \otimes I_{2 m+1}\left(C h_{2 m}\left(V^{*}\right)\right)^{c}$.

Therefore by Schur's lemma the isotypic component of $S_{\left((2 m+2)^{m},(2 m)^{2 m r-m}\right)} V$ is in $F_{2 m r-2 m, 2 m+1}^{-1}\left[S^{2 m r-2 m}\left(S^{2 m} V\right) \otimes I_{2 m+1}\left(C h_{2 m}\left(V^{*}\right)\right)\right]=I_{2 m+1}\left(C h_{2 m}\left(V^{*}\right)\right)^{(2 m(r-1))}$.

Moreover any module in $S^{2 m r+1}\left(S^{2 m} V\right)$ with even partition and smaller than $((2 m+$ $2)^{2 m-1}, 2$) (with respect to the lexicographic order) is in $I_{2 m+1}\left(C h_{2 m}\left(V^{*}\right)\right)^{(2 m(r-1))}$.

By Corollary 5.1.9, $I_{2 m+1}\left(C h_{2 m}\left(V^{*}\right)\right)^{(2 m(r-1))} \subset I_{2 m r+1}\left(\sigma_{r}\left(C h_{2 m}\left(V^{*}\right)\right)\right)$, the results follow.

5.5 A property of Plethysm coefficients

Lemma 5.5.1. $[8,38,39] \operatorname{mult}\left(S_{\lambda} V, S^{k}\left(S^{2 l} V\right)\right)=\operatorname{mult}\left(S_{\lambda^{T}} V, S^{k}\left(\Lambda^{2 l} V\right)\right)$, and mult $\left(S_{\lambda} V\right.$, $\left.S^{k}\left(S^{2 l+1} V\right)\right)=\operatorname{mult}\left(S_{\lambda^{T}} V, \Lambda^{k}\left(\Lambda^{2 l} V\right)\right)$.

Theorem 5.5.2. Let d be even, if $S_{\left(a_{1}, \cdots, a_{p}\right)} \subset S^{k}\left(S^{d} V\right)$ and $S_{\left(b_{1}, \cdots, b_{q}\right)} \subset S^{l}\left(S^{d} V\right)$ with $a_{p} \geq b_{1}$, then

$$
S_{\left(a_{1}, \cdots, a_{p}, b_{1}, \cdots, b_{q}\right)} \subset S^{k+l}\left(S^{d} V\right)
$$

as long as $\operatorname{dim} V \geq k+l$.
Proof. Let $\lambda=\left(a_{1}, \cdots, a_{p}\right)$ and $\mu=\left(b_{1}, \cdots, b_{q}\right)$. By Lemma 5.5.1, mult $\left(S_{\lambda^{T}} V, S^{k}\left(\Lambda^{d} V\right)\right)$ >0 and $\operatorname{mult}\left(S_{\mu^{T}} V, S^{l}\left(\Lambda^{d} V\right)\right)>0$, so mult $\left(S_{\lambda^{T}+\mu^{T}} V, S^{k+l}\left(\Lambda^{d} V\right)\right)>0$. By Lemma 5.5.1 again,

$$
\operatorname{mult}\left(S_{(\lambda, \mu)} V, S^{k+l}\left(S^{d} V\right)\right)>0
$$

Remark 5.5.3. This is false when d is odd: C.Ikenmeyer gave a counter-example for $d=3$. There exists k_{0} such that $S_{6^{k_{0}}} V \subset S^{2 k_{0}}\left(S^{3} V\right)$ but $S_{6^{k_{0}+1}} V \subsetneq S^{2 k_{0}+2}\left(S^{3} V\right)$.

6. SUMMARY

In this dissertation, we study chow varieties, their secant varieties and other varieties arising in complexity theory to approach Valiant's conjecture.

I use the polarization of Brill's polynomial map \mathfrak{B} to construct Brill's map $\overline{\mathfrak{B}}$, which is a $G L(V)$-module map, I compute the image of Brill's map to determine Brill's equations as a $G L(V)$-module.

I obtain determinantal equations for Chow varieties and their secant varieties by Koszul Young flattenings, and get a new lower bound for symmetric border rank of square free monomials with odd degree. I compare the flattening rank of a generic polynomial in the Veronese reembeddings of secant varieties of Veronese varieties with that of the perm_{n}, and prove a complexity lower bound for the permanent.

I use the method of prolongations to obtain equations for secant varieties of Chow varieties as $G L(V)$-modules, The methods I use to compute prolongations are differential operators and plethysm coefficients.

REFERENCES

[1] M. Agrawal and V. Vinay, Arithmetic circuits: A chasm at depth four, In Proc. 49th IEEE Symposium on Foundations of Computer Science (2008), 6775.
[2] Richard P. Brent, The parallel evaluation of general arithmetic expressions, J. Assoc. Comput. Mach. 21 (1974), 201-206. MR 0660280 (58 \#31996)
[3] Emmanuel Briand, Covariants vanishing on totally decomposable forms, Liaison, Schottky problem and invariant theory, Progr. Math., vol. 280, Birkhäuser Verlag, Basel, 2010, pp. 237-256. MR 2664658
[4] Michel Brion, Stable properties of plethysm: on two conjectures of Foulkes, Manuscripta Math. 80 (1993), no. 4, 347-371. MR MR1243152 (95c:20056)
[5] __ Sur certains modules gradués associés aux produits symétriques, Algèbre non commutative, groupes quantiques et invariants (Reims, 1995), Sémin. Congr., vol. 2, Soc. Math. France, Paris, 1997, pp. 157-183. MR 1601139 (99e:20054)
[6] P. Bürgisser and C. Ikenmeyer, Fundamental invariants of orbit closures, ArXiv e-prints (2015).
[7] Peter Bürgisser, Matthias Christandl, and Christian Ikenmeyer, Even partitions in plethysms, J. Algebra 328 (2011), 322-329. MR 2745569 (2012a:20070)
[8] Christophe Carré and Jean-Yves Thibon, Plethysm and vertex operators, Adv. in Appl. Math. 13 (1992), no. 4, 390-403. MR 1190119 (94c:05070)
[9] M. V. Catalisano, A. V. Geramita, and A. Gimigliano, Segre-Veronese embeddings of $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$ and their secant varieties, Collect. Math. 58 (2007), no. 1, 1-24. MR 2310544 (2008f:14069)
[10] Xi Chen, Neeraj Kayal, and Avi Wigderson, Partial derivatives in arithmetic complexity and beyond, Found. Trends Theor. Comput. Sci. 6 (2010), no. 1-2, front matter, 1-138 (2011). MR 2901512
[11] Stephen A. Cook, The complexity of theorem-proving procedures, Proceedings of the Third Annual ACM Symposium on Theory of Computing (New York, NY, USA), STOC '71, ACM, 1971, pp. 151-158.
[12] Klim Efremenko, J. M. Landsberg, Hal Schenck, and Jerzy Weyman, On minimal free resolutions and the method of shifted partial derivatives in complexity theory, CoRR abs/1504.05171 (2015).
[13] Cameron Farnsworth, Koszul-Young flattenings and symmetric border rank of the determinant, J. Algebra 447 (2016), 664-676. MR 3427655
[14] Lance Fortnow, The status of the p versus np problem, Commun. ACM 52 (2009), no. 9, 78-86.
[15] H. O. Foulkes, Concomitants of the quintic and sextic up to degree four in the coefficients of the ground form, J. London Math. Soc. 25 (1950), 205-209. MR MR0037276 (12,236e)
[16] William Fulton and Joe Harris, Representation theory, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991, A first course, Readings in Mathematics. MR 1153249 (93a:20069)
[17] I. M. Gel'fand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Mathematics: Theory \& Applications, Birkhäuser Boston Inc., Boston, MA, 1994. MR 95e:14045
[18] P. Gordon, Das zerfallen der curven in gerade linien, Math. Ann. (1894), no. 45, 410-427.
[19] Y. Guan, Brill's equations as a GL(V)-module, arXiv1508.02293 (2015).
[20] , Flattenings and Koszul Young flattenings arising in complexity theory, arXiv1510.00886 (2015).
[21] , Equations for secant varieties of Chow varieties, arXiv1602.04275 (2016).
[22] Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi, Approaching the chasm at depth four, Proceedings of the Conference on Computational Complexity (CCC) (2013).
[23] , Arithmetic circuits: A chasm at depth three, Electronic Colloquium on Computational Complexity (ECCC) 20 (2013), 26.
[24] J. Hadamard, Mémoire sur l'élimination, Acta Math. 20 (1897), no. 1, 201-238. MR 1554881
[25] , Sur les conditions de décomposition des formes, Bull. Soc. Math. France 27 (1899), 34-47. MR 1504330
[26] Juris Hartmanis, Gödel, von Neumann and the $P=$? NP problem, Technical Report TR89-994, Cornell University, Computer Science Department, April 1989.
[27] C. Hermite, Sur la theorie des fonctions homogenes a deux indeterminees, Cambridge and Dublin Math. J. 9 (1854), 172-217.
[28] Roger Howe, $\left(\mathrm{GL}_{n}, \mathrm{GL}_{m}\right)$-duality and symmetric plethysm, Proc. Indian Acad. Sci. Math. Sci. 97 (1987), no. 1-3, 85-109 (1988). MR MR983608 (90b:22020)
[29] Harlan Kadish and J. M. Landsberg, Padded polynomials, their cousins, and geometric complexity theory, Comm. Algebra 42 (2014), no. 5, 2171-2180. MR 3169697
[30] Pascal Koiran, Arithmetic circuits: The chasm at depth four gets wider., Theor. Comput. Sci. 448 (2012), 56-65.
[31] J. M. Landsberg, Tensors: geometry and applications, Graduate Studies in Mathematics, vol. 128, American Mathematical Society, Providence, RI, 2012. MR 2865915
[32] , Geometric complexity theory: an introduction for geometers, Ann. Univ. Ferrara Sez. VII Sci. Mat. 61 (2015), no. 1, 65-117. MR 3343444
[33] J. M. Landsberg and Laurent Manivel, On the ideals of secant varieties of Segre varieties, Found. Comput. Math. 4 (2004), no. 4, 397-422. MR MR2097214 (2005m:14101)
[34] J. M. Landsberg and M. Michałek, On the geometry of border rank algorithms for matrix multiplication and other tensors with symmetry, ArXiv e-prints (2016).
[35] J. M. Landsberg and Giorgio Ottaviani, Equations for secant varieties of Veronese and other varieties, Ann. Mat. Pura Appl. (4) 192 (2013), no. 4, 569-606. MR 3081636
[36] J. M. Landsberg and Jerzy Weyman, On the ideals and singularities of secant varieties of Segre varieties, Bull. Lond. Math. Soc. 39 (2007), no. 4, 685-697. MR MR2346950
[37] Joseph M. Landsberg and Giorgio Ottaviani, New lower bounds for the border rank of matrix multiplication, Theory of Computing 11 (2015), no. 11, 285-298.
[38] Laurent Manivel, Gaussian maps and plethysm, Algebraic geometry (Catania, 1993/Barcelona, 1994), Lecture Notes in Pure and Appl. Math., vol. 200, Dekker, New York, 1998, pp. 91-117. MR MR1651092 (99h:20070)
[39] Laurent Manivel and Mateusz Michalek, Secants of minuscule and cominuscule minimal orbits, Linear Algebra Appl. 481 (2015), 288-312. MR 3349658
[40] Tom McKay, On plethysm conjectures of Stanley and Foulkes, J. Algebra 319 (2008), no. 5, 2050-2071. MR 2394689 (2008m:20023)
[41] Jurgen Müller and Max Neunhöffer, Some computations regarding Foulkes' conjecture, Experiment. Math. 14 (2005), no. 3, 277-283. MR MR2172706 (2006e:05186)
[42] Kristian Ranestad and Frank-Olaf Schreyer, On the rank of a symmetric form, J. Algebra 346 (2011), 340-342. MR 2842085 (2012j:13037)
[43] Jessica Sidman and Seth Sullivant, Prolongations and computational algebra, Canad. J. Math. 61 (2009), no. 4, 930-949. MR 2541390
[44] Michael Sipser, The history and status of the p versus $n p$ question, STOC '92 Proceedings of the twenty-fourth annual ACM symposium on Theory of computing (1992), 603-618.
[45] Sbastien Tavenas, Improved bounds for reduction to depth 4 and depth 3, Information and Computation 240 (2015), 2 - 11, \{MFCS\} 2013.
[46] Sébastien Tavenas, Improved bounds for reduction to depth 4 and depth 3, Mathematical Foundations of Computer Science 2013-38th International Symposium, MFCS 2013, Klosterneuburg, Austria, August 26-30, 2013. Proceedings, 2013, pp. 813-824.
[47] L. G. Valiant, The complexity of computing the permanent, Theoret. Comput. Sci. 8 (1979), no. 2, 189-201. MR MR526203 (80f:68054)
[48] Leslie G. Valiant, Completeness classes in algebra, Proc. 11th ACM STOC, 1979, pp. 249-261.
[49] L.G. Valiant, Reducibility by algebraic projections, Logic and Algorithmic: an International Symposium held in honor of Ernst Specker, vol. 30, Monogr. No. 30 de l'Enseign. Math., 1982, pp. 365-380.

APPENDIX A

COMPLEXITY THEORY

A. 1 Valiant's Conjecture

Definition A.1.1. An arithmetic circuit \mathcal{C} over \mathbb{C} and the set of variables $\left\{x_{1}, \ldots, x_{N}\right\}$ is a directed acyclic graph with vertices of in-degree 0 and exactly one vertex of outdegree 0. Every vertex in it with in degree zero is called an input gate and is labeled by either a variable x_{i} or an element in \mathbb{C}. Every other gate is labeled by either + or \times, exactly one vertex of out-degree 0 .

A circuit has two complexity measures associated with it: size and depth. The size of a circuit is the number of gates in it, and the depth of a circuit is the length of the longest directed path in it.

Proposition A.1.2. On an arithmetic circuit \mathbb{C}, each gate computes a polynomial. The polynomial computed by the output gate is denoted by P_{C} and called the polynomial defined by the circuit.

Definition A.1.3. The class VP consists of sequences of polynomials $\left(p_{n}\right)$ of polynomial of degree $d(n)$ and variables $v(n)$, where $d(n)$ and $v(n)$ are bounded by polynomials in n and such that there exists a sequence of arithmetic circuits \mathcal{C}_{n} of polynomially bounded size such that \mathcal{C}_{n} defines p_{n}.

Example A.1.4. The sequence $\left(\operatorname{det}_{n}\right) \in \mathbf{V P}$, where det ${ }_{n}$ denotes the determinant of $a n \times n$ matrix.

Definition A.1.5. Consider a sequence $h=\left(h_{n}\right)$ of polynomials in variables x_{1}, \ldots, x_{n}
of the form

$$
h_{n}=\sum_{e \in\{0,1\}^{n}} g_{n}(e) x_{1}^{e_{1}} \cdots x_{n}^{e_{n}},
$$

where $\left(g_{n}\right) \in \mathbf{V P}$. The class VNP is defined to be the set of all sequences the form h.

Definition A.1.6. A problem P is hard for a complexity class \mathbf{C} if all problems in \mathbf{C} can be reduced to P (i.e. there is an algorithm to translate any instance of a problem in \mathbf{C} to an instance of P with comparable input size). A problem P is complete for \mathbf{C} if it is hard for \mathbf{C} and $P \in \mathbf{C}$.

Proposition A.1.7. [47] The sequence $\left(\operatorname{perm}_{n}\right)$ is VNP-complete.

Therefore to prove Valiant's Conjecture VP \neq VNP [48], we only need to prove there does not exist a polynomial size circuit computing the permanent.

A. 2 Shallow circuits

Circuits of bounded depth are called shallow circuits. Recently there have been significant advances for circuits of depth $3[23]$ and $4[1,30,46]$ and a special class of circuits of depth 5 [23]. A.Gupta, P.Kamath, N.Kayal and R.Saptharishi [23] showed these shallow circuits could be used to measure the complexity of the permanent to approach Valiant's Conjecture.

Example A.2.1. Depth 3 circuits are used to compute a polynomial of the form

$$
\sum_{i=1}^{r} \prod_{j=1}^{d} l_{j}^{i}
$$

where l_{j}^{i} is an affine linear form. Depth 3 circuits are also called $\Sigma \Pi \Sigma$ circuits.

Example A.2.2. There is a particular type of depth 5 circuits called $\Sigma \Lambda \Sigma \Lambda \Sigma$ circuits, which are used to compute a polynomial of the form

$$
\sum_{i=1}^{r}\left(\sum_{j=1}^{\rho}\left(l_{j}^{i}\right)^{\delta_{2}}\right)^{\delta_{1}}
$$

where l_{j}^{i} is an affine linear form.
A circuit is homogeneous if the polynomial produced by each gate is homogeneous, and otherwise it is inhomogeneous.

Remark A.2.3. A polynomial of the form $\sum_{i=1}^{r} \prod_{j=1}^{d} l_{j}^{i}$, where l_{j}^{i} is a linear form, is a general point in the variety $\sigma_{r}\left(C h_{d}(V)\right)$, so the variety $\sigma_{r}\left(C h_{d}(V)\right)$ is associated to homogeneous $\Sigma \Pi \Sigma$ circuits. While a polynomial of the form $\sum_{i=1}^{r}\left(\sum_{j=1}^{\rho}\left(l_{j}^{i}\right)^{\delta_{2}}\right)^{\delta_{1}}$, where l_{j}^{i} is a linear form, is a general point in the variety $\sigma_{\rho}\left(v_{\delta_{1}}\left(\sigma_{r}\left(v_{\delta_{2}}(\mathbb{P} V)\right)\right)\right.$, so the variety $\sigma_{\rho}\left(v_{\delta_{1}}\left(\sigma_{r}\left(v_{\delta_{2}}(\mathbb{P} V)\right)\right)\right.$ is associated to homogeneous $\Sigma \Lambda \Sigma \Lambda \Sigma$ circuits.

A. 3 Depth reduction

The following theorem is related to depth reduction, it combines results of $[1,2$, $23,30,32,45]$.

Theorem A.3.1. Let $d=n^{O(1)}$ and let $P \in S^{d} \mathbb{C}^{n}$ be a polynomial that can be computed by a circuit of size s. Then:

1. P is computable by a $\Sigma \Pi \Sigma$ circuit of size $2^{O(\sqrt{d \log (\mathrm{n}) \log (d s)})}$. In particular, $\left[l^{N-d} P\right] \in \sigma_{r}\left(C h_{N}\left(\mathbb{C}^{n+1}\right)\right)$ with $r N=2^{O(\sqrt{d \log (\mathrm{n}) \log (d s)})}$.
2. P is computable, for some $\delta \simeq \sqrt{d}$, by a homogeneous $\Sigma \Lambda \Sigma \Lambda \Sigma$ circuit of size $2^{O(\sqrt{d \log (\mathrm{n}) \log (d s)})}$. In particular, $[P] \in \sigma_{r_{1}}\left(v_{\frac{d}{\delta}}\left(\sigma_{r_{2}}\left(v_{\delta}\left(\mathbb{P}^{n-1}\right)\right)\right)\right)$ with $r_{1} r_{2}(\delta+1)=$ $2^{O(\sqrt{d \log (\mathrm{n}) \log (d s)})}$.

Remark A.3.2. Theorem A.3.1 implies Theorems1.1.1 and 1.1.2.

