
SUBSPACES AND QUOTIENTS OF BANACH SPACES WITH
SHRINKING UNCONDITIONAL BASES

W. B. JOHNSON AND BENTUO ZHENG

Abstract. The main result is that a separable Banach space with the weak∗ uncondi-
tional tree property is isomorphic to a subspace as well as a quotient of a Banach space
with a shrinking unconditional basis. A consequence of this is that a Banach space is
isomorphic to a subspace of a space with an unconditional basis iff it is isomorphic to
a quotient of a space with an unconditional basis, which solves a problem dating to the
1970s. The proof of the main result also yields that a uniformly convex space with the
unconditional tree property is isomorphic to a subspace as well as a quotient of a uniformly
convex space with an unconditional finite dimensional decomposition.

1. introduction

Banach spaces with unconditional bases have much better properties than general Banach

spaces, and many of these nice properties pass to subspaces. Consequently, an important

and interesting question, dating from at least the 1970s, is to find the right Banach space

condition under which a space can be embedded into a space with an unconditional basis.

In [JZh1], the authors gave a characterization of subspaces and quotients of reflexive

spaces with unconditional bases. We showed that a reflexive separable Banach space is

isomorphic to a subspace as well as a quotient of a reflexive space with an unconditional

basis if and only if it has the unconditional tree property (UTP). Although we repeat the

definition in the next section, here we recall that a Banach space is said to have the UTP

provided that every normalized weakly null infinitely branching tree in the space admits a

branch that is an unconditional basic sequence. However, the UTP is not enough to ensure

that a nonreflexive space embeds into a space with an unconditional basis, as is witnessed

by the James space [LT, Example 1.d.2]. Since every skipped block basis of its natural

shrinking basis is equivalent to the unit vector basis of `2, it has the unconditional tree

property. The James space does not embed into a space with an unconditiona l basis, since,

for example, nonreflexive subspaces of spaces with unconditional bases have a subspace

isomorphic to either c0 or `1 [LT, Theorem 1.c.13].
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It turns out that the right condition to characterize subspaces and quotients of spaces

with shrinking unconditional bases is the weak∗ unconditional tree property (w∗-UTP). A

Banach space X is said to have the w∗-UTP if every normalized weak∗ null tree in X∗ admits

an unconditional branch. If X is reflexive, then the w∗-UTP is (obviously) equivalent to

X∗ having the UTP and (non-obviously, but by the results in [JZh1], or by Corollary 1

and results from the 1970s) also equivalent to X having the UTP. In Section 2, we prove

that a separable Banach space X with the w∗-UTP is isomorphic to a subspace of a space

Y with a shrinking unconditional finite dimensional decomposition (FDD) and also X is

isomorphic to a quotient of a space Z with a shrinking unconditional (FDD) (see Theorem

A). Moreover, Y can be chosen to be the direct sum of two quotients of X and Z can be

chosen to be the direct sum of two subspaces of X. Some further reasoning yields that X

is isomorphic to a subspace as well as a quotient of a space with a shrinking unconditional

basis (see Corollary 1).

Theorem A of course implies that a reflexive (respectively, uniformly convex) Banach

space X with the UTP is isomorphic to a subspace as well as a quotient of a reflexive

(respectively, uniformly convex) Banach space Y with an unconditional FDD (actually, this

also follows from the proof in [JZh1], but we neglected to say this explicitly in [JZh1]). As

pointed out in [JZh1], a formal consequence of this is that a reflexive X with the UTP is

isomorphic to a subspace as well as a quotient of a reflexive space with an unconditional

basis, so modulo results from the 1970s, this paper recaptures, with simpler proofs, every-

thing in [JZh1]. However, the uniformly convex case is different: a little known example

discussed at the end of this paper shows that a uniformly convex space with an uncondi-

tional FDD need not embed into a uniformly convex space that has an unconditional basis.

We think that this example emphasizes the necessity as well as the naturalness of working

with unconditional FDDs rather than unconditional bases in embedding problems.

We should note that before obtaining the results presented here, S. Cowell and N. Kalton

[CK] proved an isometric version of the equivalence (1) ⇐⇒ (2) in Corollary 1. We use

an easy lemma from [CK], but the main part of their proof seems not to yield an isometric

version of Theorem A and we see no way to derive their isometric result using the techniques

we employ.

Here we want to mention that the UTP is a strong version of the unconditional sub-

sequence property (USP), which means every normalized weakly null sequence admits an

unconditional subsequence. It is known by [J] and [O] that if X is a quotient of a space with
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a shrinking unconditional basis, then X has the USP. Theorem A yields the improvement

that X has the UTP.

We use standard Banach space terminology as can be found in [LT].

2. Main results

Theorem A. Let X be a separable Banach space. Then the following are equivalent

(1) X has the w∗-UTP;

(2) X is isomorphic to a subspace of the direct sum of two quotients of X that have

shrinking unconditional FDDs;

(3) X is isomorphic to a quotient of the direct sum of two subspaces of X that have

shrinking unconditional FDDs.

To prove Theorem A, we need to consider a shrinking M-basis of X, which requires

that X∗ is separable. The next lemma shows that if a separable Banach space X has the

w∗-UTP, then X∗ is separable.

Lemma 1. Let X be a separable Banach space with the w∗-UTP. Then X∗ is separable.

Proof. By a result of Dutta and Fonf [DF], a separable Banach space X has a separable

dual if and only every normalized w∗-null tree in X∗ admits a boundedly complete branch.

So it is enough to prove that X∗ contains no copy of c0 [LT, Theorem 1.c.10]. But if c0
embeds into X∗, then `1 is isomorphic to a complemented subspace of X by an old result of

Bessaga and Pe lczyński [LT, Proposition 2.e.8]. It is easy to see that `1 fails the w∗-UTP.

Therefore, X fails the w∗-UTP. �

Corollary 1. Let X be a separable Banach space. Then the following are equivalent

(1) X has the w∗-UTP;

(2) X is isomorphic to a subspace of a Banach space that has a shrinking unconditional

basis;

(3) X is isomorphic to a quotient of a Banach space that has a shrinking unconditional

basis.

To derive Corollary 1 from Theorem 2, one needs two facts:

(I) If X has a shrinking unconditional FDD (En), then X embeds into a space that has

a shrinking unconditional basis.

(II) If X has a shrinking unconditional FDD (En), then X is isomorphic to a quotient

of a space that has a shrinking unconditional basis.
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Lindenstrauss and Tzafriri [LT, Theorem 1.g.5] proved that if X has an unconditional

FDD (En), then X embeds into a space Y that has an unconditional basis. One can check

that if (En) is shrinking, then the unconditional basis for Y is also shrinking. Alternatively,

one can just apply [FJT, Theorem 3.3], which implies that if X∗ is separable and X embeds

into a space that has an unconditional basis, thenX embeds into a space that has a shrinking

unconditional basis. This gives (I).

To prove (II), we need to do the dual construction of [LT, Theorem 1.g.5] and verify that

X is a quotient of a space with an unconditional basis when (En) is unconditional. Then

we use the machinery of [DFJP] and the shrinkingness of (En) to show X is a quotient of

a space with a shrinking unconditional basis. For smoothness of reading, we postpone the

proof to Section 3.

The concept of M-basis plays an important role in our proofs. The main new idea in

this paper is that “killing the overlap” techniques work as well for M-bases as they do

for finite dimensional decompositions. This realization allows us to simplify considerably

some arguments in [JZh1]. Recall that an M-basis for a separable Banach space X is a

biorthogonal system (xi, x∗i ) ⊂ X ×X∗ such that [xi] = X and [x∗i ]
∗

= X∗. [xi] denotes the

closed linear span of the xi’s and [x∗i ]
∗

is the weak∗ closure of the linear span of the x∗i ’s.

Markushevich [M1] (or see [LT, Proposition 1.f.3]) proved that every separable Banach

space admits an M-basis. If X∗ is separable, we can choose an M-basis (xi, x∗i ) so that

[x∗i ] = X∗. In such a case, we call (xi, x∗i ) a shrinking M-basis for X. If (xi, x∗i ) is a

shrinking M-basis for X, then every normalized block sequence (yi) of (xi) conve rges

weakly to 0. Given an M-basis (xi, x∗i ) and 1 = n1 < n2 < ..., the sequence (Xi, X
∗
i ) defined

by Xi = span(xj)
ni+1−1
j=ni

, X∗i = span(x∗j )
ni+1−1
j=ni

is called a blocking of (xi, x∗i ). Notice that if

(Xi, X
∗
i ) is a sequence of finite dimensional spaces with Xi ⊂ X,X∗i ⊂ X∗, Xi ∩Xj = {0}

for i 6= j, dim Xi=dim X∗i , X∗i separates the points of Xi, [Xi] = X and [X∗i ]
∗

= X∗, then

one may select (xj)
ni+1−1
j=ni

⊂ Xi, (x∗j )
ni+1−1
j=ni

⊂ X∗i (where ni+1 − ni = dimXi = dimX∗i ) so

that (xi, x∗i ) is an M-basis for X and (Xi, X
∗
i ) is a blocking of (xi, x∗i ). In contradistinction

to this, an example of Szarek’s [S] shows that there are finite dimensional decompositions

which are not blockings of Schauder bases.

For finite dimensional decompositions, Lemma 2 goes back to [J].

Lemma 2. Let (xi, x∗i ) be a shrinking M -basis for X. Let (Xi, X
∗
i ) be a blocking of (xi, x∗i ).

Then ∀ ε > 0, ∀ m, ∃ n such that ∀ ‖x∗‖ = 1 ∃ m < t < n, such that ‖x∗|Xt‖ < ε.
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Proof. Suppose not. Then ∃ ε > 0, ∃m, ∀ n > m, ∃ ‖y∗n‖ = 1, ∀m < t < n, ‖y∗n|Xt‖ ≥ ε. By

Banach-Alaoglu, without loss of generality, we assume y∗n
w∗−−→ y∗. So we have ‖y∗|Xi‖ ≥ ε,

∀ i > m. Hence we get a sequence (yi) with yi ∈ SXi such that y∗(yi) > ε/2. Therefore

(yi) does not converge weakly to 0. But (yi) is a normalized block sequence of (xi) which

coverges to 0 weakly since (xi) is shrinking. �

By Lemma 2 and induction, we have the following lemma.

Lemma 3. Let (xi, x∗i ) be a shrinking M -basis for X and let (Xi, X
∗
i ) be a blocking of

(xi, x∗i ). Then ∀ (εi) ↓ 0, ∃ increasing sequence 1 = m0 < m1 < m2 < · · · such that for all

x∗ ∈ SX∗, there exists (ti), mi−1 < ti < mi, such that ‖x∗|Xti‖ < εi.

A normalized tree in X is a subset (xA) of the unit sphere of X, where A indexed over

all finite subsets of the natural numbers. A normalized weakly null tree is a normalized tree

in X with the additional property that (xA∪{n})n>maxA forms a weakly null sequence for

every A ∈ N<ω. Here N<ω denotes the set of all finite subsets of the natural numbers. The

tree order is given by xA ≤ xB whenever A is an initial segment of B. A branch of a tree

is a maximal linearly ordered subset of the tree under the tree order. A normalized weak∗

null tree is a tree (x∗A) in X∗ so that (x∗A∪{n})n>maxA forms a weak∗ null sequence for every

A ∈ N<ω. X is said to have the unconditional tree property (UTP) if every normalized

weakly null tree in X admits an unconditional branch and X is said to have the weak∗

unconditional tree property (w∗-UTP) if every normalized weak∗ null tree in X∗ admits an

unconditional branch. If the branch can always be taken to have unconditional constant at

most C, then X is said to have the C-UTP or C-w∗-UTP. It is shown in [OSZ] that the

UTP implies the C-UTP for some C > 0. The same argument also proves that the w∗-UTP

implies the C-w∗-UTP for some C > 0.

Let (Xi) be an FDD or more generally a blocking of an M-basis. A sequence (yi) is said

to be a skipped blocked basis with respect to (Xi) if there exists an increasing sequence of

integers (ki)∞i=0 with k0 = 0 and ki < ki+1 − 1 so that yi ∈ [Xj ]ki−1
j=ki−1+1 for i = 0, 1, 2, ....

(Xi) is said to be skipped blocked unconditional if there is a C > 0 so that every normalized

skipped blocked basis with respect to (Xi) is C-unconditional. The smallest such C is called

the skipped blocked unconditional constant for (Xi).

In [OS3], Odell and Schlumprecht proved that if X is a weak∗ closed subspace of a space

with a boundedly complete FDD (Ei) and every weak∗ null tree in X has a C-unconditional

branch, then there is a blocking (Fi) of (Ei) so that every small perturbation of a skipped

block basis with respect to (Fi) in X is C + ε-unconditional.
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Our next lemma shows that using the same technique as in [OS3], the result can be

extended to spaces with shrinking M-bases.

Lemma 4. Let (xi, x∗i ) be a shrinking M-basis for X. If X∗ has w∗-UTP, then there exists

a blocking (Xi, X
∗
i ) of (xi, x∗i ) such that (X∗i ) is skipped blocked unconditional.

Proof. Take C > 0 so that every normalized weak∗ null tree admits a C-unconditional

branch. Let us consider the following game played by two players. Player I chooses a

natural number k1. Player II chooses a vector y∗1 in S[x∗j ]j>k1
. Player I then chooses a

number k2 > k1 and player II chooses a vector y∗2 in S[x∗i ]i>k2
. In this fashion, player I

chooses an increasing sequence k1 < k2 < k3 < ... and player II chooses a sequence (y∗i ) so

that y∗i ∈ [x∗j ]j>ki . So this game can be described as player I chooses a finite codimensional

tail space with respect to (x∗i ) and player II chooses a norm one vector in the space. Player

I then chooses a further finite codimensional tail space and player II chooses another norm

one vector in the space. We say that player I has a winning strategy (WI(C)) if player I can

choose a sequence of finite codimensional tail spaces so that no matter how player II chooses

vectors, the sequence of vectors is C-unconditional. Since the set of all C-unconditional basic

sequences in X∗ is closed under pointwise limits in SωX∗ , the game is determined, by the

main theorem of Martin [M2]. As a consequence, we have that the w∗-UTP implies WI(C)

where C is the constant associated with the w∗-UTP. Let (zi)ki=1 be a finite sequence in

SX∗ . WI(C, (zi)ki=1) means player I can choose a sequence of finite codimensional tail spaces

so that no matter how player II chooses vectors (yi) in the corresponding tail spaces, the

sequence (z1, z2, ..., zk, y1, y2, ...) is C-unconditional.

By the definition of WI(C), we have the following facts.

(a) WI(C) is equivalent to ∃n ∈ N, ∀x ∈ S[x∗i ]i>n
,WI(C, x).

(b) Let (εi) be a decreasing sequence of positive numbers so that
∑
εi < ε/2C and let

(ui)ki=1 and (vi)ki=1 be two finite sequences in X∗ such that ‖ui − vi‖ < εi. Then

WI(C, (ui)ki=1) implies WI(C + ε, (vi)ki=1).

Let (εi) be a fast decreasing sequence of positive reals so that
∑
εi < 1. By (a), (b) and

induction, using the compactness of the unit sphere of finite dimensional spaces, we can

find a sequence of increasing integers 0 = n0 < n1 < n2 < ..., so that for all k ∈ N, 0 ≤
l < k, and all finite normalized skipped block (ui)li=1 with respect to (X∗i )ki=1, we have

WI(C + εk, (ui)li=1). Here X∗i = [x∗j ]
ni
j=ni−1+1.

Let (yi) be any normalized block sequence with respect to (X∗i ). For any k ∈ N, we

have WI(C +
∑
εi, (yi)ki=1) which certainly implies WI(C + 1, (yi)ki=1). So there exists
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an extension (y1, ..., yk, zk+1, zk+2, ...) of (yi)ki=1 so that (y1, ..., yk, zk+1, zk+2, ...) is C + 1-

unconditional. Therefore (yi)ki=1 is C + 1-unconditional. Since k is arbitrary, we conclude

that (yi) is C + 1-unconditional. �

A Banach space X is said to have the Kadec-Klee property if whenever x∗n
w∗−−→ x∗ with

(x∗n) ⊂ X∗ and ‖x∗n‖ → ‖x∗‖, we have ‖x∗n − x∗‖ → 0. It is well known that any Banach

space with separable dual can be renormed to have the Kadec-Klee property (see [LT,

Proposition 1.b.11]).

Lemma 5. Let (xi, x∗i ) be a shrinking M-basis for X. If (Xi, X
∗
i ) is a blocking of (xi, x∗i )

so that (X∗i ) is skipped blocked unconditional, then there is a further blocking (Yi, Y ∗i ) of

(Xi, X
∗
i ) such that both (Yi) and (Y ∗i ) are skipped blocked unconditional.

Proof. By renorming, without loss of generality we assume that X has the Kadec-Klee

property. We claim that by taking a blocking of (Xi, X
∗
i ), we may assume that ([Xti ]

∞
i=1)⊥ =

[X∗j ]j 6=ti for all t1 < t2 < .... This is essentially contained in the proof of [JR, Theorem

IV.4] and uses only the hypothesis that (xi, x∗i ) is a shrinking M-basis. For the convenience

of the reader, we outline the proof here. We can choose inductively finite sets σ1 ⊂ σ2 ⊂ ...
and η1 ⊂ η2 ⊂ ... so that σ =

⋃∞
n=1 σn and η =

⋃∞
n=1 ηn are complementary infinite subsets

of the positive integers and for n = 1, 2, ...,

(i) if x∗ ∈ [X∗i ]i∈ηn , there is an x ∈ [Xi]i∈ηn
S
σn+1

so that ‖x‖ = 1 and |x∗(x)| >
(1− 1

n+1)‖x∗‖;
(ii) if x ∈ [Xi]i∈σn , there is an x∗ ∈ [X∗i ]i∈σn

S
ηn so that ‖x∗‖ = 1 and |x∗(x)| >

(1− 1
n+1)‖x‖.

Let Sn and Tn be the projections on X defined by Sn(x) =
∑

i∈σn x
∗
i (x)xi and Tn(x) =∑

i∈ηn x
∗
i (x)xi. It is easy to check that ‖T ∗n |[xi]⊥i∈σn+1

‖ ≤ 1 + 1/n. Observe that for all

x∗ ∈ [xi]⊥i∈σ, (T
∗
n(x∗)) is bounded and hence converges weak∗ to x∗. Thus [xi]⊥i∈σ is the w∗

closure of [x∗i ]i∈η. By [LT, Proposition 1.b.9], {Sn|[xi]i∈σ} defines an FDD for [xi]i∈σ. Now

by the Kadec-Klee property and ‖T ∗n |[xi]⊥i∈σn+1

‖ ≤ 1 + 1/n, we have T ∗n(x∗) → x∗ in norm

for all x∗ ∈ [x∗i ]i∈η = [xi]⊥i∈σ. This proves the claim. The above argument also works to give

[Y ∗j ]j /∈{ti} = [Yti ]
⊥ for any further blocking (Yi, Y ∗i ) of (Xi, X

∗
i ).

Let ε > 0 be a small number and let (εi) ↓ 0 with
∑
εi < ε. Let (mi)∞i=0 be given by

Lemma 3. We define Yn = [Xi]mn−1
i=mn−1

and Y ∗n = [X∗i ]mn−1
mn−1

. It is enough to show that (Yn)

is skipped blocked unconditional. Since our proof works for any blocking of (Yn, Y ∗n ), for

notational convenience we only check that for x =
∑
y2i with y2i ∈ Y2i, the sum converges
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unconditionally. Assume that ‖x‖ = 1 and let x∗ ∈ SX∗ so that 〈x, x∗〉 = 1. Since

‖x∗|Xti‖ < εi, we get d(x∗, [Xti ]
∞⊥
i=1 ) < 3

∑
εi < 3ε by our construction.

Let x̃∗ =
∑
ỹ∗i ∈ [X∗j ]j 6=ti so that ỹ∗i ∈ [X∗j ]t2i−1

j=t2(i−1)+1 (t0 = 0) and ‖x∗ − x̃∗‖ < 3ε. So

we have 〈x, x̃∗〉 > 1− 3ε. Now let x̃ =
∑
δiy2i, δi ∈ {−1, 1}. The norm of x̃

‖x̃‖ ≥ |〈
∑

δiy2i,
∑

δiỹ
∗
i 〉|

/
‖

∑
δiỹ
∗
i ‖

= |〈
∑

y2i,
∑

ỹ∗i 〉|
/
‖

∑
δiỹ
∗
i ‖

≥ 1− 3ε
‖

∑
δiỹi‖

Letting λ be the skipped blocked unconditional constant for (X∗i ), we have ‖
∑
δiỹ
∗
i ‖ ≤

λ‖
∑
ỹ∗i ‖ = λ‖x̃∗‖ < λ(1 + 3ε). Therefore ‖x̃‖ > 1−3ε

1+3ελ
−1. �

In [CK], Cowell and Kalton observe that if Y is a subspace of a space with a shrinking 1-

unconditional FDD, then Y has the au∗, which means for every y∗ ∈ Y ∗ and every y∗i
w∗−−→ 0

in Y ∗, lim ‖y∗ + y∗i ‖ = lim ‖y∗ − y∗i ‖. It is clear that the au∗ implies the w∗-UTP.

Lemma 6. Let (xi, x∗i ) be a shrinking M -basis for a Banach space X which is a subspace

of a space with a shrinking unconditional FDD. Then there is a blocking (Xi, X
∗
i ) so that

both (Xi) and (X∗i ) are skipped unconditional.

Proof. By hypothesis, X is isomorphic to a subspace Y of a space with a shrinking 1-

unconditional basis. By [CK], Y has the au∗ and hence Y has the w∗-UTP. Since the

w∗-UTP is an isomorphic condition, we get that X has the w∗-UTP. By Lemma 4, there

is a blocking (Xi, X
∗
i ) of (xi, x∗i ) so that (X∗i ) is skipped blocked unconditional. Using

Lemma 5, we get a further blocking (Yi, Y ∗i ) so that both (Yi) and (Y ∗i ) are skipped blocked

unconditional. �

A basic sequence (x∗n) in X∗ is called a w∗-basic sequence if there exists a sequence (xn)

in X for which x∗n(xm) = δmn and such that, for every x∗ in the w∗ closure of [x∗n], we have

x∗ = w∗ lim
n

n∑
i=1

x∗(xi)x∗i .

This is equivalent (see [LT, Proposition 1.b.9]) to saying that (x∗i ) are the biorthogonal

functionals to some basis for X/([x∗i ])
>. Similarly, a sequence of finite dimensional spaces

(X∗n) in X∗ is a w∗ FDD if and only if there is an FDD (Yn) of Y = X/([X∗n])> so that

X∗n = T ∗Y ∗n where T is the natural quotient from X onto Y and (Y ∗n ) is the biorthogonal

FDD to (Yn).

We repeat a simple lemma from [JZh1] which will be used again here.
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Lemma 7. Let X be a Banach space and X1, X2 be two closed subspace of X. If X1∩X2 =

{0} and X1 +X2 is closed, then X embeds into X/X1 ⊕X/X2.

Now we prove our main results.

Proof of Theorem A. (3) implies (1) is obvious.

(1)⇒ (2). By Lemma 1, Lemma 4 and Lemma 5, we get a blocking (Xi, X
∗
i ) of a shrinking

M -basis (xi, x∗i ) of X so that both (Xi) and (X∗i ) are skipped blocked unconditional. Let

E = [X4i], F = [X4i+2]. Then E + F is closed and E ∩ F = {0}. By Lemma 7, X embeds

into X/E ⊕ X/F . We claim that X/E has a shrinking unconditional FDD. Actually, by

the proof of Lemma 5, X/E has a shrinking FDD (Yi). Moreover, the biorthogonal FDD of

(Yi) is the isometric image of (X4i−3 ⊕ X4i−2 ⊕ X4i−1), which is boundedly complete and

unconditional. Therefore X/E has a shrinking unconditional FDD. Similarly, X/F has a

shrinking unconditional FDD.

(2)⇒ (3). Let (Xi, X
∗
i ) be given by Lemma 6. By the proof of Lemma 5, [Xj ]⊥j 6=4i = [X∗4i]

and [Xi]⊥j 6=4i+2 = [X∗4i+2]. Since (X∗i ) is skipped unconditional, [X∗4i] + [X∗4i+2] is closed and

[X∗4i]∩[X∗4i+2] = 0. Hence X∗ embeds into X∗/[X∗4i]⊕X∗/[X∗4i+2], and, by the construction,

the embedding is w∗ continuous. Therefore X is a quotient of [Xj ]j 6=4i ⊕ [Xj ]j 6=4i+2, which

has a shrinking unconditional FDD. �

If Y is a subspace or a quotient of a Banach space X, then the modulus of uniform

convexity or smoothness of Y is no worse than that of X (see [LT, Section 1.e]). Thus

Theorem 2 yields

Corollary 2. If X is uniformly convex [uniformly smooth] and has the UTP, then X is

isomorphic to a subspace and a quotient of a Banach space Y which has the same, up to

equivalence, modulus of uniform convexity [uniform smoothness] as X.

In Corollary 2, the space Y cannot always be taken to have an unconditional basis. Since

to discuss this it is better to use isomorphic language, we recall that a space X is finitely

crudely representable in a space Z provided there is a C such that every finite dimensional

subspace of X is C-isomorphic to a subspace of Z. A Banach space X is superreflexive

if and only if every Banach space which is finitely crudely representable in X is reflexive.

The Enflo-James theorem (see [FHHMPZ, Theorem 9.18]) says that a Banach space X

is superreflexive iff X is isomorphic to a uniformly convex space iff X is isomorphic to a

uniformly smooth space.

In [JT, Corollary 4], an example is given of a supperreflexive space U such that if U is

finitely representable in a space Z that has an unconditional basis, then also c0 is finitely
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representable in Z and hence Z is not superreflexive. Let (Un) be an increasing sequence of

finite dimensional subspaces of U so that
⋃
Un is norm dense in U and let X be the `2-sum

of (Un). Then X is supperreflexive and has an unconditional FDD but X does not embed

into any supperreflexive space that has an unconditional basis.

3. Proof of Fact (II)

Let (εn) be a fast decreasing sequence of positive reals. For any n ∈ N, we choose an

εn-net (xn,j)inj=1 of BEn . Without loss of generality, we assume the unconditional constant

associated to (En) is 1. In this case, we can identify each E∗n as a subspace of X∗. Define

a map T from span(E∗n) into c00 by

T (x∗) = (x∗(x1,1), ..., x∗(x1,i1), ..., x∗(xn,1), ..., x∗(xn,in), ...).

Let Y0 be the convex hull of ∪θMθT (Bspan(E∗n)), where θ = (θ1, θ2, ...) is a sequence of signs

and Mθ is defined by Mθ(a1, a2, ...) = (θ1a1, θ2a2, ...). We introduce a norm on span Y0

by ‖y‖ = inf{λ : y/λ ∈ Y0},∀y ∈ spanY0. Let Y be the completion of spanY0 under

this norm. It is easy to check that the natural unit vector basis (denote it by (e∗n)) is an

unconditional basis for Y . The same argument in the proof of Theorem 1.g.5 in [LT] yields

the map T is an isomorphic embedding from span (E∗n) into Y with norm less than 1. Since

span (E∗n) is dense in X∗, T extends to an isomorphism from X∗ into Y . Let (en) be the

biorthogonal functionals to (e∗n). It is clear that (en) is an unconditional basic sequence.

Define a map Q from [en] into X by Q(
∑
aiei) =

∑
aixi, where (xi) is the natural ordering

of (xn,j)n∈N,1≤j≤in . We show that Q is a well defined operator with norm at most 1:

‖Q(
∑

aiei)‖ = ‖
∑

aixi‖ = sup
‖x∗‖≤1

{|x∗(
∑

aixi)|} = sup
‖x∗‖≤1

{|
∑

aix
∗(xi)|}

= sup
‖x∗‖≤1

{|〈
∑

x∗(xi)e∗i ,
∑

aiei〉|}

≤ sup
‖x∗‖≤1

{‖
∑

x∗(xi)e∗i ‖‖
∑

aiei‖}

≤ ‖
∑

aiei‖.

Next we show that Q is a quotient map by proving that Q∗ = T .

Q∗(x∗)(
∑

aiei) = x∗(Q(
∑

aiei)) = x∗(
∑

aixi)

=
∑

aix
∗(xi) = 〈

∑
x∗(xi)e∗i ,

∑
aiei〉

= 〈T (x∗),
∑

aiei〉.

Hence X is a quotient of [en]. Now it may be that (en) is shrinking, but we cannot prove it.

To get around this, we use arguments from [DFJP] and so follow the notation of [DFJP].
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Let (ui) be an unconditional basis for a Banach space U . Let α ⊂ N. Then Pα denotes

the projection Pα(
∑
aiui) =

∑
i∈α aiui. Let V be a subset of U . Vu is defined to be⋃

α⊂N Pα(V ). Our main observation is that Lemma 3 in [DFJP] works for Vu too. To be

more precise, the following is true. If V ⊂ U is convex, symmetric and σ(U,Γ) compact,

then so is the σ(U,Γ) closure W of the convex hull of Vu. In our application, Γ = [en],

ui = e∗i , and U = Y = [e∗i ] (Y , en, and e∗n are defined in the beginning of the proof of this

lemma). So Γ norms Y and V := Q∗(BX∗) is σ(Y,Γ) compact. Construct Vu,W as we

defined above (see [DFJP, Lemma 2, 3] for proofs). C is obtained by the basic factorization

procedure of [DFJP, Lemma 1]. Then C is σ(Y,Γ) compact. Hence Ỹ :=span C is isometric

to the dual of a Banach space Z so that the σ(Ỹ , Z) topology is finer than that induced

by σ(Y,Γ). This implies that Q∗ is weak∗ continuous as a map from X∗ into Z∗. So X is

a quotient of Z. Since Y has the unconditional basis (en), by [DFJP, Lemma 1 (x)] (en)

is also an unconditional basis for Ỹ . Since Ỹ is a separable dual, the unconditional basis

for Ỹ is boundedly complete. Therefore the biorthogonal functionals (En) form a shrinking

unconditional basis for Z.
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