Multiplication operators on $L(L_p)$ and ℓ_p -strictly singular operators*

William B. Johnson[‡] Gideon Schechtman[§]
September 18, 2007

Abstract

A classification of weakly compact multiplication operators on $L(L_p)$, $1 , is given. This answers a question raised by Saksman and Tylli in 1992. The classification involves the concept of <math>\ell_p$ -strictly singular operators, and we also investigate the structure of general ℓ_p -strictly singular operators on L_p . The main result is that if an operator T on L_p , $1 , is <math>\ell_p$ -strictly singular and $T_{|X}$ is an isomorphism for some subspace X of L_p , then X embeds into L_r for all r < 2, but X need not be isomorphic to a Hilbert space.

It is also shown that if T is convolution by a biased coin on L_p of the Cantor group, $1 \le p < 2$, and $T_{|X}$ is an isomorphism for some reflexive subspace X of L_p , then X is isomorphic to a Hilbert space. The case p = 1 answers a question asked by Rosenthal in 1976.

1 Introduction

Given (always bounded, linear) operators A, B on a Banach space X, define L_A , R_B on L(X) (the space of bounded linear operators on X) by $L_AT = AT$, $R_BT = TB$. Operators of the form L_AR_B on L(X) are called *multiplication operators*. The beginning point of this paper is a problem raised in 1992 by E. Saksman and H.-O. Tylli [ST1] (see also [ST2, Problem 2.8]):

Characterize the multiplication operators on $L(L_p)$, 1 , which are weakly compact.

^{*}AMS subject classification: 46B20,46E30. Key words: Elementary operators, multiplication operators, strictly singular operators, L_p spaces, biased coin

[†]Supported in part by NSF DMS-0503688 and U.S.-Israel Binational Science Foundation.

[‡]Corresponding author.

[§]Supported in part by Israel Science Foundation and U.S.-Israel Binational Science Foundation; participant, NSF Workshop in Analysis and Probability, Texas A&M University.

Here L_p is $L_p(0,1)$ or, equivalently, $L_p(\mu)$ for any purely non-atomic separable probability μ .

In Theorem 1 we answer the Saksman-Tylli question. The characterization is rather simple but gives rise to questions about operators on L_p , some of which were asked by Tylli. First we set some terminology. Given an operator $T:X\to Y$ and a Banach space Z, say that T is Z-strictly singular provided there is no subspace Z_0 of X which is isomorphic to Z for which $T_{|Z_0}$ is an isomorphism. An operator $S:Z\to W$ factors through an operator $T:X\to Y$ provided there are operators $A:Z\to X$ and $B:Y\to W$ so that S=BTA. If S factors through the identity operator on X, we say that S factors through X.

If T is an operator on L_p , $1 , then T is <math>\ell_p$ -strictly singular (respectively, ℓ_2 -strictly singular) if and only if I_{ℓ_p} (respectively, I_{ℓ_2}) does not factor through T. This is true because every subspace of L_p which is isomorphic to ℓ_p (respectively, ℓ_2) has a subspace which is still isomorphic to ℓ_p (respectively, ℓ_2) and is complemented in L_p . Actually, a stronger fact is true: if $\{x_n\}_{n=1}^{\infty}$ is a sequence in L_p which is equivalent to the unit vector basis for either ℓ_p or ℓ_2 , then $\{x_n\}_{n=1}^{\infty}$ has a subsequence which spans a complemented subspace of L_p . For p>2, an even stronger theorem was proved by Kadec-Pełczyński [KP]. When $1 and <math>\{x_n\}_{n=1}^{\infty}$ is a sequence in L_p which is equivalent to the unit vector basis for ℓ_2 , one takes $\{y_n\}_{n=1}^{\infty}$ in $L_{p'}$ (where $p'=\frac{p}{p-1}$ is the conjugate index to p) which are uniformly bounded and biorthogonal to $\{x_n\}_{n=1}^{\infty}$. By passing to a subsequence which is weakly convergent and subtracting the limit from each y_n , one may assume that $y_n \to 0$ weakly and hence, by the Kadec-Pełczyński dichotomy [KP], has a subsequence that is equivalent to the unit vector basis of ℓ_2 (since it is clearly impossible that $\{y_n\}_{n=1}^{\infty}$ has a subsequence equivalent to the unit vector basis of $\ell_{p'}$). This implies that that the corresponding subsequence of $\{x_n\}_{n=1}^{\infty}$ spans a complemented subspace of L_p . (Pełczyński showed this argument, or something similar, to one of the authors many years ago, and a closely related result was proved in [PR].) Finally, when $1 and <math>\{x_n\}_{n=1}^{\infty}$ is a sequence in L_p which is equivalent to the unit vector basis for ℓ_p , see the comments after the statement of Lemma 1.

Notice that the comments in the preceding paragraph yield that an operator on L_p , $1 , is <math>\ell_p$ -strictly singular (respectively, ℓ_2 -strictly singular) if and only if T^* is $\ell_{p'}$ -strictly singular (respectively, ℓ_2 -strictly singular). Better known is that an operator on L_p , $1 , is strictly singular if it is both <math>\ell_p$ -strictly singular and ℓ_2 -strictly singular (and hence T is strictly singular if and only if T^* is strictly singular). For p > 2 this is immediate from [KP], and Lutz Weis [We] proved the case p < 2.

Although Saksman and Tylli did not know a complete characterization of the weakly compact multiplication operators on $L(L_p)$, they realized that a classification must involve ℓ_p and ℓ_2 -strictly singular operators on L_p . This led Tylli to ask us about possible classifications of the ℓ_p and ℓ_2 -strictly singular operators on L_p . The ℓ_2 case is known. It is enough to consider the case 2 . If <math>T is an operator on L_p , 2 , and <math>T is ℓ_2 -strictly singular, then it is an easy consequence of the Kadec-Pełczyński dichotomy that $I_{p,2}T$ is compact, where $I_{p,r}$ is the identity mapping from L_p into L_r . But then by

[Jo], T factors through ℓ_p . Tylli then asked whether the following conjecture is true:

Tylli Conjecture. If T is an ℓ_p -strictly singular operator on L_p , 1 , then <math>T is in the closure (in the operator norm) of the operators on L_p that factor through ℓ_2 . (It is clear that the closure is needed because not all compact operators on L_p , $p \neq 2$, factor through ℓ_2 .)

We then formulated a weaker conjecture:

Weak Tylli Conjecture. If T is an ℓ_p -strictly singular operator on L_p , $1 , and <math>J: L_p \to \ell_\infty$ is an isometric embedding, then JT is in the closure of the operators from L_p into ℓ_∞ that factor through ℓ_2 .

It is of course evident that an operator on L_p , $p \neq 2$, that satisfies the conclusion of the Weak Tylli Conjecture must be ℓ_p -strictly singular. There is a slight subtlety in these conjectures: while the Tylli Conjecture for p is equivalent to the Tylli Conjecture for p', it is not at all clear and is even false that the Weak Tylli Conjecture for p is equivalent to the Weak Tylli Conjecture for p'. In fact, we observe in Lemma 2 (it is simple) that for p > 2 the Weak Tylli Conjecture is true, while the example in Section 4 yields that the Tylli Conjecture is false for all $p \neq 2$ and the Weak Tylli Conjecture is false for p < 2.

There are however some interesting consequences of the Weak Tylli Conjecture that are true when p < 2. In Theorem 4 we prove that if T is an ℓ_p -strictly singular operator on L_p , 1 , then <math>T is ℓ_r -strictly singular for all p < r < 2. In view of theorems of Aldous [Al] (see also [KM]) and Rosenthal [Ro3], this proves that if such a T is an isomorphism on a subspace Z of L_p , then Z embeds into L_r for all r < 2. The Weak Tylli Conjecture would imply that Z is isomorphic to ℓ_2 , but the example in Section 4 shows that this need not be true. When we discovered Theorem 4, we thought its proof bizarre and assumed that a more straightforward argument would yield a stronger theorem. The example suggests that in fact the proof may be "natural".

In Section 5 we discuss convolution by a biased coin on L_p of the Cantor group, $1 \le p < 2$. We do not know whether such an operator T on L_p , $1 , must satisfy the Tylli Conjecture or the weak Tylli conjecture. We do prove, however, that if <math>T_{|X}$ is an isomorphism for some reflexive subspace X of L_p , $1 \le p < 2$, then X is isomorphic to a Hilbert space. This answers an old question of H. P. Rosenthal [Ro4].

The standard Banach space theory terminology and background we use can be found in [LT].

2 Weakly compact multiplication operators on $L(L_p)$

We use freely the result [ST2, Proposition 2.5] that if A, B are in L(X) where X is a reflexive Banach space with the approximation property, then the multiplication operator L_AR_B on L(X) is weakly compact if and only if for every T in L(X), the operator ATB is compact. For completeness, in section 6 we give another proof of this under the weaker assumption that X is reflexive and has the compact approximation property. This theorem implies that for such an X, L_AR_B is weakly compact on L(X) if and only if $L_{B^*}R_{A^*}$ is a weakly compact operator on $L(X^*)$. Consequently, to classify

weakly compact multiplication operators on $L(L_p)$, 1 , it is enough to consider the case <math>p > 2. For $p \le r$ we denote the identity operator from ℓ_p into ℓ_r by $i_{p,r}$. It is immediate from [KP] that an operator T on L_p , $2 , is compact if and only if <math>i_{2,p}$ does not factor through T.

Theorem 1 Let 2 and let <math>A, B be bounded linear operators on L_p . Then the multiplication operator $L_A R_B$ on $L(L_p)$ is weakly compact if and only if one of the following (mutually exclusive) conditions hold.

- (a) $i_{2,p}$ does not factor through A (i.e., A is compact)
- (b) $i_{2,p}$ factors through A but $i_{p,p}$ does not factor through A (i.e., A is ℓ_p -strictly singular) and $i_{2,2}$ does not factor through B (i.e., B is ℓ_2 -strictly singular)
- (c) $i_{p,p}$ factors through A but $i_{2,p}$ does not factor through B (i.e., B is compact)

Proof: The proof is a straightforward application of the Kadec-Pełczyński dichotomy principle [KP]: if $\{x_n\}_{n=1}^{\infty}$ is a semi-normalized (i.e., bounded and bounded away from zero) weakly null sequence in L_p , 2 , then there is a subsequence which isequivalent to either the unit vector basis of ℓ_p or of ℓ_2 and spans a complemented subspace of L_p . Notice that this immediately implies the "i.e.'s" in the statement of the theorem so that (a) and (c) imply that $L_A R_B$ is weakly compact. Now assume that (b) holds and let T be in $L(L_P)$. If ATB is not compact, then there is a normalized weakly null sequence $\{x_n\}_{n=1}^{\infty}$ in L_p so that $ATBx_n$ is bounded away from zero. By passing to a subsequence, we may assume that $\{x_n\}_{n=1}^{\infty}$ is equivalent to either the unit vector basis of ℓ_p or of ℓ_2 . If $\{x_n\}_{n=1}^{\infty}$ is equivalent to the unit vector basis of ℓ_p , then since TBx_n is bounded away from zero, we can assume by passing to another subsequence that also TBx_n is equivalent to the unit vector basis of ℓ_p and similarly for $ATBx_n$, which contradicts the assumption that A is ℓ_p -strictly singular. On the other hand, if $\{x_n\}_{n=1}^{\infty}$ is equivalent to the unit vector basis of ℓ_2 , then since B is ℓ_2 -strictly singular we can assume by passing to a subsequence that Bx_n is equivalent to the unit vector basis of ℓ_p and continue as in the previous case to get a contradiction.

Now suppose that (a), (b), and (c) are all false. If $i_{p,p}$ factors through A and $i_{2,p}$ factors through B then there is sequence $\{x_n\}_{n=1}^{\infty}$ equivalent to the unit vector basis of ℓ_2 or of ℓ_p so that Bx_n is equivalent to the unit vector basis of ℓ_2 or of ℓ_p (of course, only three of the four cases are possible) and Bx_n spans a complemented subspace of L_p . Moreover, there is a sequence $\{y_n\}_{n=1}^{\infty}$ in L_p so that both y_n and Ay_n are equivalent to the unit vector basis of ℓ_p . Since Bx_n spans a complemented subspace of L_p , the mapping $Bx_n \mapsto y_n$ extends to a bounded linear operator T on L_p and ATB is not compact. Finally, suppose that $i_{2,p}$ factors through A but $i_{p,p}$ does not factor through A and Ay_n are both equivalent to the unit vector basis of Ay_n and Ay_n are spans a complemented subspace of Ay_n . There is also a sequence Ay_n spans a complemented subspace of Ay_n . There is also a sequence Ay_n and Ay_n spans a complemented subspace of Ay_n . There is also a sequence Ay_n spans a complemented subspace of Ay_n . There is also a sequence Ay_n spans a complemented subspace of Ay_n .

 Ay_n is equivalent to the unit vector basis of ℓ_2 or of ℓ_p . The mapping $Bx_n \mapsto y_n$ extends to a bounded linear operator T on L_p and ATB is not compact.

It is perhaps worthwhile to restate Theorem 1 in a way that the cases where $L_A R_B$ is weakly compact are not mutually exclusive.

Theorem 2 Let 2 and let <math>A, B be bounded linear operators on L_p . Then the multiplication operator $L_A R_B$ on $L(L_p)$ is weakly compact if and only if one of the following conditions hold.

- (a) A is compact
- (b) A is ℓ_p -strictly singular and B is ℓ_2 -strictly singular
- (c) B is compact

3 ℓ_p -strictly singular operators on L_p

We recall the well known

Lemma 1 Let W be a bounded convex symmetric subset of L_p , $1 \le p \ne 2 < \infty$. The following are equivalent:

- 1. No sequence in W equivalent to the unit vector basis for ℓ_p spans a complemented subspace of L_p .
- 2. For every C there exists n so that no length n sequence in W is C-equivalent to the unit vector basis of ℓ_p^n .
- 3. For each $\varepsilon > 0$ there is M_{ε} so that $W \subset \varepsilon B_{L_p} + M_{\varepsilon} B_{L_{\infty}}$.
- 4. $|W|^p$ is uniformly integrable; i.e., $\lim_{t\downarrow 0} \sup_{x\in W} \sup_{\mu(E)< t} \|\mathbf{1}_E x\|_p = 0$.

When p = 1, the assumptions that W is convex and W symmetric are not needed, and the conditions in Lemma 1 are equivalent to the non weak compactness of the weak closure of W. This case is essentially proved in [KP] and proofs can also be found in books; see, e.g., [Wo, Theorem 3.C.12]). (Condition (3) does not appear in [Wo], but it is easy to check the equivalence of (3) and (4). Also, in the proof in [Wo, Theorem 3.C.12]) that not (4) implies not (1), Wojtaszczyk only constructs a basic sequence in W that is equivalent to the unit vector basis for ℓ_1 ; however, it is clear that the constructed basic sequence spans a complemented subspace.)

For p > 2, Lemma 1 and stronger versions of condition (1) can be deduced from [KP]. For 1 , one needs to modify slightly the proof in [Wo] for the case <math>p = 1. The only essential modification comes in the proof that not (4) implies not (1), and this is where it is needed that W is convex and symmetric. Just as in [Wo], one shows that not (4) implies that there is a sequence $\{x_n\}_{n=1}^{\infty}$ in W and a sequence $\{E_n\}_{n=1}^{\infty}$ of disjoint measurable sets so that inf $||1_{E_n}x_n||_p > 0$. By passing to a subsequence, we can assume that $\{x_n\}_{n=1}^{\infty}$ converges weakly to, say, x. Suppose first that x=0. Then by passing to a further subsequence, we may assume that $\{x_n\}_{n=1}^{\infty}$ is a small perturbation of a block basis of the Haar basis for L_p and hence is an unconditionally basic sequence. Since L_p has type p, this implies that there is a constant C so that for all sequences $\{a_n\}_{n=1}^{\infty}$ of scalars, $\|\sum a_n x_n\|_p \leq C(\sum |a_n|^p)^{1/p}$. Let P be the norm one projection from L_p onto the closed linear span Y of the disjoint sequence $\{\mathbf{1}_{E_n}x_n\}_{n=1}^{\infty}$. Then Px_n is weakly null in a space isometric to ℓ_p and $||Px_n||_p$ is bounded away from zero, so there is a subsequence $\{Px_{n(k)}\}_{k=1}^{\infty}$ which is equivalent to the unit vector basis for ℓ_p and whose closed span is the range of a projection Q from Y. The projection QP from L_p onto the the closed span of $\{Px_{n(k)}\}_{k=1}^{\infty}$ maps $x_{n(k)}$ to $Px_{n(k)}$ and, because of the upper p estimate on $\{x_{n(k)}\}_{k=1}^{\infty}$, maps the closed span of $\{x_{n(k)}\}_{k=1}^{\infty}$ isomorphically onto the closed span of $\{Px_{n(k)}\}_{k=1}^{\infty}$. This yields that $\{x_{n(k)}\}_{k=1}^{\infty}$ is equivalent to the unit vector basis for ℓ_p and spans a complemented subspace. Suppose now that the weak limit x of $\{x_n\}_{n=1}^{\infty}$ is not zero. Choose a subsequence $\{x_{n(k)}\}_{k=1}^{\infty}$ so that $\inf \|1_{E_{n(2k+1)}}(x_{n(2k)}-x_{n(2k+1)})\|_p>0$ and replace $\{x_n\}_{n=1}^{\infty}$ with $\{\frac{x_{n(2k)}-x_{n(2k+1)}}{2}\}_{k=1}^{\infty}$ in the argument above.

Notice that the argument outlined above gives that if $\{x_n\}_{n=1}^{\infty}$ is a sequence in L_p , $1 , which is equivalent to the unit vector basis of <math>\ell_p$, then there is a subsequence $\{y_n\}_{n=1}^{\infty}$ whose closed linear span in L_p is complemented. This is how one proves that the identity on ℓ_p factors through any operator on L_p which is not ℓ_p -strictly singular.

The Weak Tylli Conjecture for p > 2 is an easy consequence of the following lemma.

Lemma 2 Let T be an operator from a \mathcal{L}_1 space V into L_p , $1 , so that <math>W := TB_V$ satisfies condition (1) in Lemma 1. Then for each $\varepsilon > 0$ there is an operator $S : V \to L_2$ so that $||T - I_{2,p}S|| < \varepsilon$.

Proof: Let $\varepsilon > 0$. By condition (3) in Lemma 1, for each norm one vector x in V there is a vector Ux in L_2 with $||Ux||_2 \le ||Ux||_\infty \le M_\varepsilon$ and $||Tx - Ux||_p \le \varepsilon$. By the definition of \mathcal{L}_1 space, we can write V as a directed union $\cup_{\alpha} E_{\alpha}$ of finite dimensional spaces that are uniformly isomorphic to $\ell_1^{n_{\alpha}}$, $n_{\alpha} = \dim E_{\alpha}$, and let $(x_i^{\alpha})_{i=1}^{n_{\alpha}}$ be norm one vectors in E_{α} which are, say, λ -equivalent to the unit vector basis for $\ell_1^{n_{\alpha}}$ with λ independent of α . Let U_{α} be the linear extension to E_{α} of the mapping $x_i^{\alpha} \mapsto Ux_i^{\alpha}$, considered as an operator into L_2 . Then $||T|_{E_{\alpha}} - I_{2,p}U_{\alpha}|| \le \lambda \varepsilon$ and $||U_{\alpha}|| \le \lambda M_{\varepsilon}$. A standard Lindenstrauss compactness argument produces an operator $S: V \to L_2$ so that $||S|| \le \lambda M_{\varepsilon}$ and $||T - I_{2,p}S|| \le \lambda \varepsilon$. Indeed, extend U_{α} to all of V by letting $U_{\alpha}x = 0$ if $x \notin E_{\alpha}$. The net T_{α} has a subnet S_{β} so that for each x in V, $S_{\beta}x$ converges weakly in L_2 ; call the limit Sx. It is easy to check that S has the properties claimed.

Theorem 3 Let T be an ℓ_p -strictly singular operator on L_p , 2 , and let <math>J be an isometric embedding of L_p into an injective Z. Then for each $\varepsilon > 0$ there is an operator $S: L_p \to Z$ so that S factors through ℓ_2 and $||JT - S|| < \varepsilon$.

Proof: Lemma 2 gives the conclusion when J is the adjoint of a quotient mapping from ℓ_1 or L_1 onto $L_{p'}$. The general case then follows from the injectivity of Z.

The next proposition, when souped-up via "abstract nonsense" and known results, gives our main result about ℓ_p -strictly singular operators on L_p . Note that it shows that an ℓ_p -strictly singular operator on L_p , 1 , cannot be the identity on the span of a sequence of <math>r-stable independent random variables for any p < r < 2. We do not know another way of proving even this special case of our main result.

Proposition 1 Let T be an ℓ_p -strictly singular operator on L_p , 1 . If <math>X is a subspace of L_p and $T_{|X} = aI_X$ with $a \neq 0$, then X embeds into L_s for all s < 2.

Proof: By making a change of density, we can by [JJ] assume that T is also a bounded linear operator on L_2 , so assume, without loss of generality, that $||T||_p \vee ||T||_2 = 1$, so that, in particular, $a \leq 1$. Lemma 1 gives for each $\epsilon > 0$ a constant M_{ϵ} so that

$$TB_{L_p} \subset \epsilon B_{L_p} + M_{\epsilon} B_{L_2}. \tag{1}$$

Indeed, otherwise condition (1) in Lemma 1 gives a bounded sequence $\{x_n\}_{n=1}^{\infty}$ in L_p so that $\{Tx_n\}_{n=1}^{\infty}$ is equivalent to the unit vector basis of ℓ_p . By passing to a subsequence of differences of $\{x_n\}_{n=1}^{\infty}$, we can assume, without loss of generality, that $\{x_n\}_{n=1}^{\infty}$ is a small perturbation of a block basis of the Haar basis for L_p and hence is an unconditionally basic sequence. Since L_p has type p, the sequence $\{x_n\}_{n=1}^{\infty}$ has an upper p estimate, which means that there is a constant C so that for all sequences $\{a_n\}_{n=1}^{\infty}$ of scalars, $\|\sum a_n x_n\| \le C\|(\sum |a_n|^p)^{1/p}\|$. Since $\{Tx_n\}_{n=1}^{\infty}$ is equivalent to the unit vector basis of ℓ_p , $\{x_n\}_{n=1}^{\infty}$ also has a lower p estimate and hence $\{x_n\}_{n=1}^{\infty}$ is equivalent to the unit vector basis of ℓ_p . This contradicts the ℓ_p strict singularity of T.

Iterating this we get for every n and $0 < \epsilon < 1/2$

$$a^n B_X \subset T^n B_{L_p} \subset \epsilon^n B_{L_p} + 2M_{\epsilon} B_{L_2}$$

or, setting A := 1/a,

$$B_X \subset A^n \epsilon^n B_{L_p} + 2A^n M_{\epsilon} B_{L_2}.$$

For f a unit vector in X write $f = f_n + g_n$ with $||f_n||_2 \le 2A^n M_{\epsilon}$ and $||g_n||_p \le (A\epsilon)^n$. Then $f_{n+1} - f_n = g_n - g_{n+1}$, and since evidently f_n can be chosen to be of the form $(f \vee -k_n) \wedge k_n$ (with appropriate interpretation when the set $[f_n = \pm k_n]$ has positive measure), the choice of f_n , g_n can be made so that

$$||f_{n+1} - f_n||_2 \le ||f_{n+1}||_2 \le 2M_{\epsilon}A^{n+1}$$

$$||g_n - g_{n+1}||_p \le ||g_n||_p \le (A\epsilon)^n.$$

(Alternatively, to avoid thinking, just take any $f = f_n + g_n$ so that $||f_n||_2 \le 2A^n M_{\epsilon}$ and $||g_n||_p \le (A\epsilon)^n$. Each left side of the two displayed inequalities is less than twice the corresponding right side as long as $A\varepsilon \le 1$.)

For p < s < 2 write $\frac{1}{s} = \frac{\theta}{2} + \frac{1-\theta}{p}$. Then

$$||f_{n+1} - f_n||_s \le ||f_{n+1} - f_n||_2^{\theta} ||g_n - g_{n+1}||_p^{1-\theta} \le (2M_{\epsilon}A)^{\theta} (A\epsilon^{1-\theta})^n$$

which is summable if $\epsilon^{1-\theta} < 1/A$. But $||f - f_n||_p \to 0$ so $f = f_1 + \sum_{n=1}^{\infty} f_{n+1} - f_n$ in L_p and hence also in L_s if $\epsilon^{1-\theta} < 1/A$. So for some constant C_s we get for all $f \in X$ that $||f||_p \le ||f||_s \le C_s ||f||_p$.

We can now prove our main theorem. For background on ultrapowers of Banach spaces, see [DJT, Chapter 8].

Theorem 4 Let T be an ℓ_p -strictly singular operator on L_p , 1 . If <math>X is a subspace of L_p and $T_{|X}$ is an isomorphism, then X embeds into L_r for all r < 2.

In view of Rosenthal's theorem [Ro3], it is enough to prove that X has type s for all s < 2. By virtue of of the Krivine-Maurey-Pisier theorem, [Kr] and [MP] (or, alternatively, Aldous' theorem, [Al] or [KM]), we only need to check that for p < s < 2, X does not contain almost isometric copies of ℓ_s^n for all n. (To apply the Krivine-Maurey-Pisier theorem we use that the second condition in Lemma 1, applied to the unit ball of X, yields that X has type s for some $p < s \le 2$). So suppose that for some p < s < 2, X contains almost isometric copies of ℓ_s^n for all n. By applying Krivine's theorem [Kr] we get for each n a sequence $(f_i^n)_{i=1}^n$ of unit vectors in X which is $1+\epsilon$ -equivalent to the unit vector basis for ℓ_s^n and, for some constant C (which we can take independently of n), the sequence $(CTf_i^n)_{i=1}^n$ is also $1 + \epsilon$ -equivalent to the unit vector basis for ℓ_s^n . By replacing T by CT, we might as well assume that C=1. Now consider an ultrapower $T_{\mathcal{U}}$, where \mathcal{U} is a free ultrafilter on the natural numbers. The domain and codomain of $T_{\mathcal{U}}$ is the (abstract) L_p space $(L_p)_{\mathcal{U}}$, and $T_{\mathcal{U}}$ is defined by $T_{\mathcal{U}}(f_1, f_2, \dots) = (Tf_1, Tf_2, \dots)$ for any (equivalence class of a) bounded sequence $(f_1, f_2, ...)$. It is evident that $T_{\mathcal{U}}$ is an isometry on the ultraproduct of span $(f_i^n)_{i=1}^n$; $n=1,2,\ldots$, and hence $T_{\mathcal{U}}$ is an isometry on a subspace of $(L_p)_{\mathcal{U}}$ which is isometric to ℓ_s . Since condition 2 in Lemma 1 is obviously preserved when taking an ultrapower of a set, we see that $T_{\mathcal{U}}$ is ℓ_p -strictly singular. Finally, by restricting $T_{\mathcal{U}}$ to a suitable subspace, we get an ℓ_p -strictly singular operator S on L_p and a subspace Y of L_p so that Y is isometric to ℓ_s and $S_{|Y}$ is an isometry. By restricting the domain of S, we can assume that Y has full support and the functions in Y generate the Borel sets. It then follows from the Plotkin-Rudin theorem [Pl], [Ru] (see [KK, Theorem 1]) that $S_{|Y}$ extends to an isometry W from L_p into L_p . Since any isometric copy of L_p in L_p is norm one complemented (see [La, §17]), there is a norm one operator $V: L_p \to L_p$ so that $VW = I_{L_p}$. Then $VS_{|Y} = I_Y$ and VS is ℓ_p -strictly singular, which contradicts Proposition 1.

Remark 1 The ℓ_1 -strictly singular operators on L_1 also form an interesting class. They are the weakly compact operators on L_1 . In terms of factorization, they are just the closure in the operator norm of the integral operators on L_1 (see, e.g., the proof of Lemma 2).

4 The example

Rosenthal [Ro1] proved that if $\{x_n\}_{n=1}^{\infty}$ is a sequence of three valued, symmetric, independent random variables, then for all $1 , the closed span in <math>L_p$ of $\{x_n\}_{n=1}^{\infty}$ is complemented by means of the orthogonal projection P, and $||P||_p$ depends only on p, not on the specific sequence $\{x_n\}_{n=1}^{\infty}$. Moreover, he showed that if p>2, then for any sequence $\{x_n\}_{n=1}^{\infty}$ of symmetric, independent random variables in L_p , $\|\sum x_n\|_p$ is equivalent (with constant depending only on p) to $(\sum ||x_n||_p^p)^{1/p} \vee (\sum ||x_n||_2^p)^{1/2}$. Thus if $\{x_n\}_{n=1}^{\infty}$ is normalized in L_p , p>2, and $w_n:=\|x_n\|_2$, then $\|\sum a_nx_n\|_p$ is equivalent to $\|\{a_n\}_{n=1}^{\infty}\|_{p,w}:=(\sum |a_n|^p)^{1/p}\vee(\sum |a_n|^2w_n^2)^{1/2}$. The completion of the finitely non zero sequences of scalars under the norm $\|\cdot\|_{p,w}$ is called $X_{p,w}$. It follows that if $w=\{w_n\}_{n=1}^{\infty}$ is any sequence of numbers in [0,1], then $X_{p,w}$ is isomorphic to a complemented subspace of L_p . Suppose now that $w = \{w_n\}_{n=1}^{\infty}$ and $v = \{v_n\}_{n=1}^{\infty}$ are two such sequences of weights and $v_n \geq w_n$, then the diagonal operator D from $X_{p,w}$ to $X_{p,v}$ that sends the nth unit vector basis vector e_n to $\frac{w_n}{v_n}e_n$ is contractive and it is more or less obvious that D is ℓ_p -strictly singular if $\frac{w_n}{v_n} \to 0$ as $n \to \infty$. Since $X_{p,w}$ and $X_{p,v}$ are isomorphic to complemented subspaces of L_p , the adjoint operator D^* is $\ell_{p'}$ strictly singular and (identifying $X_{p,w}^*$ and $X_{p,v}^*$ with subspaces of $L_{p'}$) extends to a $\ell_{p'}$ strictly singular operator on $L_{p'}$. Our goal in this section is produce weights w and v so that D^* is an isomorphism on a subspace of $X_{p,v}^*$ which is not isomorphic to a Hilbert space.

For all 0 < r < 2 there is a positive constant c_r such that

$$|t|^r = c_r \int_0^\infty \frac{1 - \cos tx}{x^{r+1}} dx$$

for all $t \in \mathbb{R}$. It follows that for any closed interval $[a, b] \subset (0, \infty)$ and for all $\varepsilon > 0$ there are $0 < x_1 < x_2 < \dots < x_{n+1}$ such that $\max_{1 \le j \le n} \left| \frac{x_{j+1} - x_j}{x_j^{r+1}} \right| \le \varepsilon$ and

$$\left| c_r \sum_{j=1}^n \frac{x_{j+1} - x_j}{x_j^{r+1}} (1 - \cos t x_j) - |t|^r \right| < \varepsilon \tag{2}$$

for all t with $|t| \in [a, b]$.

Let 0 < q < r < 2 and define v_j and a_j , j = 1, ..., n, by

$$v_j^{\frac{2q}{2-q}} = c_r \frac{x_{j+1} - x_j}{x_j^{r+1}}, \qquad \frac{a_j}{v_j^{\frac{2}{2-q}}} = x_j.$$

Let Y_j , $j=1,\ldots,n$, be independent, symmetric, three valued random variables such that $|Y_j| = v_j^{\frac{-2}{2-q}} \mathbf{1}_{B_j}$ with $\operatorname{Prob}(B_j) = v_j^{\frac{2q}{2-q}}$, so that in particular $||Y_j||_q = 1$ and $v_j = ||Y_j||_q/||Y_j||_2$. Then the characteristic function of Y_j is

$$\varphi_{Y_j}(t) = 1 - v_j^{\frac{2q}{2-q}} + v_j^{\frac{2q}{2-q}} \cos(tv_j^{\frac{-2}{2-q}}) = 1 - v_j^{\frac{2q}{2-q}} (1 - \cos(tv_j^{\frac{-2}{2-q}}))$$

and

$$\varphi_{\sum a_j Y_j}(t) = \prod_{j=1}^n (1 - v_j^{\frac{2q}{2-q}} (1 - \cos(ta_j v_j^{\frac{-2}{2-q}})))$$

$$= \prod_{j=1}^n (1 - c_r \frac{x_{j+1} - x_j}{x_j^{r+1}} (1 - \cos(tx_j)))$$
(3)

To evaluate this product we use the estimates on $\frac{x_{j+1}-x_j}{x_i^{r+1}}$ to deduce that, for each j

$$|\log(1 - c_r \frac{x_{j+1} - x_j}{x_j^{r+1}} (1 - \cos(tx_j))) + c_r \frac{x_{j+1} - x_j}{x_j^{r+1}} (1 - \cos(tx_j))|$$

$$\leq C \varepsilon c_r^2 \frac{x_{j+1} - x_j}{x_j^{r+1}} (1 - \cos(tx_j))$$

for some absolute $C < \infty$. Then, by (2),

$$\begin{aligned} |\sum_{j=1}^{n} \log(1 - c_r \frac{x_{j+1} - x_j}{x_j^{r+1}} (1 - \cos(tx_j))) + & c_r \sum_{j=1}^{n} \frac{x_{j+1} - x_j}{x_j^{r+1}} (1 - \cos(tx_j))| \\ & \leq C \varepsilon c_r (\varepsilon + b^r). \end{aligned}$$

Using (2) again we get

$$\left| \sum_{i=1}^{n} \log(1 - c_r \frac{x_{j+1} - x_j}{x_j^{r+1}} (1 - \cos(tx_j))) + |t|^r \right| \le (C + 1)\varepsilon(\varepsilon + b^r)$$

(assuming as we may that $b \ge 1$), and from (3) we get

$$\varphi_{\sum a_i Y_i}(t) = (1 + O(\varepsilon)) \exp(-|t|^r)$$

for all $|t| \in [a, b]$, where the function hiding under the O notation depends on r and b but on nothing else. It follows that, given any $\eta > 0$, one can find a, b and ε , such that for the corresponding $\{a_j, Y_j\}$ there is a symmetric r-stable Y (with characteristic function $e^{-|t|^r}$) satisfying

$$||Y - \sum_{j=1}^{n} a_j Y_j||_q \le \eta.$$

This follows from classical translation of various convergence notions; see e.g. [Ro2, p. 154].

Let now $0 < \delta < 1$. Put $w_j = \delta v_j$, j = 1, ..., n, and let Z_j , j = 1, ..., n, be independent, symmetric, three valued random variables such that $|Z_j| = w_j^{\frac{-2}{2-q}} \mathbf{1}_{C_j}$ with $\operatorname{Prob}(C_j) = w_j^{\frac{2q}{2-q}}$, so that in particular $||Z_j||_q = 1$ and $w_j = ||Z_j||_q/||Z_j||_2$. In a similar manner to the argument above we get that,

$$\varphi_{\sum \delta a_{j}Z_{j}}(t) = \prod_{j=1}^{n} (1 - w_{j}^{\frac{2q}{2-q}} (1 - \cos(t\delta a_{j}w_{j}^{\frac{-2}{2-q}})))$$

$$= \prod_{j=1}^{n} (1 - \delta^{\frac{2q}{2-q}}v_{j}^{\frac{2q}{2-q}} (1 - \cos(t\delta^{\frac{-q}{2-q}}a_{j}v_{j}^{\frac{-2}{2-q}})))$$

$$= (1 + O(\varepsilon)) \exp(-\delta^{\frac{q(2-r)}{2-q}}|t|^{r})$$

for all $|t| \in [\delta^{\frac{q}{2-q}}a, \delta^{\frac{q}{2-q}}b]$, where the O now depends also on δ .

Assuming $\delta^{\frac{q(2-r)}{2-q}} > 1/2$ and for a choice of a,b and ε , depending on δ,r,q and η we get that there is a symmetric r-stable random variable Z (with characteristic function $e^{-\delta^{\frac{q(2-r)}{2-q}}|t|^r}$) such that

$$||Z - \sum_{j=1}^{n} \delta a_j Z_j||_q \le \eta.$$

Note that the ratio between the L_q norms of Y and Z are bounded away from zero and infinity by universal constants and each of these norms is also universally bounded away from zero. Consequently, if ε is small enough the ratio between the L_q norms of $\sum_{j=1}^n a_j Y_j$ and $\sum_{j=1}^n \delta a_j Z_j$ are bounded away from zero and infinity by universal constants.

Let now δ_i be any sequence decreasing to zero and r_i any sequence such that $q < r_i \uparrow 2$ and satisfying $\delta_i^{\frac{q(2-r_i)}{2-q}} > 1/2$. Then, for any sequence $\varepsilon_i \downarrow 0$ we can find two sequences of symmetric, independent, three valued random variables $\{Y_i\}$ and $\{W_i\}$, all normalized in L_q , with the following additional properties:

- put $v_j = ||Y_j||_q / ||Y_j||_2$ and $w_j = ||Z_j||_q / ||Z_j||_2$. Then there are disjoint finite subsets of the integers σ_i , $i = 1, 2, \ldots$, such that $w_j = \delta_i v_j$ for $j \in \sigma_i$.
- There are independent random variables $\{\bar{Y}_i\}$ and $\{\bar{Z}_i\}$ with \bar{Y}_i and \bar{Z}_i r_i stable with bounded, from zero and infinity, ratio of L_q norms and there are coefficients $\{a_j\}$ such that

$$\|\bar{Y}_i - \sum_{j \in \sigma_i} a_j Y_j\|_q < \varepsilon_i$$
 and $\|\bar{Z}_i - \sum_{j \in \sigma_i} \delta_i a_j Z_j\|_q < \varepsilon_i$.

From [Ro1] we know that the spans of $\{Y_j\}$ and $\{Z_j\}$ are complemented in L_q , 1 < q < 2, and the dual spaces are naturally isomorphic to the spaces $X_{p,\{v_j\}}$ and $X_{p,\{w_j\}}$ respectively; both the isomorphism constants and the complementation constants depend only on q. Here p = q/(q-1) and

$$\|\{\alpha_j\}\|_{X_{p,\{u_j\}}} = \max\{(\sum |\alpha_j|^p)^{1/p}, (\sum u_j^2\alpha_j^2)^{1/2}\}.$$

Under this duality the adjoint D^* to the operator D that sends Y_j to $\delta_i Z_j$ for $j \in \sigma_i$ is formally the same diagonal operator between $X_{p,\{w_i\}}$ and $X_{p,\{v_i\}}$. The relation $w_j = \delta_i v_j$ for $j \in \sigma_i$ easily implies that this is a bounded operator. $\delta_i \to 0$ implies that this operator is ℓ_q strictly singular. If $\varepsilon_i \to 0$ fast enough, D^* preserves a copy of span $\{\bar{Y}_i\}$. Finally, if r_i tend to 2 not too fast this span is not isomorphic to a Hilbert space. Indeed, let $1 \leq s_j \uparrow 2$ be arbitrary and let $\{n_j\}_{j=1}^{\infty}$ be a sequence of positive integers with $n_j^{\frac{1}{s_j}-\frac{1}{2}} \geq j$, $j=1,2,\ldots$, say. For $1 \leq k \leq n_j$, put $r_{n_1+n_2+\cdots+n_{j-1}+k} = s_j$. Then the span of $\{Y_i\}_{i=n_1+\cdots+n_{j-1}+1}^{n_1+\cdots+n_{j-1}+1}$ is isomorphic, with constant independent of j, to $\ell_{s_j}^{n_j}$ and this last space is of distance at least j from a Euclidean space.

It follows that if $J: L_q \to \ell_{\infty}$ is an isometric embedding, then JD^* cannot be arbitrarily approximated by an operator which factors through a Hilbert space, and hence the Weak Tylli Conjecture is false in the range 1 < q < 2.

5 Convolution by a biased coin

In this section we regard L_p as $L_p(\Delta)$, where $\Delta = \{-1,1\}^{\mathbb{N}}$ is the Cantor group and the measure is the Haar measure μ on Δ ; i.e., $\mu = \prod_{n=1}^{\infty} \mu_n$, where $\mu_n(-1) = \mu_n(1) = 1/2$. For $0 < \varepsilon < 1$, let ν_{ε} be the ε - biased coin tossing measure; i.e., $\nu_{\varepsilon} = \prod_{n=1}^{\infty} \nu_{\varepsilon,n}$, where $\nu_{\varepsilon,n}(1) = \frac{1+\varepsilon}{2}$ and $\nu_{\varepsilon,n}(-1) = \frac{1-\varepsilon}{2}$. Let T_{ε} be convolution by ν_{ε} , so that for a μ -integrable function f on Δ , $(T_{\varepsilon}f)(x) = (f * \nu_{\varepsilon})(x) = \int_{\Delta} f(xy) \, d\nu_{\varepsilon}(y)$. The operator T_{ε} is a contraction on L_p for all $1 \le p \le \infty$. Let us recall how T_{ε} acts on the characters on Δ . For $t = \{t_n\}_{n=1}^{\infty} \in \Delta$, let $r_n(t) = t_n$. The characters on Δ are finite products of these Rademacher functions r_n (where the void product is the constant one function). For A a finite subset of \mathbb{N} , set $w_A = \prod_{n \in A} r_n$ and let W_n be the linear span of $\{w_A : |A| = n\}$. Then $T_{\varepsilon}w_A = \varepsilon^{|A|}w_A$.

We are interested in studying T_{ε} on L_p , $1 \leq p < 2$. The background we mention below is all contained in Bonami's paper [Bo] (or see [Ro4]). On L_p , $1 , <math>T_{\varepsilon}$ is ℓ_p -strictly singular; in fact, T_{ε} even maps L_p into L_r for some $r = r(p, \varepsilon) > p$. Indeed, by interpolation it is sufficient to check that T_{ε} maps L_s into L_2 for some $s = s(\varepsilon) < 2$. But there is a constant C_s which tends to 1 as $s \uparrow 2$ so that for all $f \in W_n$, $||f||_2 \leq C_s^n ||f||_s$ and the orthogonal projection P_n onto (the closure of) W_n satisfies $||P_n||_p \leq C_s^n$. From this it is easy to check that if $\varepsilon C_s^2 < 1$, then T_{ε} maps L_s into L_2 . We remark in passing that Bonami [Bo] found for each p (including $p \geq 2$) and ε the largest value of $r = r(p, \varepsilon)$ such that T_{ε} maps L_p into L_r .

Thus Theorem 4 yields that if X is a subspace of L_p , $1 , and <math>T_{\varepsilon}$ (considered as an operator from L_p to L_p) is an isomorphism on X, then X embeds into L_s for all s < 2. Since, as we mentioned above, T_{ε} maps L_s into L_2 for some s < 2, it then follows from an argument in [Ro4] that X must be isomorphic to a Hilbert space. (Actually, as we show after the proof, Lemma 3 is strong enough that we can prove Theorem 5 without using Theorem 4.) Since [Ro4] is not generally available, we repeat Rosenthal's argument in Lemma 3 below.

Now T_{ε} is not ℓ_1 strictly singular on L_1 . Nevertheless, we still get that if X is a reflexive subspace of L_1 and T_{ε} (considered as an operator from L_1 to L_1) is an isomorphism on X, then X is isomorphic to a Hilbert space. Indeed, Rosenthal showed (see Lemma 3) that then there is another subspace X_0 of L_1 which is isomorphic to X so that X_0 is contained in L_p for some $1 , the <math>L_p$ and L_1 norms are equivalent on X_0 , and T_{ε} is an isomorphism on X_0 . This implies that as an operator on L_p , T_{ε} is an isomorphism on X_0 and hence X_0 is isomorphic to a Hilbert space. (To apply Lemma 3, use the fact [Ro3] that if X is a relexive subspace of L_1 , then X embeds into L_p for some 1 .)

We summarize this discussion in the first sentence of Theorem 5. The case p=1 solves Problem B from Rosenthal's 1976 paper [Ro4].

Theorem 5 Let $1 \le p < 2$, let $0 < \varepsilon < 1$, and let T_{ε} be considered as an operator on L_p . If X is a reflexive subspace of L_p and the restriction of T_{ε} to X is an isomorphism, then X is isomorphic to a Hilbert space. Moreover, if p > 1, then X is complemented in L_p .

We now prove Rosenthal's lemma [Ro4, proof of Theorem 5] and defer the proof of the "moreover" statement in Theorem 5 until after the proof of the lemma.

Lemma 3 Suppose that T is an operator on L_p , $1 \le p < r < s < 2$, X is a subspace of L_p which is isomorphic to a subspace of L_s , and $T_{|X}$ is an isomorphism. Then there is another subspace X_0 of L_p which is isomorphic to X so that X_0 is contained in L_r , the L_r and L_p norms are equivalent on X_0 , and T is an isomorphism on X_0 .

Proof: We want to find a measurable set E so that

- (1) $X_0 := \{\mathbf{1}_E x : x \in X\}$ is isomorphic to X,
- (2) $X_0 \subset L_r$,
- (3) $T_{|X_0}$ is an isomorphism.

(We did not say that $\|\cdot\|_p$ and $\|\cdot\|_r$, are equivalent on X_0 since that follows formally from the closed graph theorem. The isomorphism $X \to X_0$ guaranteed by (a) is of course the mapping $x \mapsto \mathbf{1}_E x$.)

Assume, without loss of generality, that ||T|| = 1. Take a > 0 so that $||Tx||_p \ge a||x||_p$ for all x in X. Since ℓ_p does not embed into L_s we get from (4) in Lemma 1 that there is $\eta > 0$ so that if E has measure larger than $1 - \eta$, then $||\mathbf{1}_{\sim E}x||_p \le \frac{a}{2}||x||_p$ for all x in x. Obviously (1) and (3) are satisfied for any such E. It is proved in [Ro3] that there is strictly positive g with $||g||_1 = 1$ so that $\frac{x}{g}$ is in L_r for all x in X. Now simply choose $t < \infty$ so that E := [g < t] has measure at least $1 - \eta$; then E satisfies (1), (2), and (3).

Next we remark how to avoid using Theorem 4 in proving Theorem 5. Suppose that T_{ε} is an isomorphism on a reflexive subspace X of L_p , $1 \leq p < 2$. Let s be the supremum of those $r \leq 2$ such that X is isomorphic to a subspace of L_r , so $1 < s \leq 2$. It is sufficient to show that s = 2. But if s < 2, we get from the interpolation formula that if r < s is sufficiently close to s, then T_{ε} maps L_r into L_t for some t > s and hence, by Lemma 3, X embeds into L_t .

Finally we prove the "moreover" statement in Theorem 5. We now know that X is isomorphic to a Hilbert space. In the proof of Lemma 3, instead of using Rosenthal's result from [Ro3], use Grothendieck's theorem [DJT, Theorem 3.5], which implies that there is strictly positive g with $||g||_1 = 1$ so that $\frac{x}{g}$ is in L_2 for all x in X. Choosing E the same way as in the proof of Lemma 3 with $T := T_{\varepsilon}$, we get that (1), (2), and (3) are true with r = 2. Now the L_2 and L_p norms are equivalent on both X_0 and on $T_{\varepsilon}X_0$. But it is clear that the only way that T_{ε} can be an isomorphism on a subspace X_0 of L_2 is for the orthogonal projection P_n onto the closed span of W_k , $0 \le k \le n$, to be

an isomorphism on X_0 for some finite n. But then also in the L_p norm the restriction of P_n to X_0 is an isomorphism because the L_p norm and the L_2 norm are equivalent on the span of W_k , $0 \le k \le n$ and P_n is bounded on L_p (since p > 1). It follows that the operator $S := P_n \circ \mathbf{1}_E$ on L_p maps X_0 isomorphically onto a complemented subspace of L_p , which implies that X_0 is also complemented in L_p .

Here is the problem that started us thinking about ℓ_p -strictly singular operators:

Problem 1 Let $1 and <math>0 < \varepsilon < 1$. On $L_p(\Delta)$, does T_{ε} satisfy the conclusion of the Tylli Conjecture?

After we submitted this paper, G. Pisier [Pi] answered problem 1 in the affirmative. Although the example in section 4 shows that the Tylli Conjecture is false, something close to it may be true:

Problem 2 Let $1 . Is every <math>\ell_p$ -strictly singular operator on L_p in the closure of the operators on L_p that factor through L_r ?

6 Appendix

In this appendix we prove a theorem that is essentially due to Saksman and Tylli. The only novelty is that we assume the compact approximation property rather than the approximation property.

Theorem 6 Let X be a reflexive Banach space and let A, B be in L(X). Then

- (a) If ATB is a compact operator on X for every T in L(X), then L_AR_B is a weakly compact operator on L(X).
- (b) If X has the compact approximation property and $L_A R_B$ is a weakly compact operator on L(X), then ATB is a compact operator on X for every T in L(X).

Proof: To prove (a), recall [Kal] that for a reflexive space X, on bounded subsets of K(X) the weak topology is the same as the weak operator topology (the operator $T \mapsto f_T \in C((B_X, \text{weak}) \times (B_{X^*}, \text{weak}))$, where $f_T(x, x^*) := \langle x^*, Tx \rangle$, is an isometric isomorphism from K(X) into a space of continuous functions on a compact Hausdorff space). Now if (T_α) is a bounded net in L(X), then since X is reflexive there is a subnet (which we still denote by (T_α)) which converges in the weak operator topology to, say $T \in L(X)$. Then $AT_\alpha B$ converges in the the weak operator topology to ATB. But since all these operators are in K(X), $AT_\alpha B$ converges weakly to ATB by Kalton's theorem. This shows that $L_A R_B$ is a weakly compact operator on L(X).

To prove (b), suppose that we have a $T \in L(X)$ with ATB not compact. Then there is a weakly null normalized sequence $\{x_n\}_{n=1}^{\infty}$ in X and $\delta > 0$ so that for all n, $||ATBx_n|| > \delta$. Since a reflexive space with the compact approximation property also

has the compact metric approximation property [CJ], there are $C_n \in K(X)$ with $||C_n|| < 1 + 1/n$, $C_n B x_i = B x_i$ for $i \le n$. Since the C_n are compact, for each n, $||C_n B x_m|| \to 0$ as $m \to \infty$. Thus $A(TC_n)B x_i = ATB x_i$ for $i \le n$ and $||A(TC_n)B x_m|| \to 0$ as $m \to \infty$. This implies that no convex combination of $\{A(TC_n)B\}_{n=1}^{\infty}$ can converge in the norm of L(X) and hence $\{A(TC_n)B\}_{n=1}^{\infty}$ has no weakly convergent subsequence. This contradicts the weak compactness of $L_A R_B$ and completes the proof.

References

- [Al] Aldous, David J. Subspaces of L^1 , via random measures. Trans. Amer. Math. Soc. 267 (1981), no. 2, 445–463.
- [Bo] Bonami, Aline. Etude des coefficients de Fourier des fonctions de $L^p(G)$. (French) Ann. Inst. Fourier (Grenoble) 20 1970 fasc. 2 335–402 (1971).
- [CJ] Cho, Chong-Man; Johnson, William B. A characterization of subspaces X of l_p for which K(X) is an M-ideal in L(X). Proc. Amer. Math. Soc. 93 (1985), no. 3, 466–470.
- [DJT] Diestel, Joe; Jarchow, Hans; Tonge, Andrew. Absolutely summing operators. Cambridge Studies in Advanced Mathematics, 43. Cambridge University Press, Cambridge, 1995.
- [JJ] Johnson, W. B.; Jones, L. Every L_p operator is an L_2 operator. Proc. Amer. Math. Soc. 72 (1978), no. 2, 309–312.
- [Jo] Johnson, William B. Operators into L_p which factor through ℓ_p . J. London Math. Soc. (2) 14 (1976), no. 2, 333–339.
- [KP] Kadec, M. I.; Pełczyński, A. Bases, lacunary sequences and complemented subspaces in the spaces L_p . Studia Math. 21 1961/1962 161–176.
- [Kal] Kalton, N. J. Spaces of compact operators. Math. Ann. 208 (1974), 267–278.
- [KK] Koldobsky, Alexander; König, Hermann. Aspects of the isometric theory of Banach spaces. Handbook of the geometry of Banach spaces, Vol. I, 899–939, North-Holland, Amsterdam, 2001.
- [Kr] Krivine, J. L. Sous-espaces de dimension finie des espaces de Banach reticules. Ann. of Math. (2) 104 (1976), no. 1, 1–29.
- [KM] Krivine, J.-L.; Maurey, B. Espaces de Banach stables. (French) [Stable Banach spaces] Israel J. Math. 39 (1981), no. 4, 273–295.

- [La] Lacey, H. Elton. The isometric theory of classical Banach spaces. Die Grundlehren der mathematischen Wissenschaften, Band 208. Springer-Verlag, New York-Heidelberg, 1974.
- [LT] Lindenstrauss, Joram; Tzafriri, Lior. Classical Banach spaces I&II. Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 92 & 97. Springer-Verlag, Berlin-New York, 1977 & 1979
- [MP] Maurey, Bernard; Pisier, Gilles. Series de variables aleatoires vectorielles independantes et proprietes geometriques des espaces de Banach. (French) Studia Math. 58 (1976), no. 1, 45–90.
- [PR] Pełczyński, A.; Rosenthal, H. P. Localization techniques in L^p spaces. Studia Math. 52 (1974/75), 263–289.
- [Pi] Pisier, Gilles. Remarks on hypercontractive semigroups and operator ideals. arXiv:0708.3423.
- [Pl] Plotkin, A. I. An algebra that is generated by translation operators, and L^p-norms. (Russian) Functional analysis, No. 6: Theory of operators in linear spaces (Russian), pp. 112–121. Ulyanovsk. Gos. Ped. Inst., Ulyanovsk, 1976.
- [Ro1] Rosenthal, Haskell P. On the subspaces of L^p (p > 2) spanned by sequences of independent random variables. Israel J. Math. 8 (1970), 273–303.
- [Ro2] Rosenthal, Haskell P. On the span in L^p of sequences of independent random variables. II. Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. II: Probability theory, pp. 149–167. Univ. California Press, Berkeley, Calif., 1972.
- [Ro3] Rosenthal, Haskell P. On subspaces of L^p . Ann. of Math. (2) 97 (1973), 344–373.
- [Ro4] Rosenthal, Haskell P. Convolution by a biased coin. The Altgeld Book 1975/76.
- [Ru] Rudin, Walter. L^p -isometries and equimeasurability. Indiana Univ. Math. J. 25 (1976), no. 3, 215–228.
- [ST1] Saksman, Eero; Tylli, Hans-Olav. Weak compactness of multiplication operators on spaces of bounded linear operators. Math. Scand. 70 (1992), no. 1, 91–111.
- [ST2] Saksman, Eero; Tylli, Hans-Olav. Multiplications and elementary operators in the Banach space setting. In: Methods in Banach space theory. (Proc. V Conference on Banach spaces, Caceres, September 13-18, 2004; J.F.M. Castillo and W.B. Johnson, eds.) London Mathematical Society Lecture Note Series 337 (Cambridge University Press, 2006), pp. 253-292.

- [We] Weis, L. On perturbations of Fredholm operators in $L_p(\mu)$ -spaces. Proc. Amer. Math. Soc. 67 (1977), no. 2, 287–292.
- [Wo] Wojtaszczyk, P. Banach spaces for analysts. Cambridge Studies in Advanced Mathematics, 25. Cambridge University Press, Cambridge, 1991.

William B. Johnson
Department Mathematics
Texas A&M University
College Station, TX, USA
E-mail: johnson@math.tamu.edu

Gideon Schechtman
Department of Mathematics
Weizmann Institute of Science
Rehovot, Israel
E-mail: gideon@weizmann.ac.il