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Abstract

The operators oh, = L,[0,1], 1 < p < o, which are not commutators are those of the faidm S wherea # 0
andsS belongs to the largest ideal if(L,). The proof involves new structural results for operatard g which are
of independent interest.

1 Introduction

When studying derivations on a general Banach algghmnatural problem that arises is to classify the commudator
in the algebra; i.e., elements of the foAB — BA. The problem as stated is hard to tackle on general Banaebralg,
The only known obstruction was proved in 1947 by WintnerfJ14e proved that the identity in a unital Banach
algebra is not a commutator, which immediately implies timbperator of the forml + K, whereK belongs to a
norm closed (proper) idedl of A andA # 0, is a commutator in the Banach algebfla On the other hand, there
seems to be no general conditions for checking whether amegleof a Banach algebra is a commutator.

The situation changes if instead of an arbitrary Banachbafgere consider the algeb#&(X) of all bounded linear
operators on the Banach spaXeln this setting, one hopes that the underlying structurthefspaceX will provide
enough information about the operators®mo allow one to attack the problem successfully. Indeed,iththe case
provided the spac& has some “nice” properties. The first complete classificatibthe commutators i’ (X) was
given in 1965 by Brown and Pearcy ([3]) for the cae= ¢,. They proved that the only operatorsitt,) that are

not commutators have the forat + K, whereK is compact and # 0. In 1972, Apostol proved in [1] that the same
classification holds for the commutators &) 1 < p < oo, and one year later, he proved that the same classification
holds in the case of = ¢y ([2]). Apostol had some partial results in [1] and [2] abopésial classes of operators on
{1, €, andC([0, 1]), but he was unable to obtain a complete classificatioh@tbmmutators on any of those spaces.
A year before Apostol's results, Schneeberger proved leatbmpact operators drp, 1 < p < oo, are commutators
but, as it will become apparent later, one needs a strongeltia order to classify the commutators on these spaces.

All of the aforementioned spaces have one common propesasety, if X = £,, 1 < p < o, or X = ¢ then
X = (ZX)p (p=0if X = cp). It turns out that this property plays an important rolefooving the classification of
the commutators on other spaces. Thirty five years after thpgsesult, the first author obtained in [4] a complete
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classification of the commutators é1) which, as one may expect, is the same as the classificatibie cbmmutators
on¢,. A common feature of all the spac&s= £, 1 < p < co andX = g is that the ideal of compact operatdf§X)
on X is the largest non-trivial ideal if(X). The situation folX = ¢, is different. Recall that an operafor: X —» Y

is strictly singular provided the restriction ®fto any infinite dimensional subspaceXfis not an isomorphism. On
tp, 1 < p < oo, and oncy,, every strictly singular operators is compact, butf.), the ideal of strictly singular
operators contains non-compact operators (and, incitgragrees with the ideal of weakly compact operators). In
L(¢-), the ideal of strictly singular operators is the largestid and it was proved in [5] that all operatorsfanthat
are not commutators have the forh+ S, whered # 0 andS is strictly singular.

The classification of the commutators 5 1 < p < oo, and oncy, as well as partial results on other spaces, suggest
the following:

Conjecture 1. Let X be a Banach space such th¥t~ (>, X),, 1 < p < oo or p = 0 (we say that such a space admits
a Pelczynski decomposition). Assume tB@X) has a largest ideaM. Then every non-commutator ghhas the form
Al + K, where Ke M andA # 0.

In [13], M. Tarbard constructs a Banach sp&cen which there is a strictly singular non compact oper&spo that
every bounded linear operator s of the formAl + oS + K for some compact operatér and some scalarsand

a. On this space the strictly singular operators are the wnigaximal ideal in the bounded operatorsXgryetS is
clearly not a commutator. Consequently, some assumpti@mamfinite dimensional space is needed to show that the
space satisfies the conclusion of Conjecture 1.

Here and elsewhere in this paper, when we refer to an ideglerfadors we always mean a non-trivial, norm closed,
two sided ideal. This conjecture is stated in [5]. To verifyricture 1 for a given Banach spa¥eone must prove
two steps:

Step 1.Every operatoll € M is a commutator.
Step 2.I1f T € L(X) is not of the formil + K, whereK € M anda # 0, thenT is a commutator.

The methods for provintep 1in most cases where the complete classification of the coatorston the spac¥

is known are based on the fact thaflife M then for every subspacé C X, Y =~ X and everye > 0 there exists a
complemented subspa¥eC Y, Y; ~ Y such thaf|Ty,|| < &. Let us just mention that this fact is fairly easy to se€ if

is a compact operator ag or £, 1 < p < oo ([4, Lemma 9], see also [1]). (Throughout this work= X means thak
andY are isomorphic; i.e., linearly homeomorphic; whife=s X means that the spaces are isometrically isomorphic.)

Showing the second step is usually morgidult than showindstep 1 In most cases for which we have a complete
characterization of the commutators A we use the following theorem, which is an immediate coneege of
Theorem 3.2 and Theorem 3.3 in [5].

Theorem 1.1. Let X be a Banach space such th¥it= (¥ X),, 1 < p < coor p=0. Let T € L(X) be such that there
exists a subspace X X such that X~ X, Tx is an isomorphism, % T (X) is complemented iA, and d’X, T(X)) > 0.
Then T is a commutator.

In the previous theorem the distance is defined as the dstaom Y to the unit sphere oK. The basic idea is to
prove that ifT € £(X) is not of the formil + K, whereK € M andAa # 0, thenT satisfies the assumptions of Theorem
1.1 and hencg& is a commutator. This is not obvious even for the classiagisece spaceas andfp, 1 < p < oo, but

it suggests what one may try to prove for other classical Baspaces in order to obtain a complete characterization
of the commutators on those spaces.

Following the ideas in [5], for a given Banach spateve define the set
My ={T € L(X) : 1x does not factor througfi}. (1)

(We say that € L(X) factors troughT € L(X) if there areA, B € £(X) such thaS = AT B)) As noted in [5], this set
comes naturally from the investigation of the structurehef tommutators on several classical Banach spaces. In the



cases oX = £, 1 < p < o0, andX = cg, the setMy is the largestideal i (X) (observe that ifMy is an ideal then it
is the largest ideal iC(X) and My is an ideal if and only if it is closed under addition). It isalknown thaiMy is
the largest ideal foX = L, 1 < p < oo, which we discuss later.

In some special cases of finite sums of Banach spaces we kabthéhclassification of the commutators on the sum
depends only on the classification of the commutators on gacimand. In particular, this is the case with the space
lp, ® Ly, ®- - - @ L, Where the first two authors proved in [5] that all non-comrtarontp, @ £p, © - - - @ £, have the
form Al + K wherea # 0 andK belongs to some ideal ii({p, ® £p, ® - -- & ().

In this paper we always denotg = L,([0, 1], 1), wherey is the Lebesgue measure. Our main structural results are:

Theorem 1.2. Let Te L(Lp), 1< p<2 If T -l ¢ M, forall A € C then there exists a subspace-X_, such that
X = Lp, Tix is an isomorphism, X T(X) is complemented ind, and dX, T(X)) > 0.

Theorem 1.3. Let T e L(Lp), L < p< 2. If T € M, then forevery YC Lp, Y = L, there exists a subspaceXY
such that X is complemented ig,IX ~ L, and Tx is a compact operator.

Notice that Theorem 1.3 implies that ford p < 2, M, is closed under addition and hence is the largest ideal in
L(Lp). It follows by duality that for 2< p < o, My is closed under addition as well and hence is the largest idea
in L(Lp). This duality argument is indeed needed because Theoia fhlse forp > 2. To see that Theorem 1.3 is
false forp > 2 one can considelr = Jl,, wherel; is the identity fromL into L, andJ is an isometric embedding
from Ly into L.

In order to prove Theorem 1.2 for4 p < 2, it was necessary to improve [8, Proposition 9.11] for thacesL,

1 < p < 2, and the improvementis of independent interest. In Thra@d we show that for a natural equivalent norm
onlp, 1 < p < 2,if T is an operator oih, which is an isomorphism on a copy bf, then some multiple of is
almost an isometry on an isometric copylgf The proof of Theorem 3.4, which can be read independertiy the
rest of this paper, is the mostfiicult argument in this paper and we will postpone it till thep&pdix.

Using Theorem 1.2 and Theorem 1.3 it is easy to show that Camg1 also holds fok,, 1 < p < 2. It follows by
duality that Conjecture 1 also holds fbg, 2 < p < .

Theorem 1.4. Let M be the largest ideal iiC(Lp), 1 < p < oo. An operator Te L(Lp) is a commutator if and only if
T -l ¢ Mforanya #0.

Proof. As we already mention, we only need to consider the caselk 2 and the case 2 p < o will follow by a

duality argument.

If T is a commutator, from the remarks we made in the introdugtifollows thatT — Al cannot be inM for any
A # 0. For proving the other direction we have to consider tw@sas

Case L.If T € M (2 = 0), we first apply Theorem 1.3 to obtain a complemented swlespac L such thaflx is a
compact operator and then apply [4, Corollary 12] which give the desired result.

Case ll.If T - Al ¢ MforanyA € C we are in position to apply Theorem 1.2, which combined witkedrem 1.1
imply thatT is a commutator. m|

The rest of this paper is devoted to the proofs of Theoremarid2l.3. We consider the casgseparately since some
of the ideas and methods used in this case are quftereint from those used for the cdsg 1 < p < co.



2 Notation and basic results

Throughout this manuscript, X is a Banach space andc X is complemented, bi?x we denote a projection from
X ontoX. For any two subspaces (possibly not closé@ndY of a Banach spacg let

dOX,Y) = inf{|[x—y|| : xe Sx, y€ Y}.

A well known consequence of the open mapping theorem is ¢nairfy two closed subspac¥sandY of Z, if XNY =
{0} thenX + Y is a closed subspace @f if and only if d(X, Y) > 0. Note also that@X,Y) > d(Y, X) > 1/2d(X,Y),
thusd(X, Y) andd(Y, X) are equivalent up to a constant factor of 2. The followingpgarsition was proved in [5] and
will allow us later to consider only isomorphisms insteacdiitrary operators ohj.

Proposition 2.1([5, Proposition 2.1]) Let X be a Banach space and & £(X) be such that there exists a subspace
Y c X for which T is an isomorphism on Y an@ITY) > 0. Then for everyl € C, (T — Al)y is an isomorphism and
d(y, (T = alh)y) > 0.

We will also need a result similar to Proposition 2.1, whergtéad of adding a multiple of the identity we want to
add an arbitrary operator. Obviously that cannot be doneeral, but if we assume that the operator we add has a
suficiently small norm we can derive the desired conclusion.

Proposition 2.2. Let T € £(X) and let Y c X be such that T is an isomorphism on Y ~YX, d(Y,TY) > 0, and
Y + TY is a complemented subspaceXasomorphic taX. Then there exists a#1> 0, depending only on®, TY),
the norm of the projection onto ¥ TY, and||T‘;1|| such that if Ke £(X) satisfied|Ky|| < £ then dY, (T + K)Y) > 0
and Y+ (T + K)Y is a complemented subspace&asomorphic taX.

Proof. First we show that it is suficiently small therd(Y, (T + K)Y) > 0, provided|K|| < &. As in [5, Proposition
2.1], we have to show that there exists a constanD such that for aly € Sy, d((T + K)y,Y) > ¢. Fromd(TY,Y) > 0
it follows that there exists a consta®f such that for aliy € Sy, d(Ty, Y) > C. If ||Kyy||l < % then

c_¢C
I(T+ K)y—2| > [Ty—2| - [IKyll > d(Ty, Y) - 525
forall ze Y henced((T + K)Y,Y) > 0.
Let P be the projection ont¥ + T'Y. To show thatY + (T + K)Y is complemented iX we first define an isomorphism

S:Y+TY-> Y+ (T+K)YbyS(y+T2 =y+ (T + K)zfor everyy,z € Y. From the definition o we have that

IPIITSHI
IS =1 < CCY, HIIKyvll (whereC(Y, T) = d(T—Y'YY)), hence ifi|Kv|| is small enough the operatBr= SP+ | — Pis an
isomorphism orX. Now it is not hard to see :[hﬂPR'l is a projection ont + (T + K)Y. m]

3 Operatorsonl,, 1< p< oo

Recall (see (1) in the Introduction) thatXfis a Banach spacé(y = {T € L(X) : |x does not factor througfi},
thenT ¢ My if and only if there exists a subspageof X so thatTx is an isomorphism[ X is complemented i,
andT X = X.

As we have already mentioned in the Introduction, the/gigtis the largest ideal ilC(X) if and only if it is closed
under addition. Using the fact thatfif= 1 thenM,, coincides with the ideal of no&-operators, defined in [6], and
if 1 < p < oo then My, coincides with the ideal of noA-operators, defined in [8], it is clear thMx is in fact the
largest ideal in those spaces. This fast, as we already ometj follows from Theorem 1.3 as well. For more detailed
discussion of th& andA operators we refer the reader to [6] and [8, Section 9] anadetso mention that we are not
going to use any of the properties of theor A operators and so do not repeat their definitions here.



In this section we mainly consider operatdrs L, — Lp, 1 < p < oo, that preserve a complemented copyLgf
that is, there exists a complemented subspécel , X =~ L, such thafl|x is an isomorphism. The fact that we can
automatically take a complemented subspace isomorpHig tnstead of just a subspace isomorphid_tpfollows
from [8, Theorem 9.1] in the cage> 1 and [12, Theorem 1.1] in the cape= 1. From the definition oMy it is easy
to see thall ¢ M, if and only if T maps a copy ok, isomorphically onto a complemented copylgf

Also, recall that an operatdr : X — Y is calledZ-strictly singular provided the restriction @f to any subspace of
X, isomorphic tazZ, is not an isomorphism. From the remarks above, it is cledrttie class of operators froky to
L, that do not preserve a complemented copy.ptoincides with the class df,-strictly singular operators, hence
the class ot p-strictly singular operators is the largest ideall(L ).

Definition 3.1. The sequence of functiofis e} U {hn,i}ﬁio,izil defined by ho(t) = 1 and, forn=0,1,...and i =
1,2,...,2"

—-1 ifte((2 - 1)2° ™D, 2i2-(+1))

1 ifte(2i-22™D,(2i-1)2MD)
hn,i (t) =
0 otherwise

is called the Haar system df, 1].

The Haar system, in its natural order, is an unconditionatoane basis ok [0, 1] for every 1< p < oo (cf. [10,
p.3, p.19]) and we denote I§y, the unconditional basis constant of the Haar system. Aslusyé .} , we denote

the Rademacher sequence onlpdefined byr, = Ziz:nl hn,i.

Definition 3.2. Let{x;};>; be an unconditional basis forpl For x = 32, a;X;, the square function of x with respect to

{Xi}iz, is defined by
S(¥) = (Z eﬁx?) :
i=1

The following proposition is well known. We include its prfdeere for completeness.

Proposition 3.3. Let{a;};>; be a block basis of the Haar basis fog,L1 < p < oo, suchthat A=Sparfa; : i =1,2,...}
is a complemented subspace gfia a projection P. Then there exists a projection onto A teapects supports with
respect to the Haar basis and whose norm depends on [jRhanly.

Proof. Defineoi = {(k,1) : hg € supp&)}, where the support is taken with respect to the Haar basisdanote
X; = Spanthy : (k1) € o} Itis clear that all spaceX; areC, complemented ih.,, via the natural projections;,
as a span of subsequence of the Haar basis. Consider theavfra= >; P;PP;. Provided it is bounded, it is easy
to check thaP, is a projection ontd\ that respect supports. In order to show tRatis bounded consider the formal

sum
P=) PPP;
i
A simple computation shows that

IPAll = IE > &i8;PiPPjll < Ell )" si6;PiPPy|| < CE|IPI (2)
ij ij

whereg; is a Rademacher sequence onlJwhich finishes the proof. m]

The following theorem is the main result of this section. W# postpone its proof till the end since the ideas for
proving it deviate from the general ideas of this sectionthedoroof as well as the result are of independent interest.
Recall [12] that an operatdr onL,, 1 < p < oo, is called a sign embedding provided there is aSef positive
measure and > 0 so that]|T f|| > 6wheneverf f du = 0 and|f| = 1s almost everywhere.

Recall also, that a bounded linear operdtarX — Y between two Banach spac&sand is aC-isomorphism ifT

is an ismorphism oX and||T||||T|}§(|| <C.



Theorem 3.4. For eachl < p < 2there is a constant Ksuch that if T is a sign embedding operator frogjQ, 1]
into Ly[0, 1] (and in particular if it is an isomorphism), then there is 3 Bomplemented subspace X @fQ, 1] which

is Kp-isomorphic to 1[0, 1] and such that |k is a Kp-isomorphism and {X) is K, complemented in L.

Moreover, if we consider §[0, 1] with the normi|X|ll, = IS(X)Il, (with S being the square function with respect to the
Haar system) then, for each> 0, there is a subspace X o0, 1] which is(1 + &)-isomorphic to I5[0, 1] and such
that Tix is a (1 + &)-isomorphism (and X and(K) are K, complemented inJ).

Remark 3.5. Note that Theorem 3.4 is also true forp1. This result follows from [12, Theorem 1.2], where it is
shown that if Te L(L1) preserves a copy ofilthen givere > 0, X can be chosen isometric tq Bo that Tx is1 + &
isomorphism.

Having Remark 3.5 in mind, sometimes we may use Theorem Btiédacase = 1 as well.

Before we continue our study of the operatorsigrthat preserve a copy df, we prove Theorem 1.3 in the case of
Lp, 1 < p < 2. For this we need two lemmas for non sign embeddingd grstrictly singular operators oln, that we
use both in the next section and later on.

3.1 L, - strictly singular operators

Lemma 3.6 was proved in [12] for the cage- 1, and basically the same proof works for gengral < p < co.

Lemma3.6. Let T: L, — Lp, 1 < p < oo be a non sign embedding operator. Then for all subsetsFSwith positive
measure there exists a subspace X(S) of Ly, X = L, such that Jx is compact.

. . . 1
Proof. We can choose by induction sétsin S such thaty = S, Ay = AU Aoni1, Aon N Agnir = 0, u(Agn) = zy(An),
1A2n B 1A2n+1

H(An)?
odd number and let = '%1 SinceT is not a sign embedding, there exigtssuch thatfyn = 0, lynl = 1a,, and

and||T x| < wherexn = . In order to do that assume that we haweA,, ..., Ax wherek is an

(ITynll < Z;il,u(A,Q% Then setx, = A” —, Aon = {X: Xn(X) = 1}, andAgni1 = {X : Xa(X) = —1}. Itis not hard to see

that (x);2, is isometrically equwalent to the usual sequence of Haactians and henck = sparfx;} is isometric to
Lp. From the fact thatx() is a monotone basis fof it is easy to deduce thdix is a compact operator. m|

Note that Lemma 3.6 immediately implies that for every ceenpénted subspacéof Ly, Y =~ L,, there exists a
complemented subspaecC Y, X =~ L, such thaflx is compact. The following lemma, which is also an immediate
consequence of Lemma 3.6 and Theorem 3.4, will be used irethest

Lemma 3.7. Let T € £L(L;), 1 < p < 2, be an Ly-strictly singular operator. Then for any X L, X ~ Ly ande > 0
there exists Y X, Y = L, such thai|Tyy|| < &.

Proof. Again, this result immediately follows from Lemma 3.6 ande®hem 3.4. AL-strictly singular operator
cannot be a sigh embedding (Theorem 3.4) and then we userb&wction in Lemma 3.6. From the fact thag)(is
a monotone basis foX it follows that||Tix|| < . O

Remark 3.8. Clearly the proof we have for Lemma 3.7 depends heavily onréhe3.4 which is the deepest result of
this paper. We do not know if an analogue of Lemma 3.7 hold3 fop < co.

Proof of Theorem 1.3 in the case af,l1 < p < 2. This is a direct consequence of Theorem 3.4 and Lemma 34. Fir
we find a complemented subspacec Y, X’ ~ L,. Now we observe that an,-strictly singular operator cannot be a



sign embedding operator (Theorem 3.4) and then we use Len@iarX’ to find a complemented subspae X',
X = Ly, such thaflx is a compact operator. m|

3.2 Operators that preserve a copy ot

Definition 3.9. For T : L, — L, and X¢ L, define the following two quantities:

f(T.X) = jnf ITx| ©)
oM, X)= sup f(T,Y). 4)
YcX
Y=L,

Clearly f(T, X) does not decrease ag(l, X) does not increase if we pass to subspaces. For an arbitraspace
Z c Lp, Z ~ L, note the following two (equivalent) basic facts:

e Tz is an isomorphism for som& c Z, 2’ ~ L ifand only ifg(T, Z) > 0
o Tz is Lp-strictly singular if and only ig(T,Z) = 0

Proposition 3.10. Let S: Ly, — Ly, 1 < p < 2, be an Ly-strictly singular operator and let Z be a subspace @f L
which is also isomorphic to . Then for every operator € £L(L,) we have ¢T + S, Z) = o(T, 2).

Proof. If Tz is Lp-strictly singular thenT + S),z is alsoLp-strictly singular hence(T,Z) = (T + S,Z) = 0. For
the rest of the proof we consider the case where there eXistsZ, 7’ ~ L, such thafTz is an isomorphism hence
o(T,Z2) > 0.

LetO<e<g(T,2)/4andlety C Z,Y ~ L, be such thag(T,Z) — e < f(T,Y). Using Lemma 3.7 we findfy C Y,
Y1 = Ly such that|Sy, || < &. Now

9T +S,2)> f(T+S,Y) > f(T,Y) —e> f(T.Y) —e > g(T,Z) - 2¢

hencey(T + S, Z) > 9(T, Z) — 2. Switching the roles of andT + S (apply the previous argument for+ S and-S)
gives ug(T, Z) > 9(T + S, Z) — 2¢ and sinces was arbitrary small we conclude thg(f + S, Z) = o(T, Z). m]

Lemma 3.11. Let X and Y be two subspaces ¢f Il < p < 2, such that X~ Y ~ L,. Then there exist subspaces
Xy € X, Y1 €Y suchthat X = Yy =~ Ly, d(Xg, Y1) > O, and X + Y; is complemented subspace f IMoreover,
X1 and Y; can be chosen in such a way that there exists projection onte ¥§ with norm depending only on p and
X1 + Y1 is isomorphic to | with the isomorphism constant depending only on p.

Proof. Without loss of generality, by passing to a subspace if rezcgswe may assume th¥t~ Y =~ L, are two
complemented subspaceslgf Our first step is to find two subspacésc X andY; C Y which are isomorphic to,
andd(Xl, Yl) > 0.

LetP: L, - XandQ: L, — Y be two onto projections. We consider two cases for the ope@;: X — V:

Case 1.Qx is Lp-strictly singular. Fixs > 0. Using Lemma 3.7 we fin¥; C X, X; = L, such thaf|Qxx,|| < §. We
are going to show that(Xy, Y) > 0.

Let x € Sx, andy € Y be arbitrary. Ifilyl| ¢ [%, 2] then clearlyj|x — y|| > % If not, then
IQX— QWi _ IOX-=vIl _ IMl—llQxl 1 /1

=== = e 2 ar a2 Y




Sincex andy were arbitrary we conclude theX;, Y) > 0 (here we také&; = Y).

Case 2.Qx is notL-strictly singular. Fixs > 0. Then using Theorem 3.4 we find C X such thafX’ is isomorphic
to Lp andQx is aK, isomorphism. Without loss of generality we may assumeXiat L,(v) for some non-atomic
measure.. Now we find two disjointy-measurable sefsandB with positive measure and denote= Lp(A) C Lp(v),
X2 = Lp(B) € Lp(v), andY; = QXo. Clearlyd(X, Xo) = 1 and we are going to show thaX;, QXz) > 0.

Letx € Sx, andy = Qze QX. Then

IQx-Qal _ Ix-2| _ 1
IR~ K Tk

lIx—vil >

Having X; andY; from our first step, without loss of generality (by passing &ubspace if necessary) we may assume
thatX; andY; areK, complemented i, andK isomorphic toL, and, for simplicity of notation, we will us¥ and
Y instead ofX; andY;.

LetP: L, —» XandQ: L, — Y be two onto projections of norm at mdsp. It is easy to see that & Q)x is not a
Lp-strictly singular operator. If we assume that this is net ¢tase, fixy > 0 and using Lemma 3.7 we find c X,
X' = Lp, such thafl(l - Q)x |l < 6. Butthen forx’ € Sx. andQx € Y we havel|x’ — QX|| < 6 which is a contradiction
with d(X,Y) > 0 sinces was arbitrary. Similarly, we show that £ P)y is not aLp-strictly singular operator.

Fix e > 0. LetX; € X, X = Lp, be such thatl(— Q)x, is an isomorphism and - Q)x, is a K, isomorphism.
By Theorem 3.4 there existsk, complemented subspade c (I — Q)(X1) which is alsoK, isomorphic toLp.
DenoteX’ = ((I = Q)ix,) 1(X2). Now X’ ~ Lp and it is easy to see that is complemented i, (via the projection
(1 = Q) 1Px,(I — Q) of norm at mosK2, wherePy, is a projection of nornkK, onto Xy).

Similarly, we findY” C Y such that” is K, isomorphic ta_p, Kg complemented i, and (—P);y- is anisomorphism.

LetRR; andR; be projections ontd - Q) X’ and ( —P)Y’, respectively, of norm at moth. Denote by : (I-Q)X —
X’ the inverse map ofi(- Q)x : X" — (I — Q)X and, similarly, denote by, : (I — P)Y’ — Y’ the inverse map of
(I-P)y : Y — (I -P)Y’. Then a basic algebraic computation shows B¥iR; (I — Q) + QV-Rx(I — P) is a projection
ontoX’ + Y’ of norm at most K.

Consider two onto isomorphismig : X’ — L, T> 1 Y — Lp such that|Ti|| = 1 and||Ti‘1|| < Kpfori =12

(such exist by our choice oX” andY’). Then the operatofz : X' +Y — L, &, Ly, = L, defined byTs(2) =

(T:Va(l = Q)z ToVo(l — P)2), for everyze X’ +Y’, is an isomorphism with isomorphism constant depending onl
p, which finishes the proof.

O

Lemma 3.12. Let T € L(Lp), 1 < p < 2, and assume that for every XL, X ~ L,, there exists a subspace X X,
X1 = Lp, and a constani(Xy) such that Tx, = A(X1)lx, + S(X1) where §X1) is an Ly-strictly singular operator. Then
there exists a constanitand an Ly-strictly singular operator S such that¥ Al + S.

Proof. Let X andY be arbitrary subspaces bf, which are also isomorphic tb, and letX; € X andYy C Y be
the subspaces from the statement of the lemma. We will shat(iX;) = A(Y1). Without loss of generality, using
Lemma 3.11, we can assume tiatn Y, = {0} andX; + V; is a closed and complemented subspads,ot et

T, =Aalx, +S1 Ty, = 2ly, + Sa.
Lett: X; — Y; be anisomorphism and defide= {x + 7(X) | X € X1}.

T|z =T(X+TX) 2/11X+ /12TX+S]_X+SQTX. (5)



The operatoS: Z — L, defined byS(x + 7X) = S1x + Sorx is L-strictly singular as a sum of two such operators.
From the assumption of the lemma, there eXist Z andAz € C such tha#Z; ~ L, and

T‘z1 = /13|z1 + 53 (6)

whereS; is Lp-strictly singular. From (5) and (6) we obtain that the operd.: Z — L, defined byT1(x + 7X) =
A1X+ o7X— A3(X+ 7X) is alsoL p-strictly singular oriZy, i.e T4|z, is Lp strictly singular. The last conclusion is possible
if and only if 1; = 1, = A3. In fact, if we assume thal; # A3, then, the operatoF; will be an isomorphism o
because for every e Sy, we will have

|41 — A3
1+l

Ao —
X+2
A

ITe(X+ X)) = |21 — 43|

A
3%
A3

> |21 — Aald(Xq, Yo)lIX] > d(Xa, Yo)IIX + I

Let A = A(Xy) for every subspack; as in the statement of the lemma. Now it easily follows that T is Lp-strictly
singular. Indeed, if we assume otherwise, then there eaistshspac& < L, Z =~ L such that {l — T);z is an
isomorphism. But according to the assumptions of the lentheg existsZy ¢ Z, Z = L, such that {I — T)z, is
Lp-strictly singular which contradicts the fact thal (- T),z is an isomorphism. This finishes the proof. ]

An immediate corollary of Lemma 3.12 is that for an operdter L(Lp), 1 < p < oo, not of the formil + S, whereS
is anLp-strictly singular operator, there exists a complementdggaceX c Ly, X = L such thatT —Al)x preserves
a copy ofL, for everya e C, and this is in fact what we are going to use in the sequel.

Lemma 3.13. Let T € L(Lp), 1 < p < 2, and assume that for every X L,, X = L, and everys > 0 there
exist % c X, X = Ly, andA = A(Xy) such that g1l — T, X;) < &. Then for every > 0 there existsl, such that
9(2:! =T, Lp) < Dpe where [ is a constant depending only on p.

Proof. From the assumption in the statement of the lemma, withast &6 generality we may assume that for every
X C Lp, X = Ly, and everye > 0 there existX; ¢ X, X; = Lp, and1 = A(Xy) such thatg(al — T, X;) < & and

(Al = T)x, is an isomorphism. 1§(Al — T, X;) > 0 this can be achieved by passing to a subsyace X; for which

f(Al = T,Yy) > 0. If g(al =T, X1) = 0 for eachX; c X, X; = Ly, using the fact thag is a continuous function of,

we findAg such that O< g(1ol — T, X) < ¢ and then findX; c X, Xy =~ L, such thatf (2! — T, Xy) > 0.

Fix ane > 0 and letY; andY; be any two subspaces bf, such thaty; ~ Y, = L,. From our assumptions, there
exist complemented subspacésY; such thaty] C Y, Y] = L, andg(A(Y/)l - T.Y]) < e fori = 1,2 and without
loss of generality, using Theorem 3.4 and passing to a sabspaecessary, we may assume tiaandY; areK
complemented iy and (Q(Y/)I - T)yy is aKp-isomorphism fof = 1, 2. Then we apply Lemma 3.11 to get subspaces
X1, X2 such that

e XicY/, Xi~Lpfori=12
e X1 N Xy ={0}

e X; andX; ared, complemented and, isomorphic toL, via A(Y;)l — T andA(Y;)l — T, respectively, for some
constant, depending only o (this follows from Lemma 3.11 and our choiceyfandY,)

e X1 + Xz is closed and complemented subspacé pfind there exists a projection ot + X, with norm
depending only op

SinceX; C Y/, i = 1,2, we havegg(A(Y])l - T, X;) < efori = 1,2 which in view of our choice 0K; andX; implies
max(|(A(YD! = Tl 1Y) = T)ix,ll) < dpe. (7)

Our goal is to show thdf(Y;) — A(Y3)| < cpe for some constart, independent o¥; andYy,.

Letr: X; — Xz be an isomorphism such thit| < d3 and||z™%| = 1. Define

Z={X+71X|X€ X}.



By assumption, there exis& C Z, Z’ ~ Ly, andA(Z’) such that 0< g(A4(Z")l - T,Z’) < e andA(Z’)| - T is an
isomorphism or’ (like the argument in the beginning of the proof). Using Tieew 3.4 we findZ” C Z’ such that
Z" is Kp isomorphic toLp via A(Z’)I — T (clearlyg(A(Z2’)l - T,Z"”) < g). LetU = A(Z")l — T and define an operator
S:Z' — Lp by S(x+ 7X) = A(Y7)x + A(Y)rx — TX— Trx. A simple application of the triangle inequality combined
with (7) implies

IS(x+ X < d3e(IXl + [lXI). (8)

From our choice oZ” we also have
IAZ )X+ 7X) = T(x+ X)) < Kpe(lIXl| + [I7XI) 9)

and combining (8) and (9) gives us
I(U = S)(x+ Il < (Kp +dj pe(lIX + lirxl) < (Kp + dy p(L+ ds pelIXl. (10)

On the other hand

(U = S)(x+ )1l = I(AZ") = AYD)X + (UZ') = A(Y))TXI| = Ap(IA(Z") = AYDIIXI + [A(Z7) = AN)lIX])

> Ag(AZ) — A +IAZ') — AN = Ad(Y2) — ACYIIN] 1

(Ap depends omly, K, and the norm of the projection oni; + X, which also depends op only). Combining

(8) and (9) we geta(Y;) — A(Y))| < Wa Now we defined, = A(Y;) and it is not hard to check that

gl =T, Ly) < (1+ HorDLrddy, O

Remark 3.14. Let1 < p < co. Suppose that there exists a sequence of nunilygts such that g1, - T, L) — 0.
Then there existg such that 1l — T, L) = 0. This is easy to see by noticing thgiig— T, L) is bounded away from
0 for large A, so without loss of generality we can assume thamhe——> A. Then, ifdal = T, Lp) = 46 > 0, there

exists YC Ly, Y = Lp, suchthat {a1 =T, Y) > 25. Now if[A—u| < 6, then flul =T,Y) > dandhence (ul -T,Lp) > ¢
which contradicts our original assumption about the seaqagn; };°;

From the last remark it trivially follows that it € £(Lp), 1 < p < oo, is such thafll — T preserves a copy df, for
every4, then ipfg(dl -T,Lp) >0.

Lemma 3.15. Let T € L(Ly), 1 < p < 2, and assume thatl — T preserves a copy ofglLfor everyd € C. Then
there exists > 0 and a subspace X Lp, X = Lp, such that for every Xc X, X ~ L, , and everyl € C we have
gl =T, X) > &.

Proof. The proof is a straightforward from Lemma 3.13 and the lastak. m|

The next result of this section is a reduction lemma thathélp us later.

Lemma 3.16. Let T,P € L(Lp), 1 < p < oo, be such that P is a projection satisfying P L, and(l — P)TP is an
isomorphism on a subspacecXLp, X = L. Then there exists a subspaced p suchthatZ~TZ ~ L,, d(TZ Z) >
0, and Z+ TZ is a subspace isomorphic t¢g nd complemented inpL

Proof. DenoteY = PXand note that from the statement we have L. Since ( — P)T is an isomorphism ok, for

everyx € Y we have|(l — P)TX| > clx| > c”“TT’fI' Now if X,y € Y are arbitrary such thatx € Sy then

I =P)TXI c

d(TY.Y) > [Tx-Vy| > >
(YY) = ==e =mm—ri

Without loss of generality we me assume that bo#mdT Y are complemented ibp. This can be done, for example,
by choosing a complemented subspades TY, Y; =~ L, and then considering(y)~1Y; instead ofy.
Let Py be a projection ontd and denotd”’ = (I — Py)T Py. SinceT is an isomorphism ol andd(Y, TY) > 0 we have
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thatT’ is an isomorphism olY. Now we choose a subspa¥geC T’Y which is isomorphic td., and complemented
in Lp and denot&Z = (T"Y)‘lYl. Clearly Z is isomorphic toL, and complemented ih, via (‘I'"Y)‘lelT’, where
Pv,: Lp — Y1 is a projection onter;. LetV be the inverse of the isomorphisity) — T’(y), y € Y. Itis not hard to
see thaPrz := VPy, (I — Py) is a projection fromi_, onto T Z such thatPrzZ = {0} and then it is straightforward to
verify thatPrZ + Pz(I — Pyz) is a projection ont@ + T Z, which finishes the proof.

Proof of Theorem 1.2 for, 1 < p < 2. Inview of Lemma 3.12, we can apply Lemma 3.15Toand letX ande be
the one from Lemma 3.15. Without loss of generality we maymagsthatX is complemented (otherwise we may pass
to a complemented subspace). Mebe an isomorphism frorh,, into L, such thai/L, = X.

Fix 6 > 0 to be chosen later. We will build sequenég$”; in X, and{a };2; and{b;};>, in L, such that:

1. {&}2; and{b;};2; are block bases dfgo} U {hn,i}ﬁio,izil such that if we denote; = supfda;} U supgb;}, where
the support is with respect to the Haar basis, theifZ, is a disjoint sequence of subsetslafo} U {hn;i}2 |2:1

2. {yi})i2, is equivalent to the Haar basis fiog

3. llyi —aill < %Ilyill and||Ty: — byll < %IITy.II forall1<i < co.

The construction of these sequences is similar the consinuaf Lemma 3.11 and we sketch it below for complete-
ness. As before, bl s we denote the projection onto the linear spaﬁpj}rﬁ:kzi":l.

Lety; = Shy;. There existsy such thatly; — Pnyyill < Sllysll andlTys — Paay Tyall < $ITyall. Letay = Panyys
andby = Pn,)Tyr. DenoteAl = {x: V71ly;(x) = 1} andA] = {x : V-1y;(x) = —-1}. Let{z}}°; be the Rademacher
sequence oA} and{Z};2, be the Rademacher sequence’gnUsing the fact that the Rademacher sequence is weakly
null, we findl such that

s
152~ P, Sall < IS4l
s
ITSZ- Py TS < ITS
s
ISZ - Py Sl < lISHI
§
ITS%-Pr. TSI < 1—6||TS¢||,

Definey, = Sz, ys = S and findn such thatlyx — P,y Ykl < 31yl andlIT Y = Pany TYI < §IIT Wil for k = 2, 3.

As before, lety = P, ny) Yk andbx = Py n,) T for k= 2, 3.

Continuing this way, we build the other elements of the saqesly;};2,, {a}i2; and{b;};Z,. From the constructionitis
clear that{(suppy; U suppT y)};2, are essentially disjoint. If we deno¥e=Spaity; : i = 1,2,...} we have thaY is a
complemented subspacelgf which is also isomorphic ta,. To see this it is enough to notice that'y is isometric

to L, (since it is spanned by a sequence which is isometricalljvatgnt to the Haar basis) and hence complemented
in Lp. One projection onty is given byPy = VP,-1yV~1Px. From now on, without loss of generality we assume that
X =Y (since we can pass to a subspace in the beginning if necgssary

As in the argument in Lemma 3.11, using the principle of srpaliturbations, it is easy to see that the subspace
A =3Spana : i =1,2...}is complemented. A projection ontdis given byP, = GPyG™! whereG € £L(Lp) is
defined by

G=1-2 %0 -a)

(in the definition abovéy;'} are the biortogonal functional {g;}). Using Proposition 3.3 we find a projecti&a onto
Athat respect supports. L8t: A — L, be the operator defined by

S=1->a0@ -y
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where{a;'} are the biortogonal functional {@;}, and note thab A= Y(= X) and||l - SJ| < 46. LetalsoS’ : A — L, be
the operator defined b§'a; = T, — by and letT’ = T — S’Pa. It follows easily thaf|S’|| < Cé||T||, whereC depends
only onp, since

: 26Tl
IS8l = ITa - bil = IT(a ~ ) + Ty b < 2L

First we show thatl(— PA)T’Pa preserves a copy af,.
If not, we have thatl(— Pa)T’Pa is Lp-strictly singular and hendeaT’Pa preserves a copy df, (otherwiseT"A will
beLp-strictly singular which is false). We also have the inetya(PaT Pa, A) > £/2. In order to show it we need to

go back to the definitions df(:, -) andg(:, ). Fix A’ € Aanda € C. We shall show thag(al + T', A") > g We may
assume thafl| < ||T’|| + 1(otherwisef (Al — T’, A’) > 1). Letx € Sp be arbitrary.

(A1 =T > [I(Al = T)SH = [I(A = T)X= SR > [|(Al = T)S A = [[S'PaS § = [I(4l = T")(x = S|
> (1-40)f((Al = T), A') = CAlITIIIPAIl(L + 46) — 4(2IT']| + 1)o.

Taking infimum over the left side we obtair{(1l — T’), A’) > f((al - T), A")/2 for suficiently smalls and hence
g(Al =T’,A’) > g/2 for everya € C. Using the fact thatl(- Pa)T Pa is anLp-strictly singular operator and Proposition
3.10 we obtain c

9(PAT'Pa, A) + (1 = PA)T'Pa. A) = (T'Pa. A) > .

Let PaAT’a = Aig (we can do that sinc@€a respect supports). Till the end of this proof it will be conignt to
switch the enumeration of tHe;};2, to {an},, ?:1 , which is actually how we constructed them. For eachising the
: . . L 2
pigeon-hole principle, we can find a gefn) with cardinality at Ieastéh and a numbeg, such thatup — 4| < %
A
for everyi € o(n). Clearly, there exists an infinite sub$ét C N and a numbeg, such that

&
Z ltin — pel < ﬁ)

neN;

LetZ =Sparias; : ne Ny, i € o(n)}. Using a result of Gamlen and Gaudet (see [7]), we havedhat , and clearly
Zis complemented i, Now note that

(el — PAT )zl < g henceg(u,! — PAT'.2) < g (12)
On the other hand,
5 <00l =T/ A) = g(Guel = PAT") = (1 = PA)T', A) = glucl = PaT'. A) (13)
since ( —PA)Tl’A is Lp-strictly singular. The equations (12) and (13) lead to caxtittion which shows that £ PA) T’ Pa
preserves a copy df,, sayZ’. Now||(I — Pa)T'Pa — (I = Pa)T Pall = [I(I — Pa)S’Pall < CSITII(IPall + 1)? hence, for

suficiently smalls, we have thatl(— Pa)T Pa is an isomorphism o0&’ and clearlyd((1 — Pa)T PaZ’,Z’) > 0. In view
of Lemma 3.16 this finishes the proof. m|

4 Operators onlL;

Recall that we have already proved Theorem 1.3 in the cake. dfhe proof in this case does not involve anything
new and can be done only using the ideas found in [12], whichave already mentioned.

Now we switch attention to the operators not of the fori+ K whered e C andK is in M_,. Our investigation will
rely on the representation Kalton gave for a general opecatt; in [9], but again Rosenthal’'s paper [12] is a better
reference for us. Before we state Kalton’s representatien&ed a few definitions.

Definition 4.1. An operator T: Ly — L; is called an atom if T maps disjoint functions to disjointdtions. That is,
if u(suppf N suppg) = 0thenu(suppT f NsuppTg) = 0.
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Unlike the notation for 1< p < oo, here supp refers to the support with respect to the intgovdl]. A simple
characterization of the atoms is given by the following knastructural result.

Proposition 4.2 ([12, Proposition 1.3]) An operator T: L; — L is an atom if and only if there exist measurable
functions a: (0,1) » Rando : (0,1) —» (0,1)with Tf(x) = a(x)f(ox) a.e. for all f € L;. Moreover, a pair of
functions a andr represent an atom T if and only if € sup((u(s))™* L,l(s) laldu @ u(s) > 0} < o0, and then|T|| = K.

In [12] the following definition is given:

Definition 4.3. Let T: Ly — L; be a given operator.

(a) Say that T has atomic part if there exists a non-zero atanh A— L; with0 < A < [T|.
(b) Say that T is purely continuous if T has no atomic patrt.

(c) Say that T is purely atomic if T is a strodgsum of atoms.

The condition (c) in the preceding definition simply mearat there is a sequence of atofiig};2 fromL; toL; and
K < oo sothatforallf € Ly, Y |IT;fll < K|If||andT f = 3 T;f.

Here is Kalton’s representation theorem for operatork ptihe way it is stated in [12].

Theorem 4.4. Let T : Ly — L; be a given operator. There are unique operatogsTk € £L(L1) so that T, is purely
atomic, Tc is purely continuous, and E T, + T.. Moreover, there exists a sequence of atc{)iﬁ]$‘j’°:l sothat Lis a
strong¢;-sum of{T,-}‘J?‘;l and the following four conditions hold

L XS T fl < (Talllifil
2. (Tif)(X) = a(X)f(ox) a.e. where a: (0, 1) — R are measurable functions, ard : (0,1) — (0, 1)
3. Foralli # j, oi(X) # oj(X) a.e.

4. laj(X)| = laj+1(X)| a.e.

Note that ifE is a set of positive measure such tagix) # 0 a.e ong, thenu(c;(E)) > 0. Indeed, leF c E be such
thatlaj(X)| > a > 0 for everyx € F. Now T;1,,r) = 1fa; implies that|[T;1,,rll > O henceu(cj(F)) > 0. The
power of Kalton's representation theorem is that it reduany problems about operatorslonto measure theoretic
considerations. This is illustrated in the proof of thedaling proposition.

Proposition 4.5. Let T € £(L;) be a non-zero atom such that# Al for any A € C. Then there exists a subspace
Y c Ly suchthat Y= L1, d(Y,TY) > 0,and Y+ TY is complemented in L

Proof. By the definition of atom we have thaf €)(x) = a(x) f (ox) for somea ando. We consider two possibilities
depending omr.

1. If o = id a.e on (01) thena(x) # const a.e (otherwis€ = Al for somel). Then we find two dtferent numbers
A1, A2 and a positive numbersuch that

e |11 — Ay > 36
e There are closed sets C {x: |a(X) — 4j| < ¢} so thatu(A;)) >0 fori=1,2

To see this we can consider a good enough approximatia(fvith a step function and without loss of generality
we may assume that # —1. Note also that we can choosas small as we want (independentigfand ;) which
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choice we leave for later. Clearl; N A, = 0 and, since they are closed, by shrinkihgie can assume that they are
at a distance of at leagtapart. From our choice dfj, i = 1, 2, we also have

ITf-A4H)1zl <ollfLall,i=212
LetS: Li(A1) — Li(A2) be an isometry and define
Z={fi+Sf:fielLi(A)}
Since||f1 + S fi|l = 2||f1]| we immediately have thaZ = L;. It is also clear thalz is an isomorphism because
max|dal, |12]} > gd and hencd{T(f1 + S £)|| = maxX|Ay — 6|, |22 — S|}l f1ll > 6/2|| 1| for every i € Li(A1).
To show thad(Z, TZ) > 0 assume thalT (g + Sd|| = 1 for someg € L1(A1). Then for arbitraryf € L1(A1) we have

If +Sf-Tg-TSg =|f+Sf-ag-aSd =|f-ag|l+|Sf-aSd
=|If =219+ (A1 - a)gl + IS f- 1S g+ (12— a)S 4|
> |If — A9l = [I[(A2 — &gl + IS f— 225 d| - [I(22 — @)S d|

/l
> 1 = Aagll + 11 — Aogll — Slgll - SIS Al > 11 — Aaligll - 251gll = =42 g.
Now we observe thdfT (g + Sg|| = 1 implies||g|| > 2”1T“ hence
dTZ2)= inf If +Sf-Tg-TSg > A2
IT(g+Sgll=1 6T
f,ge Li(A1)

DefineT; f(X) = 21T (X)1a,(X) + 22T (X)14,(X) and letK = T — T;. Denote byP; the natural, norm one, projection from
L; ontoL3(A;) and letP = Py + ‘”18 PL. Itis easy to see th& is an idempotent operator sinBgS P, = 0. To see
thatP is a projection ont@ + le note that

/12+1
+1

1 1
Pf= P]_f + S P]_f = —((/11 + 1)P1f + (/12+ 1)S Plf) = —(Plf +S Plf +/1]_P1f +/128 P]_f) € Z+le
A1+1 A1+1
Now we observe thak + TZ = Z + (T1 + K)Z and use the fact thiiKz|| < § to conclude that for dticiently smalls,
Proposition 2.2 guarantees that the subs@aed Z is complemented.

2. 1f o #id a.e on (01) letA = {x | o(X) = x} and denote' = (0,1)\AandB = A’ N {x | a(x) # 0}. We have two
cases depending qiiB).

Case 1u(B) >0
In this case we show that there exiatg B such thaji(Ano(A)) = 0. Denotay, = {X : [X—0o(X)| > = nB Obviously
Up,ak = {X 1 [X=0o(X)| > 0} n B = B and the latter set has positive measure by assumption, Ithaeumemst% for

which p(ay,) > 0. Now
2ko-1
o= (J (e )
ng ho+l

n=0
so there existsy such that if we denotg’ = ay, N [%, e thenu(B’) > 0. From the way we definegl it is evident
thatg’ N o (B8’) = 0 because diamg() < i and|x — o(X)| > % for everyx € B'. Using the proof of [9, Lemma 5.1] we
find a measurable sgtc 8’ such thafT |, ) is an isomorphism. It is clear the{L1(8), T L1(8)) = 1 sinceL1(B) and
T L1(8) have disjoint supports. The fact tHat(B) + T L;(B) is complemented ih; follows from the facts that,(8) is
norm-one complemented, is an isomorphism (hencEL,(B) is complemented), anid;(8) andT Ly (8) have disjoint
supports.

n n+1

"2 2o

Case 2u(B) =
In this case we havg(A) > 0 (otherwiseT will be a zero atom). There are two sub-cases:
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e If a(x) # const a.e om\.
Then we proceed as in the case- id a.e on (Q1) but we consideA instead of (01).

e If a(X) = const= 1 a.e onA.
Note thati # O since otherwis& will be a zero atom. Then again we proceed as in the oaseid a.e on
(0,1) consideringl; = 4 andA, = 0. We can do this since(A’) > 0 andu(B) = 0 henceu(A’\B) > 0, and
T f(X) = a(X) f (01X) where
_f o(x) if x¢g A\B
ri(x) = { X if xe A'\B

O

Remark 4.6. Note that Proposition 4.5 is also valid when consideringrapas T : L1(v1) — Li(v2) wherev; and
v, are two non-atomic measures on some stégebra on(0, 1) and this is in fact how we are going to use it.

Now we proceed to the proof of Theorem 1.2 in the asel.

Proof of Theorem 1.2 in the casg.LFirst, using Lemma 3.15, we find > 0 and a subspac¥ C L; such that for
everyX’' € X, X’ = L, and everyl € C we haveg(dl — T, X") > . Then consider an onto isomorphiSn L; — L;
such thatS X = L3(A) whereA can be any nonempty open interval. Adr= STS?* we haveg(1l — T, X’) > & for
everyX’ € S X= L;(A) wheree’ = W Itis clear that it is enough to prove the theoremTdrso without loss of
generality we may assume that= T ande = ¢'.

LetT = T, + T be the Kalton representation férand fixs. First, we use Rosenthal’'s remark before Lemma 2.1 in

[12] to find an atonV and setA; C A such thal[Tay,a,) — VII < 1—80 Since purely continuous operators are not sign
embeddings, we apply [12, Lemma 3.1] to find a norm one comghted subspac¥’ C Li(A;) such thatX’ = L;
and||Tgx |l < % From our choice oK’ it follows that

g(al =V, X") > g for every A € C and everyX” ¢ X', X" =~ L;.

From the last inequality it is clear th&t: X’ — L, is a non-zero atom andx # Al. Now Proposition 4.5 gives us
the desired result. m]
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5 Appendix

Before we start with the proof of Theorem 3.4 we recall somthefnotation we previously used and note some of
the properties 05(x), the square function defined with respect to the Haar bamis (general definition o$(x) see
Definition 3.2).

Recall that unless otherwise notég,denoted ([0, 1], 1) wherey is the Lebesgue measure. The unconditional basis
constant of the usual Haar ba$i51,i};‘;o,i221 inLp, 1 < p < oo, is denoted byCp. Recall also thafrn}?, is the

Rademacher sequence onIp(defined byr,, = Ziz:nl hn,).

Denote by&, the finite algebra generated by the dyadic intervals [{)2",i2™"], i = 1,2,...2", and by&, the union
of all these algebras. It is clear that the algefifas generated by the supports{dﬁn,i)}izz"l.

If f andg are functions inL, which have disjoint supports with respect to the Haar bdbis) it is obvious that
S2(f + g) = S*(f) + S*(g). This will be used numerous times. Lk}, be a sequence of functionslip, 1 < p <
oo, which are disjointly supported with respect to the Haaisabsing the unconditionality of the Haar basis and

Khintchine's inequality we obtain
1 p 1/p
[z o
0

ixk zcgl{fl irk(u)xk irk(u)xk
k=1 lp 0 flk=1 k=1

whereA, is the constant from Khintchine’s inequality.df = ; axihn,, k= 1,2, ... are disjointly supported vectors
with respect to the Haar basis, using (14) fieg;hn, }x; we obtain

l i xkl > C,'A,
p

1

5]

k=1

1/p
—c-! -1
=C, > C,lA

p

. (14
p

p
du
p

p

| 1 [2 sz(xk)] ] . (15)

1( o 5
<C,B s?
<o [ [Ze)

From the last two inequalities it follows that the najiirill, = [IS(-)llp is equivalent to the usual normir, 1 < p < co.
Now we proceed to the main theorem of this section.

P
2

In a similar manner

p

(16)

Theorem 3.4. For eachl < p < 2 there is a constant Ksuch that if T is a sign embedding operator frogjQ, 1]
into Lp[O, 1] (and in particular if it is an isomorphism), then there is 3 Bomplemented subspace X @fQ, 1] which

is Kp-isomorphic to 1[0, 1] and such that |k is a Kp-isomorphism and {X) is K, complemented in

Moreover, if we consider §[0, 1] with the normi|X|ll, = IS(X)Il, (with S being the square function with respect to the
Haar system) then, for eaeh> 0, there is a subspace X o0, 1] which is(1 + &)-isomorphic to L;[0, 1] and such
that Tix is a (1 + &)-isomorphism (and X and(K) are K, complemented inJ).

Proof of Theorem 3.4: Let T be as in the statement of the theorem. Without loss of gatefs¢e e.g. Lemma 9.10
in [8] and note that only the boundednesdak used)T h,;} is a block basis thn»i}ﬁ'io,izzl- ForE € &, put

Va(E) = s[ > Tm,i],
hniCE

wherehy; C E is a shorthand notation for supp{hC E. Put alsov, = vn([0,1]) = S(Zizzanhn,i) = S(Try).
Claim 5.1. The convex hull o2} is p/2-equi-integrable; i.e., the set

V= {(Z 2R Y a? < 1}

is equi-integrable.
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Proof. The proof is a refinement of the argument on page 265 of [8fceSihe convex hull of any finite set Iy, » is
p/2-equi-integrable, it follows that if the convex hull @£} is notp/2-equi-integrable then there arg> 0, successive
subsetsry ¢ N, and disjoint subset\n}%_, of [0, 1] such that fom2, = 3., @2V2, whereY, ., o2 = 1 for allm,

we have
1/p
(f Wﬁ]) > &9. a7
Am

Using (15) and (17) (the estimate in (15) we can use siii¢g} are disjointly supported with respect to the Haar
basis), for alfan}_, € {> we have

(Cime182)? =1 Ty am Sneog @nlllz 1| 21 8m Tnery @il > ITIH S 8m Znecry @n T Fallp
> [ITIIF2C5 A fol(z:;l a4 Ynecr, @S (Trn))P2)HP )
= ITITC Ap( [y (Zime1 8 Sneor, @AVA)PAYP = [ITIFIC Ap( [y (Sineg @awa) P3P
> |TIC Ap(Xe [amlP [, Wi P > I TICL Apeo(Zny lamlP) P

which leads us to contradiction sinpe< 2. m|

Proposition 5.2. There is an additive 572 valued measurey, on& and there are successive convex combinatigiig u

of {v2(-)} such that for all Ee & we have w(E) — A(E) almost surely and in };,. Moreover, for any sequeneg — 0,
there are measurable sets, @ [0, 1] with 4(Dy) > 1 - &, and such that for all E= & and all n, uy(E)1p, — A(E)1p,
as m— oo also in L.

Proof. We start as in the proof of Lemma 6.4 in [8]: Since the\sétom Claim 5.1 is bounded ihp,2, by a result of
Nikishin [11] for eache > 0 there exists a s&@ = D, c [0, 1] of measure larger that-1 & such that

sup | vdu < oo.

veV JD
Note that we may assume thBt/; c Dini1) forn = 2,3,.... As in the proof of [8, Lemma 6.4], using the
weak compactness ®p,,, ¢ L1, we can find successive convex combination§) of thev2(-) such thaum(E)1p,,,
converges pointwise and iy to A;(E)1p,, for everyE € &, whereA;lp,, is L]-valued additive measure. Now
we can find successive convex combinatiagg-) of the un(-) such thaw,(E)1p,, converges pointwise and Iny to
A2(E)1p,, for everyE € &, whereA;1p, , is L] -valued additive measure. Note thetlp, , = A1lp,,. Continuing in
this manner and taking a diagonal sequence of the sequehsasogssive convex combinations we get a sequence,
which we still denoteuy, of successive convex combinations of teand alL§-valued additive measure such that
for everyn Alp,, is Lj-valued anduy(E)1p,, converges, am — oo, pointwise and irL; to A(E)1p,, for every
E e é&.

It remains to show that the convergence is alsbgn (on the whole interval). Since for eaé&h {un(E)} is p/2-equi-
integrable, it follows that, given anyy> 0, if nis large enougthc um(E)P/2 < ¢ for all m. Consequently, we also have

Jo: A(E)P2 <5 and

limsup [ Jum(E) - A(E)IP* <limsup [ |un(E) - A(E)IP? + 25
Dn

m—oo m—oo

< lim supl|(Um(E) — A(E))1p,I7'% + 25 = 25.

m—oo

Since this is true for any we get the desired result. m|

Note first that if we denot€ = (C3B,A(IT|))P then for allmand allE € & we have| un(E)P'2 < Cu(E), where{ur}

are from Proposition 5.2. Indeed, I&f = Y, amkVi Where{om)_ are successive subsetsoand{amilio keo,
is sequence of non-negative numbers suchhat amx = 1. Then using (15), (16) and the unconditionality of the
Haar basis we get

[un(E)P2 = f(Zkarm CYmkVE(E))lp;2 = [(Zkeon amkSH(Zhyce Th))P/? "
< (CoAYPll Sk @me(Ence THlIR < (CoAITINPI Skeon @ma(Snce Menllp
< (C2BpALHITINPI(Ekeor, @mkS* (i ce ki) Ylp < (CEBpAMITINPILENR = (CEBpAITIPu(E)
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This implies that for alE € &, fA(E)F’/2 < Cu(E). Now consider the linear operatBrdefined on the functions of
the formf = 3_, ailg, by Rf = ¥_; aiA(Ei), where theEi-s are disjoint sets i&. ThenRis bounded as an operator
from a subspace dfy> to Lp/». Indeed,

r r
f RAP2 < f 3 alPPAE)?? < C f > 1ailP2u(E:) = CIIf 122,
i=1 i=1

ConsequentlyR can be extended to all af,,» and then we defin&(E) = Rl for all E in the Borelo-algebra.

Remark 5.3. From the comments above it follows thatcan be extended to a;;).z—valued measure satisfying

fA(E)F’/2 < Cu(E) for some constant G « and for all E in the Borelo-algebra. For each nA(E)1p, is an
L;-valued measure. Note also that, since T is a sign embeddirggnot identically zero.

Lemma 5.4. Let A be a non zero Ez—valued measure on the BoretalgebraB satisfyingf A(A)P2 < Cu(A) for

some C< oo and all A€ B. Then for alle > 0 there exist a set Aand a number ) < ¢ < C, such thath(Ao) >0
and

cu(A) < f AAP2 < c(1+ &)u(A)

forall A C Aq.

/2
Proof. Fix ane > 0 and denoten = sup{fA(A)p/z/,u(A) ; A e B}. Let By € B8 be such that[/;((%‘;))p > 1. Letalso
/2
C be a maximal collection of disjoint Borel subsetsBafof positive measure satisfyi ,;((2)),, < 7. The collection

C is necessarily countable and if we assume Baat Bp \ |gec B has measure 0 then we have

1#(Bo) < [A(Bo)*? = [(Zpec A(B)P?
< fZBEC A(B)p/z < Fmg ZBEC/J(B)
= 1=1(Bo)

which is a contradiction. Thereforéy satisfies the conclusion of the lemma witk: ?ms O

Lemmab5.5. LetA be a Lg/z-valued measure and suppose thaigsuch that for all AC Ag and some constante 0,
cu(A) < f AAP? < o1+ u(A).
Then for any measurable partitionpA U F;,

| maxAF )P > @ o PO D) > 1+ 02D [ a0

Proof.
cu(Ao) < [A(A)P2 = [(ZL, A(F))P?
< J(SR4 AGF)P2)P2 maxcicn A(Fi) PP
< ([ S0y AGF)PAP2( [ mavgeien A(F)P/?) P2
<(1+ g)p/ch/z(ﬂ(AO))p/Z(f MaXy<i<n A(F;)P/2)1-P/2),
Consequently,

[ maxAF )P > @ oy PO D) > 1+ 02D [ a0

Fix ane > 0 and letAg € 8 andc be as in Lemma 5.5 so that for any partitiég = U | Fi,

f Maxa(F)P? > (1+ &) P Peu(Ag). (18)
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Approximating by a set frorf, we may assume that the gt satisfying (18) is irS. Let{Ep; };’;0?:"1 be a dyadic tree
of sets inE with Eg1 = Ag and let
Mn = max A(Enj).
I<i<2n

M, is a non increasing sequence of function:ty/lz. Denote byM its limit (in Ly, or, equivalently, almost every-
where). Clearly,

fMP/Z > (1+ &) P Pou(Ay).

We now define a sequence of functigns: [0, 1] — Ag which will play a role similar to the one played by the sequeenc
with the same name in [8, Lemma 9.8]. For eacbrder the setl, 2,...,2"} according to the order of the leftmost
points in{Ex;}; i.e.,i < j if min{t € En;} < min{t € Enj}. Letgn : [0,1] — Ag be defined bypn(t) = mint € Enj}

if 1 <i < 2"is the first, in the ordeg, such thatA(En;)(t) > M(t). For each, {¢n(t)} is a non-decreasing and thus a
converging sequence. Lgft) denote its limit. Notice that

L1 (OM() < A(A)

for everyt and everyA which is a union of the interiors of thé,j-s. Indeed, it is enough to prove this far= E;; for
somen andi. Butift e (p*l(E;’i) then fork large enougliExik) € Eni (Wheregy(t) is the leftmost point oEy () and

A(En)(t) = A(Exiw)(t) = M(Y).

Fix a sequenceen};;, en — 0, to be chosen later. Consider the vector measure

m(A) = (u(A). f oM AS A
i

and notice that it is non-atomic and even absolutely contiswith respect to Lebesgue measure. Indeed foithe
algebra generated by tli& ;-s,

f MP/2 < f A(AP? < f AA)P? < Cu(A).
A oA

The inequality clearly extends to élle 8, A C Ao.

By Lyapunov’s theorem one can find a partition/efinto two setsF11 andFy ,, of equalmmeasure. For ang; > 0,
we can perturly-1; andFj, slightly to getFy 1, F12 in the algebra generated by thg;-s which satisfy

u(F11) = pu(Fa2) = :—Zlﬂ(Ao)

(1_gl)fMp/ZSf Mp/Z’f Mp/ZS@fMP/Z,
2 ¢ 1(F11) ¢ (F12) 2

Now we partition each of 1 ; andFy» in a similar manner and then continue the process. This wagvery positive
sequenceen}’ ;, en | 0, we construct a dyadic tre€n;}’ 2" of subsets ofd, such that the elements of the tree

and

n=0,i=1
{Fn,i},’}‘;ofznly are in the algebra generated by fhg-s and foralln=0,1,..., i =1,...,2", we have
u(Fni) = 27"u(Ao) (19)
and

n n
2*"[_](1—gj)f|v|p/zsf MP/ZSZ’”H(1+31)IMW2. (20)
j=1 o X(Fni) j=1

DefineGpi = ¢ *(Fni) forn = 0,1,...andi = 1,2,...,2" Fix 1-6 = ([132,(1 - &))(1 + &)@ P. The main
remaining ingredient in the proof of the theorem is the follyg claim.
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Claim 5.6. There exista and i) < a < b = (1 - 6)*a, such that for all N and all cgicients{an;}\ ;2 ,

N 2" N 2" N 2"
IS > anha)lf < 11D T @ AFIRS <bISCY. > anini)lp.

n=0 i=1 n=0 i=1 n=0 i=1

Proof. We shall use the shorthand notatiny 2 hy j for suppfin;) 2 suppbn,j). The first equality below follows by
expressing\(Fn;) in terms of theA(Fy,j)-s and changing the order of summation. We also use Lemman®l.419).

5N 20y 82 AFaIRS = [(Z23 ACFNG) Zniyhyoh 320)P2
< fZ, 1 A(Fnj)P2 (Z(nl)hn,DhN, a2,)P/?
< (1 + &)u(Ao)2 NfZ, 1(Z(n|) hn,:>hNJ !i)p/z
= C(1+8)/J(AO)||S(Zn oZ. 1an|hn,|)||p

For the other direction we use Lemma 5.5, (20), and the fattt{F,;) > M onGp; = ¢ (Fp)).

f(Z, 1 AN Zniyhoony, 807 2 f(Z, 1lGN,M 2 (niYhaiohu; an P2
1fGN, Mp (Z(nl) ihni2hnj an )p/2
> (Hn=1(1 Sn))Z_NfMp/Z J:l(Z(n,l);th;hN_,- az;)Pr?
> ([Th.4(1 - &)L+ £) 75 Gu(A)IS(ZN.o 5124 nihny)IE.

Itis clear that the claim follows witl = ([T;,(1 — &n))(1 + a)z%ppcu(Ao). O

Now we continue as in the proof of [8, Theorem 9.1, case ft < 2]. From the fact that thg| - |||, is equivalent to
the usual normirk,, 1 < p < oo, it is enough to prove only the “moreover” part of Theorem 3 #e fact thafl (X)
is K, complemented ik, will follow from [8] (The norm of the projection there depesmdnly on the isomorphism
constant and op, see Lemma 9.6 and the proof of Theorem 9.1 in the cas@ k 2 there).

Let {ﬂmj}mzo’]?:l be a sequence of positive numbers such }hats,; = 6. Since we obtained as a limit of successive

convex combinations ofv3(-)}, there exists a sequence of disjoint finite sets,j o, fml C N with omj > inf{l :
Fmj € &} and a sequence of non-negative numbes;”, such that e, an=1,m=0,1,...,j=12...,2" and

/

forallm=0,1,...,j=12,...,2™ Putuy; = Yineom; @nVi

p/2

Z anvzn(ij)_A(ij) <.3m,ij(Fm,j)p/2

NETM j

As in [8, Theorem 9.1], we define a Gaussian Haar system by

= Z a/%/z Z Thy;

NETm j Nni CFmj

foralm=0,1,...,j=1,2,...,2™ SetX = spariznwmJ oY thcpml hni} o’rﬁ:o 1 andY = spaifkmj}> m=0 j—l We first
show that some multiple of the sequerikg;} is almost isometrically equlvaljent to the Haar basis in them|| - |||,.

For all c:oéi‘iuents{am}n o 1 we have

”Zn 02, 1an (A(Fnj) - Un,i(Fn,i))”gg f(Zn 02| 1an (A(Fni) - Unl(Fnl)))p/2
< on 02. lan IA(Fnj) — Unl(Fnl)|p/2
< on 02| 1,3n|an |A(Fn|)|p/2 (21)
<éf (zn 02 82 A(Fn )P
= 6l SN o 57 a2 AFa)II%)2
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and using Claim 5.6 we immediately get

N 2" N 2" N 2"
a1-8)ISCY. > aniha)If <11 " @2 uni(Fan)lifs < b(L+6)IS. D anitn)lIp. (22)
n=0 i=1 n=0 i=1 n=0 i=1

Since{T h,;} are disjointly supported with respect to the Haar basis|liib#s that

Smj) = Y| @nSH DL Thy)= > anVi(Fmj) = Unj(Fm)

NEOMj hn.i QFmi Neomj

and now using the fact th#i,;} are disjointly supported with respect to the Haar basis we ge

N 2" N 2" N 2"
S0 Y anika) = ) > aiSP(kei) = D D ni(Fui). (23)
n=0 i=1 n=0 i=1 n=0 i=1

N_ow we just have to observe that for arg L, we have4|S(x)||,’§ = ||Sz(x)||gg and combining this with (22) and (23)
gives us

N 2" N 20 N 20
a1- oIS > A < IS D anikai)llp < bL+ OIS > BnihnII5 (24)
n=0 i=1 n=0 i=1 n=0 i=1

The last estimate shows that some multiple of the sequignges almost isomterically equivalent to the Haar basis
with respect td|| - [|l[,. We must mention that (24) also implies that some multipl& & almost an isometry oX.

This follows from the fac‘Sz(ZnElej at? PhwcFm; i) = 1F,,;, hence

N 20 N 2"
HANISCY. D anta)F = 1S D ani( D) e > hap)ip.

n=0 i=1 n=0 i=1 MEan,; B} CFoni
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