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Abstract. The notion of Lipschitz p-summing operator is introduced. A non

linear Pietsch factorization theorem is proved for such operators and it is shown

that a Lipschitz p-summing operator that is linear is a p-summing operator in
the usual sense.

1. Introduction

In this note we introduce a natural non linear version of p-summing operator,
which we call Lipschitz p-summing operator. In section 2 we prove a non linear
version of the Pietsch factorization theorem, show by example that the strong form
of the Pietsch domination theorem is not true for Lipschitz p-summing operators,
and make a few other remarks about these operators. In section 3 we “justify”
our nomenclature by proving that for a linear operator, the Lipschitz p-summing
norm is the same as the usual p-summing norm. Finally, in section 4 we raise some
problems which we think are interesting.

2. Pietsch factorization

The Lipschitz p-summing (1 ≤ p < ∞) norm, πL
p (T ), of a (possibly non linear)

mapping T : X → Y between metric spaces is the smallest constant C so that for
all (xi), (yi) in X and all positive reals ai

(2.1)
∑

ai‖Txi − Tyi‖p ≤ Cp sup
f∈B

X#

∑
ai|f(xi)− f(yi)|p

Here BX# is the unit ball of X#, the Lipschitz dual of X, i.e., X# is the space
of all real valued Lipschitz functions under the (semi)-norm Lip(·); and ‖x− y‖ is
the distance from x to y in Y . We follow the usual convention of considering X as a
pointed metric space by designating a special point 0 ∈ X and identifying X# with
the Lipschitz functions on X that are zero at 0. With this convention (X#,Lip(·)) is
a Banach space and BX# is a compact Hausdorff space in the topology of pointwise
convergence on X.

Notice that the definition is the same if we restrict to ai = 1. Indeed, by approx-
imation it is enough to consider rational ai and thus, by clearing denominators,
integer ai. Then, given ai, xi, and yi, consider the new collection of vectors in
which the pair (xi, yi) is repeated ai times. (This observation was made with M.
Mendel and G. Schechtman.)

It is clear that πL
p has the ideal property; i.e., πL

p (ATB) ≤ Lip(A)πL
p (T )Lip(B)

whenever the compositions make sense. Also, if Y is a Banach space, the space of
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Lipschitz p-summing maps from any metric space into Y is a Banach space under
the norm πL

p .
If T is a linear operator, it is clear that πL

p (T ) ≤ πp(T ), where πp(·) is the usual
p-summing norm [5, p. 31]. In section 3 we prove that the reverse inequality is
true.

We begin with a Pietsch factorization theorem for Lipschitz p-summing opera-
tors.

Theorem 1. The following are equivalent for a mapping T : X → Y between
metric spaces and C ≥ 0.

(1) πL
p (T ) ≤ C.

(2) There is a probability µ on BX# such that

‖Tx− Ty‖p ≤ Cp

∫
B

X#

|f(x)− f(y)|p dµ(f).

(Pietsch domination.)
(3) For some (or any) isometric embedding J of Y into a 1-injective space Z,

there is a factorization

L∞(µ)
I∞,p−−−−−−−−−−−−−−−−−→ Lp(µ)

A ↑ ↓ B
X

T−→ Y
J−−−−−−−−→ Z

with µ a probability and Lip(A) · Lip(B) ≤ C.

(Pietsch factorization.)

Proof. That (2) implies (3) is basically obvious: Let A : X → L∞(µ) be the natural
isometric embedding composed with the formal identity from C(BX#) into L∞(µ).
Then (2) says that the Lipschitz norm of B restricted to I∞,pAX is bounded by C,
which is just (3). (We have used implicitly the well known fact that every metric
space embeds into `∞(Γ) for some set Γ and that, by the non linear Hahn-Banach
theorem, `∞(Γ) is 1-injective. See Lemma 1.1 in [3].)

For (3) implies (1), use

πL
p (T ) = πL

p (JT ) ≤ Lip(A)πL
p (I∞,p)Lip(B) ≤ Lip(A)πp(I∞,p)Lip(B)

= Lip(A)Lip(B).

The proof of the main implication, that (1) implies (2), is like the proof of the
(linear) Pietsch factorization theorem (see, e.g., [5, p. 44]). Suppose πL

p (T ) = 1.
Let Q be the convex cone in C(BX#) consisting of all positive linear combinations
of functions of the form ‖Tx − Ty‖ − Cp|f(x) − f(y)|p, as x and y range over
X. Condition (1) says that Q is disjoint from the the positive cone P = {F ∈
C(BX#) | F (f) > 0 ∀f ∈ X#}, which is an open convex subset of C(BX#). Thus
by the separation theorem and the Riesz representation theorem there is a finite
signed Baire measure µ on BX# and a real number c so that for all G ∈ Q and
F ∈ P ,

∫
X# Gdµ ≤ c <

∫
X# F dµ. Since 0 ∈ Q and all positive constants are in P ,

we see that c = 0, and since
∫

X# · dµ is positive on the positive cone P of C(BX#),
the signed measure µ is a positive measure, which we can assume by rescaling is a
probability measure. It is clear that the inequality in (2) is satisfied. �

It is worth noting that the conditions in Theorem 1 are also equivalent to
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(4) There is a probability µ on K, the closure in the topology of pointwise
convergence on X of the extreme points of BX# , so that

‖Tx− Ty‖p ≤ Cp

∫
K

|f(x)− f(y)|p dµ(f).

The proof that (1) implies (4) is the same as the proof that (1) implies (2) since
the supremum on the right side of (2.1), the definition of the Lipschitz p-summing
norm, is the same as

sup
f∈K

∑
ai|f(xi)− f(yi)|p.

One immediate consequence of Theorem 1 is that πL
p (T ) is a monotonely decreas-

ing function of p. Another consequence is that there is a version of Grothendieck’s
theorem (that every linear operator from an L1 space to a Hilbert space is 1-
absolutely summing). In the category of metric spaces with Lipschitz mappings as
morphisms, weighted trees play a role analogous to that of L1 in the linear the-
ory. In particular, every finite weighted tree has the lifting property, which is to
say that if X is a finite weighted tree, T : X → Y is a Lipschitz mapping from
X into a metric space Y , and Q : Z → Y is a 1-Lipschitz quotient mapping in
the sense of [2], [7], then for each ε > 0 there is a mapping S : X → Z so that
Lip(S) ≤ Lip(T )+ε and T = QS. Letting Y be a Hilbert space and Z an L1 space,
we see from Grothendieck’s theorem and the ideal property of πL

1 that if every finite
subset of X is a weighted tree (in particular, if X is a tree or a metric tree–see [7]),
then πL

1 (T ) ≤ KGLip(T ), where KG is Grothendieck’s constant. Here we use the
obvious fact that πL

p (T : X → Y ) is the supremum of πL
p (T|K) as K ranges over

finite subsets of X.
The strong form of the Pietsch domination theorem says that if X is a subspace

of C(K) for some compact Hausdorff space K, and T is a p-summing linear operator
with domain X, then there is a probability measure µ on K so that for all x ∈ X,
‖Tx‖p ≤ πp(T )p

∫
K
|x(t)|p dµ(t). It is easy to see that there is not a non linear

version of this result. Let Dn be the discrete metric space with n points so that the
distance between any two distinct points is one. We can embed Dn into C({−1, 1}n)
in two essentially different ways. First, if Dn = {x1, . . . , xn}, let f(xk) = 1

2rk,
where rk is the projection onto the kth coordinate. The image of this set under
the canonical injection from C({−1, 1}n) into Lp({−1, 1}n, µ) with µ the uniform
probability on {−1, 1}n is a discrete set with the p-th power of all distances one-half.
This shows that the identity on Dn has Lipschitz p-summing norm at most two.
Secondly, let g(k), 1 ≤ k ≤ n, be disjointly supported unit vectors in C({−1, 1}n).
Then for any probability measure ν on {−1, 1}n, the injection from C({−1, 1}n)
into Lp({−1, 1}n, ν) shrinks the distance between some pair of the g(k)’s to at most
(2/n)1/p.

Incidentally, πL
p (IDn) tends to 2

1
p as n → ∞ and can be computed exactly. To

see this, note that the extreme points, Kn, of BD#
n

are of the form ±χA with A a
non empty subset of Dn ∼ {0}. This can be calculated directly or deduced from
Theorem 1 in [6]. We calculate πL

p (IDn
) in the (easier) case that n is even. Define

a probability µ on Kn by letting µ be the uniform measure on Jn/2 := {χA : |A| =
n/2, A ⊂ Dn ∼ {0}} (so that µ(e) = 0 for elements e of Kn ∼ Jn/2). Then for
each pair of distinct points x and y in Dn,

∫
Kn
|f(x) − f(y)|p dµ(f) = n

2(n−1) ,

so that πL
p (IDn

) ≤ (2 − 2
n )

1
p . To see that µ is a Pietsch measure for IDn

, let
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ν be any Pietsch probability for IDn
on Kn. We can clearly assume that ν is

supported on the positive elements in Kn. By averaging ν against the permutations
of Dn which fix 0, which is a group of isometries on Dn, we get another Pietsch
probability for IDn

(which we continue to denote by ν) so that if we condition ν on
Jk := {χA : |A| = k,A ⊂ Dn ∼ {0}}, 1 ≤ k ≤ n−1, the resulting probability νk on
Jk is the uniform probability. A trivial calculation shows that for x, y in Dn ∼ {0},∫

Jk
|f(x)− f(y)|p dνk(f) ≤ n

2(n−1) . This proves that µ is a Pietsch measure for IDn

and hence πL
p (IDn) = (2− 2

n )
1
p .

Our final comment on Lipschitz 1-summing operators is that the concept has
appeared in the literature even if the definition is new. In [4], Bourgain proved that
every n point metric space can be embedded into a Hilbert space with distortion at
most C log n, where C is an absolute constant. In fact, he really proved the much
stronger result that πL

1 (IX) ≤ C log n if IX is the identity mapping on an n point
space X by making use of a special embedding of X into a space C(KX) with KX

a finite metric space and constructing a probability on KX . Moreover, Bourgain’s
construction has occasionally been used in the computer science literature. The
strong form of Bourgain’s theorem is also used in [8] to prove an inequality that is
valid for all metric spaces.

3. Linear operators

In this section we show that the Lipschitz p-summing norm of a linear operator
is the same as its p-summing norm. This justifies that the notion of Lipschitz
p-summing operator is really a generalization of the concept of linear p-summing
operator.

Theorem 2. Let u be a bounded linear operator from X into Y and 1 ≤ p < ∞.
Then πL

p (u) = πp(u).

Proof. Note that we can assume, without loss of generality, that dimY ≤ dimX =
N < ∞. Indeed, it is clear from the definition that πL

p (u) is the supremum of
πL

p (u|E) as E ranges over finite dimensional subspaces of X and similarly for πL
p (u).

That we can assume dimY ≤ dimX is clear from the linearity of u.
Since dimY ≤ N , there is an embedding J of Y into `m∞ with m ≤ ( 3

ε )N so
that ‖J‖ = 1 and ‖J−1‖ ≤ 1 + ε. We then get the following non linear Pietsch
factorization:

L∞(µ)
i∞,p−−−→ Lp(µ)

α ↑ ↓ β
X

u−→ Y
J−→ `m∞

where Lip(α) = 1, Lip(β) ≤ πL
p (Ju) ≤ πL

p (u). We can also assume, without loss of
generality, that the probability µ is a separable measure.

We now use some non linear theory that can be found in the book [3].

(1) The mapping α is weak∗ differentiable almost everywhere. This means that
for (Lebesgue) almost every x0 inX, there is a linear operatorDw∗

x0
(α) : X →

L∞(µ) so that for all f ∈ L1(µ) and for every y ∈ X,

lim
t→0

〈
α(x0 + ty)− α(x0)

t
, f

〉
= 〈Dw∗

x0
(α)(y), f〉.
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(2) The operator i∞,pα is differentiable almost everywhere. This means that
for almost every x0 in X, there is a linear operator Dx0(i∞,pα) : X → Lp(µ)
so that

sup
‖y‖≤1

∥∥∥∥ i∞,pα(x0 + ty)− i∞,pα(x0)
t

−Dx0(i∞,pα)(y)
∥∥∥∥

p

→ 0 as t→ 0.

When 1 < p < ∞, statement (2) follows from the reflexivity of Lp (see [3,
Corollary 5.12 & Proposition 6.1]). For p = 1, just use (2) for p = 2 and compose
with i2,1.

The mapping i∞,p is weak∗ to weak continuous, so Dx0(i∞,pα) = i∞,pD
w∗

x0
(α)

whenever both derivatives exist. Since they both exist almost everywhere, by mak-
ing several translations we can assume without loss of generality that this equation
is true for x0 = 0 and also that α(0) = 0.

Next we show that in the factorization diagram the non linear map α can be
replace by the linear operatorDw∗

0 (α) by constructing a mapping β̃ : Lp(µ)→ `m∞ so
that β̃i∞,pD

w∗

0 (α) = Ju and Lip(β̃) ≤ Lip(β). To do this, define βn : Lp(µ)→ `m∞
by βn(y) := nβ( y

n ) and note that Lip(βn) = Lip(β). We have for each x in X

‖Ju(x)− βni∞,pD
w∗

0 (α)(x)‖ = ‖βnni∞,pα(x/n)− βnD0(i∞,pα)(x)‖
≤ Lip(β)‖ni∞,pα(x/n)−D0(i∞,pα)(x)‖

which tends to zero as n → ∞. For β̃ we can take any cluster point of βn in the
space of functions from Lp(µ) into `m∞; such exist because βn is uniformly Lipschitz
and βn(0) = 0.

Summarizing, we see that we have a factorization

L∞(µ)
i∞,p−−−→ Lp(µ)

α̃ ↑ ↓ β̃
X

u−→ Y
J−→ `m∞

with α̃ linear, ‖α̃‖ ≤ Lip(α), and Lip(β̃) ≤ Lip(β).
The final step involves replacing β̃ with a linear operator. Since the restriction

β of β̃ to the linear subspace i∞,pα̃[X] is linear and `m∞ is reflexive, this follows
from [3, Theorem 7.2], which is proved by a simple invariant means argument.
Alternatively, one can use the injectivity of `m∞ to extend β to Lp(µ). �

4. Open problems and concluding remarks

Problem 1. Is there a composition formula for Lipschitz p-summing operators?
That is, do we have πL

p (TS) ≤ πL
r (T )πL

s (S), when 1
p ≤ ( 1

r + 1
s ) ∧ 1?

Say that a Lipschitz mapping T : X → Y is Lipschitz p-integral if it satisfies a
factorization diagram as in condition (3) of Theorem 1, except with J being the
canonical isometry from Y into (Y #)∗. We then define the Lipschitz p-integral
norm IL

p (T ) of T to be the infimum of Lip(A) · Lip(B), the infimum being taken
over all such factorizations. When T is a linear operator, this is the same as the
usual p-integral norm of T . Indeed, in this case one can use for J the canonical
isometry from Y into Y ∗∗ because Y ∗∗ is norm one complemented in (Y #)∗. Then
the proof that Ip(T ) ≤ IL

p (T ) is identical to the proof of Theorem 2.

Problem 2. Is every Lipschitz 2-summing operator Lipschitz 2-integral?
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In the case where the target space Y is a Hilbert space, problem 2 has an
affirmative answer by Kirszbraun’s theorem [3, p. 18]. If Y has K. Ball’s Markov
cotype 2 property [1], it follows from Ball’s work that the answer is still positive,
although his result does not yield that IL

p (T ) and πL
p (T ) are equal. It is worth

mentioning that the work of Naor, Peres, Schramm, and Sheffield [9] combines
with Ball’s result to yield that for 2 ≤ p <∞, every Lipschitz p-summing operator
into Lr, 1 < r ≤ 2, is Lipschitz p-integral.

We mentioned in section 2 that ΠL
p (X,Y ), the class of Lipschitz p-summing

operators from X into Y , is a Banach space under the norm πL
p (·) when Y is a

Banach space.

Problem 3. When Y is a Banach space and X is finite, what is the dual of
ΠL

p (X,Y )?

In section 2 we noted that there is a version of Grothendieck’s theorem that is
true in the non linear setting. Are there other versions? In particular, we ask the
following.

Problem 4. Is every Lipschitz mapping from an L1 space to a Hilbert space Lips-
chitz 1-summing? Is every Lipschitz mapping from a C(K) space to a Hilbert space
Lipschitz 2-summing?

It is elementary that for a linear operator T : X → Y , πp(T ) is the supremum
of πp(TS) as S ranges over all operators from `p′ into X of norm at most one. This
leads us to ask

Problem 5. If T : X → Y is Lipschitz, is πL
p (T ) is the supremum of πL

p (TS) as S
ranges over all mappings from finite subsets of `p′ into X having Lipschitz constant
at most one?

Since all finite metric spaces embed isometrically into `∞, the answer to problem
5 is yes for p = 1.

Of course, all of the above problems are special cases of the general

Problem 6. What results about p-summing operators have analogues for Lipschitz
p-summing operators?

Added in proof. Problem 3 has been solved by J. A. Chávex Domı́nguez (un-
published).
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