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1 Introduction

We discuss here an amazing family of three-generated groups Gw parametrized by infinite binary
sequences.

We prove that isomorphism classes in this family are countable and if two sequences w1, w2

are cofinal (i.e., differ only in a finite number of coordinates), then the groups Gw1 and Gw2 are
isomorphic. In particular, this implies that the sets of sequences parametrizing groups of one
isomorphism class are dense in the space Xω of infinite binary sequences.

We also show that if w1 and w2 have a long common beginning, then a large ball of the Cayley
graph of Gw1 is isomorphic to the ball of corresponding radius in the Cayley graph of Gw2 . This,
together with density of the isomorphism classes implies, that one can not distinguish any two
groups in our family just looking at a finite number of relations between the generators. For any
finite set of relations in one group Gw1 there exists a generating set in any other group Gw2 for
which the same set of relations are satisfied.

This is not the first example of an uncountable family of this sort (see, for example [2]), but
our examples are very explicit and admit a rather deep investigation of their properties.

We also establish a connection of this family with iterations of the two dimensional holomorphic
map (

z
p

)
�→
(

1 − z2

p2

1 − 1
p2

)
.

And show also that the groups Gw are precisely the iterated monodromy groups of post-critically
finite non-autonomous (“random”) polynomial iterations.
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2 Definition of the family

Consider three automorphisms g0, g1, g2 of the rooted binary tree, which are defined by the recur-
sions

g0 = σ(1, g2), g1 = (1, g0), g2 = (1, g1).

In other terms, these automorphisms are the states of the four-state automaton shown on Figure 1.

Figure 1: Automaton

The portraits of the automorphisms g0, g1, g2 are shown on Figure 2.
The group generated by the automorphisms g0, g1, g2 is called the rabbit group. The reasons

for this name will be explained later in the article.
Two automorphisms of a rooted tree are conjugate in Aut(X∗) if and only if their tree of orbits

are isomorphic (see [3]). Here the tree of orbits of an automorphism g is the tree of orbits of
the cyclic group generated by g, where each vertex is labelled by the cardinality of the respective
orbit.

Figure 3 shows the trees of orbits of the automorphisms g0, g1, g2. In each of the trees the
picture is periodic with period 3 along the right-most path of the tree. The period consists of two
binary trees and one vertex having a single descendant.

Definition 2.1. An r-triple is a triple (h0, h1, h2) of automorphisms of the tree X∗, conjugate in
Aut(X∗) (not necessary by the same conjugators) with the automorphisms g0, g1, g2, respectively.

Let w ∈ Xω be an infinite binary sequence. Define the following elements αw, βw, γw of Aut(X∗)
recurrently

αw = σ
(
1, γs(w)

)
,

βw =
{ (

1, αs(w)

)
if the first letter of w is 1,(

αs(w), 1
)

if the first letter of w is 0,

γw =
(
1, βs(w)

)
.

Here s(w) is the shift of the sequence w, i.e., the sequence obtained by deletion of its first letter.
For example, the generators g0, g1, g2 of the rabbit group are equal to αw, βw, γw, respectively,

when w = 111 . . ..
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Figure 2: Portraits of g0, g1 and g2

Figure 3: Orbit trees of g0, g1 and g2
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It is easy to see that (αw, βw, γw) is an r-triple, i.e., that each automorphism αw, βw, γw is
conjugate in Aut(X∗) to the automorphisms g0, g1 and g2, respectively. One has just to check that
the corresponding trees of orbits coincide.

Proposition 2.1. Let (h0, h1, h2) be an arbitrary r-triple. Then there exists a unique infinite
sequence w ∈ Xω such that the triple (h0, h1, h2) is simultaneously conjugate with the triple
(αw, βw, γw), i.e., αw = h−1h0h, βw = h−1h1h and γw = h−1h2h for some h ∈ Aut(X∗).

Proof. For g ∈ Aut(X∗) denote by g(1) the automorphism (g, g). Inductively, g(k) is defined then
by the condition that g(k+1) =

(
g(k)
)(1)

. Then g(k) belongs to the kth level stabilizer and therefore
the product a0a

(1)
1 a

(2)
2 · · · converges in Aut(X∗) for any sequence a0, a1, . . ..

Suppose that we have a triple h0, h1, h2 in which every hi is conjugate with gi. Then h1 and
h2 are of the form (1, a), or (a, 1). Conjugating the triple h0, h1, h2 by σ, if necessary, we may
assume that h2 is of the form (1, h′1). Then h1 is either of the form (h′0, 1), or of the form (1, h′0),
where the automorphisms h′1 and h′0 are conjugate to g1 and g0, respectively. If h1 and h2 act
non-trivially on the same subtrees of the first level, then the only possibility for the first digit of
the sequence w, satisfying the conditions of the proposition, is 1. If they act on different subtrees,
then it is 0. We see that the first digit of w is uniquely determined by the elements h1 and h2.

The element h0 is conjugate to g0, therefore it is of the form σ (h00, h01) and the product
h01h00 is conjugate to g2. Conjugating the triple by the element (1, h00), we transform g0 into the
element (

1, h−1
00

)
σ (h00, h01) (1, h00) = σ (1, h01h00) .

Thus, we have proved that there exists a conjugator a0 such that ha0
0 = σ(1, h′2), h

a0
1 = (1, h′0)

or ha0
1 = (h′0, 1) and ha0

2 = (1, h′1) for some elements h′0, h′1, h′2 conjugate to g0, g1, g2, respectively.
A direct check shows that if b0 is an element such that ha0b0

0 , ha0b0
1 and ha0b0

2 are also of the
form σ(1, h′′2 ), (1, h′′0) or (h′′0 , 1), and (1, h′′1), respectively, then b0 = (b, b) = b(1) for some b, hence
h′′i = h′i

b.
Consequently, we have proved that the triple (h′0, h′1, h′2) is defined uniquely up to a simulta-

neous conjugation.
We repeat now the same procedure for h′0, h

′
1 and h′2 and find the second possible letter of the

sequence w and a conjugator a1, transforming the automorphisms h′0, h′1 and h′2 into the nice form.

Note that then h
a0a

(1)
1

0 = σ
(
1, h′2

a1
)
, ha0a

(1)
1

2 =
(
1, h′2

a1
)

and h
a0a

(1)
1

1 is equal either to
(
h′0

a1 , 1
)

or
to
(
1, h′0

a1
)
, depending on the first letter of w.

We continue the procedure further (now with the states of h′i
a1), and at the end we will get

all letters of the word w and a sequence a0, a1, a2, . . . ∈ Aut(X∗) such that

h
a0a

(1)
1 a

(2)
2 a

(3)
3 ···

0 = αw, h
a0a

(1)
1 a

(2)
2 a

(3)
3 ···

1 = βw, h
a0a

(1)
1 a

(2)
2 a

(3)
3 ···

2 = γw.

The statement of the last proposition was probably noticed for the first time by R. Pink during
his computations of the profinite iterated monodromy group of the “rabbit” polynomial (a private
communication).

Let us denote by Gw the group, generated by αw, βw and γw.

Proposition 2.2. For every word w ∈ Xω there exists at most a countable set of words w′ ∈ Xω

such that Gw is conjugate to Gw′ in Aut(X∗).

Proof. If Gw and Gw′ are conjugate, then there exists a generating set h0, h1, h2 of Gw such
that the triple (h0, h1, h2) is conjugate to the triple (αw′ , βw′ , γw′). The word w′ is determined
by the triple h0, h1, h2 uniquely, by Proposition 2.1. But the number of possible generating sets
{h0, h1, h2} of Gw is at most countable.
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3 Universal group of the family

3.1 The construction

Consider the following group G = 〈α, β, γ〉 acting on the 4-regular tree T = {1, 2, 3, 4}∗:
α = σ (1, γ, 1, γ)
β = (α, 1, 1, α)
γ = (1, β, 1, β) ,

where σ = (12)(34).
Let us identify the letters 1, 2, 3 and 4 with the pairs (0, 0), (1, 0), (0, 1) and (1, 1), respectively.

Then σ is the permutation (0, y) ↔ (1, y). Hence, the elements of the group G leave in every word
(x1, y1)(x2, y2) . . . (xn, yn) the second coordinates y1, y2, . . . , yn unchanged.

Let us fix some infinite word w = y1y2 . . . ∈ Xω . Then the set Tw of all vertices of the rooted
tree (X × X)∗ of the form (x1, y1)(x2, y2) . . . (xn, yn) is a sub-tree isomorphic to the binary tree X∗.
The isomorphism is the map

Lw : (x1, y1)(x2, y2) . . . (xn, yn) �→ x1x2 . . . xn.

The tree Tw is G-invariant. It follows directly from the recursions, that when we conjugate
the action of α, β, γ on Tw by the isomorphism Lw, then we get the automorphisms αw, βw, γw of
X∗.

We get thus the following description of G.

Proposition 3.1. The restriction of the action of G onto the subtree Tw is conjugate with the
action of Gw on the binary tree.

The group G is isomorphic to the quotient F
/⋂

w∈Xω Nw , where F is the free group generated
by letters a, b, c and Nw is the kernel of the canonical epimorphism F → Gw mapping a, b and c
to αw, βw and γw, respectively.

In other words, G is isomorphic to the group, generated by the diagonal elements

α = (αw)w∈Xω , β = (βw)w∈Xω , γ = (γw)w∈Xω

of the Cartesian product
∏

w∈Xω Gw.

It is easy to prove by induction that every group Gw is level-transitive. Consequently, the
quotient of the tree (X × X)∗ by the action of the group G is binary and is naturally identified
with X∗. Two words (x1, y1) . . . (xn, yn) and (x′1, y′1) . . . (x′n, y′n) belong to one G-orbit if and only
if yi = y′i. If w is an infinite path in the quotient-tree, then its preimage in (X × X)∗ is the binary
tree Tw.

3.2 Overgroup G̃ and conjugacy classes of Gw

Consider now the group generated by the following automorphisms

α = σ (1, γ, 1, γ) , a = π (c, c, 1, 1) , I0 =
(
I2cγ

−1, I2c, I2γ
−1, I2

)
β = (α, 1, 1, α) , b = (1, 1, a, a) , I1 = (I0, I0, I0, I0)

γ = (1, β, 1, β) , c =
(
1, β, bβ−1, b

)
, I2 = (I1, I1, I1, I1) .

where σ = (12)(34) is the permutation (0, x) ↔ (1, x) and π = (13)(23) is the permutation
(x, 0) ↔ (x, 1).

Let us compute the conjugates of α, β, γ by a, b, c.

aαa−1 = σ
(
1, γ, 1, cγc−1

)
aβa−1 =

(
1, α, cαc−1, 1

)
aγa−1 =

(
1, β, 1, cβc−1

)
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bαb−1 = σ
(
1, γ, 1, aγa−1

)
bβb−1 =

(
α, 1, 1, aαa−1

)
bγb−1 =

(
1, β, 1, aβa−1

)

cαc−1 = σ
(
β, γβ−1, bβb−1, bβ−1γb−1

)
cβc−1 =

(
α, 1, 1, bαb−1

)
cγc−1 =

(
1, β, 1, bβb−1

)
We see from the recursions that aαa−1 = bαb−1 = α, bβb−1 = cβc−1 = β, aγa−1 = cγc−1 = γ.

The rest of conjugates are related by the recursion

cαc−1 = σ
(
β, γβ−1, β, β−1 · bγb−1

)
aβa−1 =

(
1, α, cαc−1, 1

)
bγb−1 =

(
1, β, 1, aβa−1

)
,

which agree with the recursions

γαγ−1 = σ
(
β, γβ−1, β, β−1 · βγβ−1

)
αβα−1 =

(
1, α, γαγ−1, 1

)
βγβ−1 =

(
1, β, 1, αβα−1

)
.

Consequently, we have the following relations

aαa−1 = α, aβa−1 = αβα−1, aγa−1 = γ

bαb−1 = α, bβb−1 = β, bγb−1 = βγβ−1

cαc−1 = γαγ−1, cβc−1 = β, cγc−1 = γ

Let us consider now conjugation of α, β, γ by I0, I1, I2. We get (using the known relations
between a, b, c, α, β, γ)

I0αI
−1
0 = σ

(
I2γI

−1
2 , 1, I2γI−1

2 , 1
)

I0βI
−1
0 =

(
I2αI

−1
2 , 1, 1, I2αI−1

2

)
I0γI

−1
0 =

(
1, I2βI−1

2 , 1, I2βI−1
2

)
.

For i = 1, 2 we have

IiαI
−1
i = σ

(
1, Ii−1γI

−1
i−1, 1, Ii−1γI

−1
i−1

)
IiβI

−1
i =

(
Ii−1αI

−1
i−1, 1, 1, Ii−1αI

−1
i−1

)
IiγI

−1
i =

(
1, Ii−1βI

−1
i−1, 1, Ii−1βI

−1
i−1

)
.

All these relations imply

I0αI
−1
0 = α−1, I0βI

−1
0 = β, I0γI

−1
0 = γ

I1αI
−1
1 = α, I1βI

−1
1 = β−1, I1γI

−1
1 = γ

I2αI
−1
2 = α, I2βI

−1
2 = β, I2γI

−1
2 = γ−1

Definition 3.1. Let G̃ be the group generated by the transformations α, β, γ, a, b, c, I0, I1, I2.
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We have the following properties of the group G̃.

Proposition 3.2. The group G̃ is level-transitive. The subgroup G < G̃ is normal.

Proof. The first statement follows from the fact that G̃ is transitive on the first level of the tree
and that it is recurrent (i.e., restriction of the stabilizer of a vertex onto the corresponding sub-tree
is an epimorphism), which is checked directly.

Normality follows from the relations that we have proved above.

We say that two sequences w1, w2 ∈ Xω are cofinal if they are of the form w1 = v1w,w2 = v2w
for some infinite word w ∈ Xω and two finite words v1, v2 ∈ X∗ of equal length.

We say that w1, w2 ∈ Xω are conjugate if the groups Gw1 and Gw2 are conjugate in Aut(X∗).

Proposition 3.3. Let H̃ be the group acting on the binary tree and generated by the transforma-
tions

g0 = σ(1, g2), g1 = (1, g0), g2 = (1, g1), r0 = (g2r2, r2), r1 = (r0, r0), r2 = (r1, r1).

If w1, w2 ∈ Xω belong to one H̃-orbit, then the groups Gw1 and Gw2 are conjugate in Aut(X∗)
(and, in particular, are isomorphic).

In particular, the conjugacy classes are dense in Xω and are unions of cofinality classes.

Proof. Consider the map from the tree (X × X)∗ → X∗, induced by the map (x, y) �→ y. Then
the action of G̃ on (X × X)∗ agrees with this map (i.e., this map defines an imprimitivity system)
so that the map induces an epimorphism of G̃ onto the group of automorphisms of X∗ equal to
the action of G̃ on the second coordinates of the letters. It is easy to see that G belongs to the
kernel of this epimorphism, and that the generators a, b, c, I0, I1, I2 are mapped to the generators
g−1
0 , g−1

1 , g−1
2 , r0, r1, r2 of H̃ , respectively.

If w2 = g(w1) for some g ∈ H̃ , then for any preimage g′ of g in G̃ we have g′(Tw1) = Tg(w1),
where Tw, as before, denotes the subtree of T = (X × X)∗ equal to union of the paths on whose
second coordinates the word w is read.

This implies that the element g′ conjugates the action of G on Tw1 with the action of G on
Tw2 , which implies by Proposition 3.1 that Gw1 and Gw2 are conjugate in Aut(X∗).

It remains to prove that the orbits of the action of H̃ on Xω are unions of cofinality classes.
But this follows from the fact that H̃ is recurrent.

Proposition 3.4. The group H̃ is contracting.

Proof. The group G111... generated by g0, g1, g2 is contracting with the nucleus

N =
{
1, g0, g1, g2, g0g−1

1 , g1g
−1
2 , g2g

−1
0

}±1
.

Relations

g0r0 = σ(g2r2, g2r2) r0 = (g2r2, r2)
g1r1 = (r0, r0g0) r1 = (r0, r0)
g2r2 = (r1, g1r1) r2 = (r1, r1)

imply that all the elements r0, r1, r2, g0r0, g1r1, g2r2 are of order two.
Relations

g0r1 = σ(r0, g2r0) r1g0 = σ(r0, r0g2)
g2r0 = (g2r2, g1r2) r0g2 = (g2r2, r2g1)
g1r2 = (r1, g0r1) r2g1 = (r1, r1g0)
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show that [g0, r1] = [g2, r0] = [g1, r2]. Similarly

g0r2 = σ(r1, g2r1) r2g1 = σ(r1, r1g2)
g2r1 = (r0, g1r0) r1g2 = (r0, r0g1)
g1r0 = (g2r2, g0r2) r0g1 = (g2r2, r2g0)

implies that [g0, r2] = [g2, r1] = [g1, r0]. It is also checked directly that the elements r0, r1, r2
commute.

Consequently, the elements r0, r1, r2 generate the elementary abelian 2-group C2×C2×C2 and
the group H̃ is a semi-direct product (C2 ×C2 ×C2) � 〈g0, g1, g2〉. In particular, every element of
H̃ can be written in the form r · g, where g ∈ 〈g0, g1, g2〉, and r ∈ 〈r0, r1, r2〉.

For any sufficiently long v ∈ X∗ the restriction g|v belongs to the nucleus N of 〈g0, g1, g2〉.
Then the restriction (r · g)|v belongs to the set Q×N , where Q is the union of the sets of states
of the elements of the group 〈r0, r1, r2〉. Direct computations show that Q is a finite set consisting
of the following 20 elements

1, r0 = (g2r2, r2), r1 = (r0, r0), r2 = (r1, r1),
r0r1 = (g2r0r2, r0r2), r0r2 = (g2r1r2, r1r2), r1r2 = (r0r1, r0r1),

r0r1r2 = (g2r0r1r2, r0r1r2),
g0r0 = σ(g2r2, g2r2), g1r1 = (r0, g0r0), g2r2 = (r1, g1r1),
g0r0r1 = σ(g2r0r2, g2r0r2), g0r0r2 = σ(g2r1r2, g2r1r2),
g1r1r2 = (r0r1, g0r0r1), g1r0r1 = (g2r0r2, g0r0r2),
g2r0r2 = (g2r1r2, g1r1r2), g2r1r2 = (r0r1, g1r0r1),

g0r0r1r2 = σ(g2r0r1r2, g2r0r1r2),
g1r0r1r2 = (r0r1r2, g0r0r1r2), g2r0r1r2 = (r0r1r2, g1r0r1r2).

Consequently, the group H̃ is contracting with the nucleus a subset of Q · N .

It is easy to prove that the limit space XH̃ is homeomorphic to the limit space X〈g0,g1,g2〉. The
proof is the same as the proof of Theorem 3.7.1 (2) in [5], only instead of injectivity of φ one has
to use the fact that the virtual associated endomorphism preserves the adjacency classes of H̃ by
〈g0, g1, g2〉.
Problem 1. Describe the limit space of H̃ . The last fact about XH̃ implies that it is an 8-to-one
orbispace quotient of the “Douady rabbit”.

3.3 Contraction

Let F be the free group freely generated by the set of symbols α, β, γ. Define the following two
homomorphisms (wreath recursions) ψ0 and ψ1 : F → S (X) � F :

ψi(α) = σ(1, γ), ψi(β) =

{
(α, 1) if i = 0,
(1, α) if i = 1,

ψi(γ) = (1, β).

These two wreath recursions define the respective permutational F -bimodules Ψ0 and Ψ1.
The direct sum of the bimodules Ψ = Ψ0 ⊕ Ψ1 is precisely the bimodule associated with the

self-similar group G.
For every binary word w = x1x2 . . . xn ∈ X∗ consider the tensor product of the F -bimodules

Ψx1 ⊗ Ψx2 ⊗ · · · ⊗ Ψxn = Ψw and let ψw : F → S (X) � S (X) � · · · � S (X)︸ ︷︷ ︸
n times

�F be the respective

wreath recursion.
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Proposition 3.5. Denote by Ew the kernel of the homomorphism ψw. Then Ex1...xn−1 ≤ Ex1...xn−1xn

and the union Ex1x2... =
⋃

n≥1 Ex1...xn is equal to the kernel of the natural epimorphism F → Gw,
carrying α, β, γ to αx1x2..., βx1x2..., γx1x2..., respectively.

Proof. The F -bimodule Ψ is contracting, since the overgroup Ĝ of G is the iterated monodromy
group of a hyperbolic rational function F (see the next sections).

A more direct computation shows that the set

N =
{
1, α±1, β±1, γ±1, (βα)±1, (αγ)±1, (γβ)±1, (βα−1)±1, (αγ−1)±1, (γβ−1)±1,

(γβα−1)±1, (βαγ−1)±1, (αγβ−1)±
}

is the nucleus of the free group F with respect to the bimodule Ψ. We see that the nucleus
does not contain elements, which are trivial in G. This implies, that the kernel of the canonical
epimorphism F → G is equal to the union E of the kernels of the wreath recursions associated
with the F -bimodule Ψ.

This implies the statement of the proposition, due to Proposition 3.1 and [5, Proposition 2.13.2]

Corollary 3.6. Let R ⊂ Ew be a finite subset of the kernel of the canonical epimorphism F → Gw

and let U ⊂ F \ Ew be a finite subset of its complement. Then there exists a neighborhood W of
the word w in Xω such that R ⊂ Ew′ and U ⊂ F \ Ew′ for all w′ ∈W .

Proof. The previous proposition shows that any finite set of relations and inequalities between the
generators of Gw can be detected from the wreath recursion ψv, where v is a beginning of w. But
then the same relations and inequalities hold in all groups Gw′ , where w′ starts with v.

Proposition 3.7. Let w1, w2 ∈ {0, 1}ω. For any finite set of relations and inequalities between
the generators αw1 , βw1 and γw1 there exist generators h0, h1 and h2 of the group Gw2 such that
the same set of relations and inequalities hold for the generators h0, h1 and h2 in the group Gw2 .

Proof. A direct corollary of Proposition 3.3 and Corollary 3.6.

3.4 Isomorphism classes

Lemma 3.8. For every w ∈ Gw the elements αw, βw, γw freely generate the abelianization

Gw/[Gw, Gw] ∼= Z
3.

Proof. Let Fw be the free group generated by αw, βw, γw. Let fw be the homomorphism fw :
Fw → Z3 = 〈e1, e2, e3〉 extending the map αw �→ e1, βw �→ e2, γw �→ e3. Suppose the proposition
false, and let g be an element of Fw representing a trivial element of Gw, and whose image fw(g)
in Z3 is non-zero.

If we apply the wreath recursion to g, then we get g = (g0, g1). In particular, g can be written
as a word in the generators of the first level stablizer

α2
w =

(
γs(w), γs(w)

)
βw =

(
1, αs(w)

)
, or

(
αs(w), 1

)
γw =

(
1, βs(w)

)
α−1

w βwαw =
(
αs(w), 1

)
, or

(
1, γ−1

s(w)αs(w)γs(w)

)
α−1

w γwαw =
(
βs(w), 1

)
.

The recurrent formulae show that fs(w)(g0) + fs(w)(g1) = T (fw(g)), where T : Z3 → Z3 is the
automorphism

e1 �→ e3, e2 �→ e1, e3 �→ e2.

9



Consequently, either f(g0) or f(g1) is non-trivial. Continuing further, we get by induction that
for every level {0, 1}n there exists v ∈ {0, 1}n such that g|v is non-trivial in Z2, but obviously is
trivial in Gs|v|(w).

But the group G is contracting with the nucleus given in the proof of Proposition 3.5, whence
we get a contradiction.

Recall (see [1] and [5, Definition 1.2.4]) that a group G ≤ Aut(X∗) is said to be weakly branch
if for every vertex v ∈ X∗ there exists a non-trivial element g ∈ G acting trivially on all the words
not starting with v.

Proposition 3.9. The group Gw is weakly branch for every w ∈ Xω. Moreover, the image of
G′

w = [Gw, Gw] under the wreath recursion contains the direct product G′
s(w) × G′

s(w), which is
geometric, i.e., the factors act on the respective subtrees of the first level.

Proof. Let us denote by πw : Gw → Z3 the abelianization map αw �→ (1, 0, 0), βw �→ (0, 1, 0) and
γw �→ (0, 0, 1).

It follows from the recursion that the stabilizer of the first level in Gw is generated by the
elements (αs(w), 1), (1, αs(w)), (1, βs(w)), (βs(w), 1) and (γs(w), γs(w)). Consequently, for g0, g1 ∈
Gs(w), the automorphism (g0, g1) of the tree belongs to Gw if and only if the third coordinates of
πs(w)(g0) and πs(w)(g1) are equal.

It follows from the recurrent definition of the generators of Gw that the map πw((g0, g1)) �→
πs(w)(g0) + πs(w)(g1) is a well defined isomorphism (it is actually the main idea of the proof of
Lemma 3.8).

Consequently, if (g0, g1) belongs to G′
s(w) × G′

s(w), then πs(w)(g0) = πs(w)(g1) = �0, hence it
belongs to G′

w.

Proposition 3.10. Define G2n

w inductively as the group generated by the squares of the group
G2n−1

w and setting G20

w = Gw. Then for every n ≥ 0 the group G2n

w belongs to the nth level
stabilizer and acts level-transitively on each of the subtrees with roots on the nth level.

Proof. It is easy to prove by induction that G2n

w belongs to the nth level stabilizer.
The group G2

w contains (γs(w), γs(w)) = α2
w, (βs(w), βs(w)) = α−2

w (αwγw)2 and (αs(w), αs(w)),
which is equal either to α−2

w (αwβw)2 or to α2
w(α−1βw)2 (depending on the first letter of w).

We conclude that the image of G2
w in Gs(w)×Gs(w) contains the diagonal of the direct product,

hence, by induction the image of G2n

w in the 2nth direct power of Gsn(w) also contains the diagonal.
This implies that the action of G2n

w is level-transitive on the sub-trees of the nth level, since the
groups Gw are level-transitive.

Theorem 3.11. Two groups Gw1 and Gw2 are isomorphic as abstract groups if and only if they
are conjugate in Aut(X∗) and automorphism group of Gwi coincides with the normalizer of Gwi

in Aut(X∗).

Proof. A direct corollary of Propositions 3.9, 3.10 and a result of [4]. (See also [5, Proposi-
tion 2.10.7]).

Let us call two sequences w1, w2 ∈ Xω isomorphic if the groups Gw1 and Gw2 are isomorphic.
The last theorem says that two sequences are isomorphic if and only if they are conjugate. We
get now from Proposition 3.3.

Corollary 3.12. The isomorphism classes are countable, dense in Xω and are unions of cofinality
classes.

Moreover, the isomorphism relation is completely invariant under the shift, i.e., the sequences
w1, w2 are isomorphic if and only if the shifted sequences s(w1) and s(w2) are isomorphic. In one
direction it is the last corollary, in the other direction it is the obvious fact that the conjugacy
class of Gw uniquely determines the conjugacy class of Gs(w), since Gs(w) is the group generated
by the restrictions of the elements of Gw onto the subtrees of the first level.
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We have reduced isomorphism problem to answering the question when two groups from the
family Gw are conjugate.

Problem 2. Describe the isomorphism classes of Gw. Is it true that two groups Gw1 and Gw2

are isomorphic if and only if w1, w2 belong to one H̃-orbit? This seems to be the most reasonable
conjecture. If it is not true, then probably isomorphism classes have no simple description.

The rest of this subsection is a collection of results (the main is Proposition 3.16) supporting
the conjecture from Problem 2, or at least giving some more information on the isomorphism
classes of the groups Gw.

A group Gw1 is isomorphic to Gw if and only if there exists a generating set g0, g1, g2 of Gw,
which is simultaneously conjugate to αw1 , βw1 , γw1 in Aut(X∗).

Definition 3.2. We will denote by πα, πβ , πγ the homomorphisms from Gw (for any w) onto Z,
which maps all standard generators to 0, except for αw, βw, γw, respectively, which are mapped to
1.

Lemma 3.13. Let f0, f1, f2 be an r-triple of elements of Gw. Then all the numbers πβ(f0),
πγ(f0), πα(f1), πγ(f1), πα(f2), πβ(f2) are equal to zero.

Proof. Then f1 is of the form (1, h0) or (h0, 1), f2 is of the form (1, h1) or (h1, 1) and f0 is of the
form σ(f00, f01) for some h0, h1, f00, f01 ∈ Gs(w) such that (h0, h1, h2 = f00f01) is also an r-triple.

We know (see the proof of Proposition 3.9) that (x, y) belongs to Gw if and only if x, y ∈ Gs(w)

are such that πγ(x) = πγ(y). It follows that πγ(h0) = πγ(h1) = 0.
Consequently, πα(f1) = πα(f2) = 0. This equality is true for every r-triple f0, f1, f2, hence it

is also true for h1, h2, which implies that πβ(f0) = πβ(f2) = 0.

As a direct corollary we get.

Lemma 3.14. If (f0, f1, f2) is an r-triple of generators of Gw, then π(f0) = (±1, 0, 0), π(f1) =
(0,±1, 0) and π(f2) = (0, 0,±1).

Lemma 3.15. Suppose that (f0, f1, f2) is an r-triple in Gw.
Then

1. f0 is conjugate to αw in Gw if and only if π(f0) = (1, 0, 0),

2. f1 is conjugate to βw in Gw if and only if π(f1) = (0, 1, 0),

3. f2 is conjugate to γw in Gw if and only if π(f2) = (0, 0, 1).

Proof. The statement is obvious in the “only if” direction. Let us prove the “if” direction simul-
taneously for f0, f1 and f2.

We have f0 = σ(f00, f01), f1 = (h0, 1) or (1, h0) and f2 = (h1, 1) or (1, h1) for some f00, f01, h0, h1 ∈
Gs(w) such that h0, h1, h2 = f00f01 is an r-triple in Gs(w) with the same images under π as f0, f1, f2.

We have πγ(f00) + πγ(f01) = πγ(h2) = 1. On the other hand, the element

f0α
−1
w = σ(f00, f01)(1, γ−1

s(w))σ = (f01γ−1
s(w), f00)

belongs to Gw, hence πγ(f01) − 1 = πγ(f01γ−1
s(w)) = πγ(f00).

Consequently, we get πγ(f00) = 0 and πγ(f01) = 1. It follows that (f00, 1) ∈ Gw.
We get (f00, 1)f0(f00, 1)−1 = σ(1, f00f01).
Consequently, if we prove our statement for h0, h1 or h2 in Gs(w), then we prove it for f1, f2

and f0, respectively, in Gw.
In particular, it means that if we find a counterexample to one of the statements, then we find

a counterexample to all three statements.
We obviously have inequalities l(h0) ≤ l(f1), l(h1) ≤ l(f1) and l(h2) ≤ l(f0), hence the shortest

counterexamples to each of the three statements have the same length.
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Suppose now that f2 is a shortest counterexample (for the third statement of the proposition).
Suppose that the first letter of w is 0. Then f2 ∈ 〈βw, γw〉, if it is of the form (1, h1), and then

h1 ∈ 〈αs(w), βs(w)〉, since in all the other case the length of h1 will be less than the length of f2. Sim-
ilarly, f2 ∈ 〈αwβwα

−1
w , αwγwα

−1〉 if f2 = (1, h1), and then h1 ∈ 〈γs(w)αs(w)γ
−1
s(w), γs(w)βs(w)γ

−1
s(w)〉.

If the first letter of w is 1, then f2 ∈ 〈α−1
w βwαw, γw〉 and h1 ∈ 〈γ−1

s(w)αs(w)γs(w), βs(w)〉 if
f2 = (1, h1). If f2 = (h1, 1), then f2 ∈ 〈βw, αwγwα

−1
w 〉 and h1 ∈ 〈αs(w), γs(w)βs(w)γ

−1
s(w)〉.

But h1 is also a minimal counterexample for the second statement of the proposition, so the
conditions on f2 are also true for h1. Putting all conditions together, we get that h1 has to be
of the form βn

s(w) or γs(w)β
n
s(w)γ

−1
s(w). But the condition on the image of h1 under π implies that

n = 1, i.e., that h1 is not a counterexample.

We have thus proved the following description of the r-triples of generators.

Proposition 3.16. If (f0, f1, f2) is an r-triple of generators of Gw, then there exist x, y, z ∈ Gw

such that f0 = α±x
w , f1 = β±y

w , f2 = γ±z
w .

3.5 Defining relations

Let F be the free group generated by the symbols α, β, γ. Consider the following endomorphisms
of F .

ϕ0(α) = αβα−1, ϕ1(α) = β,

ϕ0(β) = γ, ϕ1(β) = γ,

ϕ0(γ) = α2, ϕ1(γ) = α2.

Each group Gw is a homomorphic image of the group F under the canonical epimorphism
α �→ αw, β �→ βw, γ �→ γw. Our aim is to find generators of the kernel as a normal subgroup of F ,
i.e., a presentation for Gw.

Lemma 3.17. The homomorphism ϕi induces, for every w ∈ Xω, an injective homomorphism
Gw → Giw such that ϕi(g) =

(
γ

πγ(g)
w , g

)
.

For definition of the homomorphism πγ see Definition 3.2.

Proof. Let us compute the decompositions of the images of generators of Gw under ψi ◦ϕi, where
ψi is the corresponding wreath recursion (see 3.3).

For i = 0 we have

ψ0 ◦ ϕ0(α) = ψ0(αβα−1) = (1, α)
ψ0 ◦ ϕ0(β) = ψ(γ) = (1, β)

ψ0 ◦ ϕ0(γ) = ψ(α2) = (γ, γ).

For i = 1 we have

ψ1 ◦ ϕ1(α) = ψ1(β) = (1, α)
ψ1 ◦ ϕ1(β) = ψ1(γ) = (1, β)

ψ1 ◦ ϕ1(α) = ψ1(α2) = (γ, γ).

It follows that for every g ∈ Gw the element ϕi(g) ∈ Giw is well defined and is equal to(
γ

πγ(g)
w , g

)
, and hence is a well defined monomorphism.

For a definition and properties of the kernels Ex1x2...xn see Proposition 3.5.
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Lemma 3.18. The subgroups E0 and E1 are equal to the subgroups R0, R1, given by

R0 =
〈[
βα2n

, γ
]
,
[
βα2n+1

, β
]
,
[
γα2n+1

, γ
]

: n ∈ Z

〉F

R1 =
〈[
βα2n+1

, γ
]
,
[
βα2n+1

, β
]
,
[
γα2n+1

, γ
]

: n ∈ Z

〉F

.

Proof. For i = 0 we have

ψ0

(
αnβα−n

)
=

{(
γn/2αγ−n/2, 1

)
if n is even,(

1, γ(n−1)/2αγ−(n−1)/2
)

if n is odd.

For i = 1 we have

ψ1

(
αnβα−n

)
=

{(
1, γn/2αγ−n/2

)
if n is even,(

γ(n+1)/2αγ−(n+1)/2, 1
)

if n is odd.

For any i

ψi

(
αnγα−n

)
=

{(
1, γn/2βγ−n/2

)
if n is even,(

γ(n+1)/2βγ−(n+1)/2, 1
)

if n is odd.

We see that Ri ≤ Ei. Let us prove the converse inclusions.
Every element g ∈ Ei can be written it in the form αnh1h2 · · ·hm, where hi are powers of

conjugates of β and γ by powers of α. By Lemma 3.8 we have n = 0.
Since g ∈ Ei, we must have ψi(g) = 1 in S (X) � F , i.e., the products of the elements ψi(hi)

is trivial in F × F . Modulo the relators from Ri we can separate the factors hj , which have
trivial first coordinate of ψi(hj), from the factors having trivial second coordinate of ψi(hj). The
products of the non-trivial coordinates are equal to 1 in F . But this implies that modulo Ri the
product h1h2 · · ·hm is also trivial.

Lemma 3.19. For every x1 . . . xn we have

Ex1x2...xn = Ex1 · ϕx1(Ex2...xn) · ϕx1(Ex2...xn)α

Proof. Consider g ∈ Ex1x2...xn . We can write it in the form αnh1h2 · · ·hm, where hi are powers of
conjugates of β and γ by powers of α. By Lemma 3.8 we have n = 0.

Let (g0, g1) be the image of g under the wreath recursion. Then, by definition of Ex1x2...xn ,
gi ∈ Ex2...xn and by Lemma 3.17, (1, g0) = ϕx1(g0), (g1, 1) = α−1ϕx1(g1)α, hence we see that
g ∈ Ex1 · ϕx1(Ex2...xn) · α−1ϕx1(Ex2...xn)α.

We get finally the following description of the defining relations for the groups Gw.

Theorem 3.20. Let

R0 =
{[
βα2n

, γ
]
,
[
βα2n+1

, β
]
,
[
γα2n+1

, γ
]

: n ∈ Z

}
and

R1 =
{[
βα2n+1

, γ
]
,
[
βα2n+1

, β
]
,
[
γα2n+1

, γ
]

: n ∈ Z

}
,

and let ϕi be the endomorphisms

ϕ0(α) = αβα−1, ϕ1(α) = β,

ϕ0(β) = γ, ϕ1(β) = γ,

ϕ0(γ) = α2, ϕ1(γ) = α2.

Then for every sequence w = x1x2 . . . ∈ Xω the set
∞⋃

n=1

ϕx1 ◦ ϕx2 ◦ · · · ◦ ϕxn−1(Rxn)

is a set of defining relations of the group Gw.
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Let g0, g1, g2 be the automorphisms of the free group F , given by

g0(α) = α, g1(α) = α, g2(α) = γ−1αγ

g0(β) = α−1βα, g1(β) = β, g2(β) = β

g0(γ) = γ, g1(γ) = β−1γβ, g2(γ) = γ,

(compare with Subsection 3.2), and let r0, r1, r2 be the automorphisms of F , inverting the gener-
ators α, β, γ, respectively.

The following proposition gives us a (maybe more explicit) alternative proof of Propositions 3.3
and 3.7.

Proposition 3.21. Let H̃1 be the group generated by the automorphisms gi, ri of F . Then the
group H̃ is a quotient of H̃1 with the epimorphism given by the tautological map on the generators
gi �→ gi, ri �→ ri. Consider the obtained action of H̃1 on X∗.

If for g ∈ H̃1 we have g(x1x2 . . . xn) = y1y2 . . . yn, then the normal closure of

g
(
ϕx1 ◦ ϕx2 ◦ · · · ◦ ϕxn−1(Rxn)

)
in F coincides with the normal closure of

ϕy1 ◦ ϕy2 ◦ · · · ◦ ϕyn−1(Ryn).

Proof. We have the following equalities, which are checked directly

g0 ◦ ϕ0 = ϕ1, g0 ◦ ϕ1 = ϕ0 ◦ g2.
and

g1 ◦ ϕ1 = ϕ1 ◦ g0, g2 ◦ ϕ1 = ϕ1 ◦ g1, g2
0 ◦ ϕ1 = ϕ1 ◦ g2.

We also obviously have

r0 ◦ φ1 = φ1 ◦ r2, r1 ◦ φ1 = φ1 ◦ r0, r2 ◦ φ1 = φ1 ◦ r1.
These equalities coincide with the recurrent definitions of the generators of H̃ (with the self-

similarity bimodule associated to its action on X∗).
Note, finally, that g0(R1) = R0, g0(R1) = R0 and that

〈gj(Ri)〉F = 〈Ri〉F

for all i = 1, 0 and j = 1, 2.

4 Overgroup Ĝ and relation with holomorphic dynamics

4.1 Definition of Ĝ

We will consider here a subgroup of G̃, which seems to be more tractable. At least it will have
a very natural interpretation as an iterated monodromy group of a holomorphic mapping of a
2-dimensional projective complex plane.

Consider the following elements of the group G̃

T = βb−1a, S = γc−1b.

Note that T−1S−1 = a−1cβ−1γ−1.
We have the following relations

TαT−1 = βb−1aαa−1bβ−1 = βαβ−1

TβT−1 = βb−1aβa−1bβ−1 = βb−1αβα−1bβ−1 = βαβα−1β−1

TγT−1 = βb−1aγa−1bβ−1 = ββ−1γββ−1 = γ,
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and

SαS−1 = γc−1bαb−1cγ−1 = γγ−1αγγ−1 = α

SβS−1 = γc−1bβb−1cγ−1 = γβγ−1

SγS−1 = γc−1bγb−1cγ−1 = γβγβ−1γ−1

The elements T and S satisfy the following recursions

T = π(a−1c, αa−1c, α, 1) = π(T−1S−1γβ, αT−1S−1γβ, α, 1) = π(T−1S−1γβ, T−1S−1γβγ−1αγ, α, 1)

If we conjugate the elements α, β, γ by δ = σ
(
δα−1, δγ, δ, δγ

)
, i.e., replace α, β, γ by δαδ−1,

δβδ−1 and δγδ−1, then we get the following recursions

α̃ = σ
(
α̃−1, γ̃α̃, 1, γ̃

)
β̃ =

(
1, α̃, γ̃α̃γ̃−1, 1

)
γ̃ =

(
γ̃β̃γ̃−1, 1, γ̃β̃γ̃−1, 1

)
Let us denote τ = γ̃β̃α̃. We get

τ =
(
γ̃β̃γ̃−1, 1, γ̃β̃γ̃−1, 1

)(
1, α̃, γ̃α̃γ̃−1, 1

)
σ
(
α̃−1, γ̃α̃, 1, γ̃

)
=

σ
(
α̃α̃−1, γ̃β̃γ̃−1γ̃α̃, 1, γ̃β̃γ̃−1γ̃α̃γ̃−1γ̃

)
= σ

(
1, γ̃β̃α̃, 1, γ̃β̃α̃

)
= σ (1, τ, 1, τ) .

The automorphisms S and T will be conjugated to automorphisms satisfying the recursions

S = (1, 1, T, T )

T = π
(
T−1S−1τ, T−1S−1τ, 1, 1

)
,

where π = (13)(24).
In the next proposition the letters 1, 2, 3, 4 are, as before, identified with the pairs (0, 0), (0, 1),

(1, 0), (1, 1), respectively, so that the subgroup G of Ĝ acts only on the first coordinates of the
letters.

Proposition 4.1. The group Ĝ is level-transitive. The subgroup G is normal and coincides with
the set of elements g ∈ Ĝ such that

g ((x1, y1)(x2, y2) . . . (xn, yn)) = (x′1, y1)(x
′
2, y2) . . . (x

′
n, yn),

i.e., elements acting trivially on the second coordinates of the letters.
The quotient Ĝ/G is isomorphic to the group acting on the binary tree generated by the trans-

formations
s = (1, t) , t = σ

(
t−1s−1, 1

)
,

Moreover, Ĝ/G is isomorphic to the subgroup 〈S, T 〉 of Ĝ and Ĝ = G � 〈S, T 〉 and to the
subgroup

〈
g1g

−1
0 , g2g

−1
1

〉
of H̃.

Proof. We will use here the recurrence

α = σ
(
α−1, γα, 1, γ

)
β =

(
1, α, γαγ−1, 1

)
γ =

(
γβγ−1, 1, γβγ−1, 1

)
S = (1, 1, T, T )

T = π
(
T−1S−1τ, T−1S−1τ, 1, 1

)
,
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where τ = γβα.
The group Ĝ is level-transitive, since it is transitive on the first level and the wreath recursion

is recurrent.
Let N ≤ Ĝ be the subgroup of the elements acting trivially on the second coordinates. Then

N is normal and it follows from the recursion, defining S and T that Ĝ/N is isomorphic to the
group H ≤ H̃ generated by the automorphisms

s = g1g
−1
0 = (1, t) , t = g2g

−1
1 = σ

(
t−1s−1, 1

)
(1)

of the binary tree. The canonical homomorphism Ĝ → H is induced by the map (X × X)∗ → X∗

ignoring the first coordinates of the letters.

Lemma 4.2. The abelianization of H is Z2, where the images of s and t are free generators of
Z2.

Proof. The proof is the same as in Lemma 3.8. The corresponding linear map T is in our case

given by the matrix
(

0 −1
1 −1

)
. The group H is contracting, since it is a subgroup of H̃ .

The subgroup G ≤ Ĝ is a normal, since it is normal in G̃. It follows from the description of
the conjugation of G by S and T that every element of Ĝ can be written in the form h · g, where
h ∈ 〈S, T 〉 and g ∈ G = 〈α, β, γ〉. We are going to prove that H coincides with 〈S, T 〉 so that
Ĝ = G� 〈S, T 〉. This will show that N = G.

Suppose that the image of h ∈ 〈S, T 〉 in H is trivial. We have to prove that h = 1. The wreath
recursion (1) is contracting, hence the kernel of the canonical epimorphism from the free group
onto H coincides with the union of the kernels En of the iterations of the wreath recursions.

The generators of the first level stabilizer in 〈S, T 〉 are

S = (1, 1, T, T )

T 2 =
(
T−1S−1τ, T−1S−1τ, T−1S−1τ, T−1S−1τ

)
TST−1 = (T, T, 1, 1).

It is easy to check that τ commutes with T and S. We conclude that if h = (h1, h2, h3, h4)
belongs to the first level stabilizer, then h1, h2, h3, h4 ∈ 〈S, T 〉 · τk, where k is half of the sum of
powers of T in h, i.e., is half of one of the coordinates of the image of h in the abelianization Z2.
Consequently, by the above lemma, if h = (h1, h2, h3, h4) ∈ En is trivial in H , then h1, h2, h3, h4

belong to 〈S, T 〉 and hi ∈ En−1. We get, by induction, that if h ∈ 〈S, T 〉 is trivial in H , then it is
trivial in Ĝ.

4.2 Gw as iterated monodromy groups

Let C0, C1, . . . , be a sequence of planes and let Ai,Bi,Γi ∈ Ci be three pairwise different points
in the respective plane. Let fi : Ci → Ci−1, for i = 1, 2, . . ., be an orientation-preserving 2-fold
branched covering with critical point Γi such that

fi(Γi) = Ai−1

fi(Ai) = Bi−1

fi(Bi) = Γi−1.

We denote Mi = Ci \ {Ai,Bi,Γi}. See Figure 4.
Let t ∈ M0. Denote by Ln the set of preimages of the point t under the composition f1 ◦

f2 ◦ · · · ◦ fn : Cn → C0. We obviously have |Ln| = 2n. The union T =
⊔∞

n=0 Ln has a natural
structure of a rooted binary tree, where a vertex tn ∈ Ln is connected by an edge with the vertex
fn(tn) ∈ Ln−1. The root is t ∈ L0 and the set Ln is the nth level of the tree T .
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Figure 4: Backward iteration

The fundamental group π1(M0, t) acts naturally on each of the levels of the tree T and this
action agrees with the tree structure. The obtained automorphism group of the tree T is called
iterated monodromy group of the sequence f1, f2, . . ., and is denoted IMG (f1, f2, . . .).

Let α be a small simple loop going in positive direction around the point A0 connected to the
basepoint t by a path. Similarly, we define the elements β and γ of π1(M0, t) as small simple
positive loops around B0 and Γ0, respectively.

It is easy to see, just looking at the tree of preimages of the points A0, B0 and Γ0 and at the
branching degrees, that the respective elements α, β and γ of the iterated monodromy group are
conjugate to the elements g0, g1, g2, respectively.

Consequently, IMG (f1, f2, . . .) is isomorphic to Gw for some w ∈ {0, 1}ω.
Let us describe, how one can find an appropriate sequence w = x1x2 . . . (which is obviously

not unique).
Let lA0 , lB0 and lΓ0 be simple disjoint paths in M0 connecting infinity with the points A0, B0

and Γ0, respectively.
The f1-preimage of the path lA0 is a path, passing through Γ1 and dividing the plane C1 into

two pieces. The point A1 belongs to one of these pieces, which we will denote S1. The other piece
will be denoted S0.

We have then two possibilities: either B1 belongs to S1, or it belongs to S0. In the first case
we put x1 = 0, in the second x1 = 1.

The preimage f−1
1 (lB0) is a disjoint union of two paths, connecting the preimages of B0 to

infinity. One of these paths is a path connecting A1 to infinity. We will denote it lA1 . Similarly,
lB1 is the preimage of lΓ0 , connecting B1 to infinity.

The point Γ1 divides the path f−1
1 (lA0) into two halves. If you go around Γ1 in positive

direction, then you cross one of the halves, when coming from S1 to S0 and the other half, when
coming from S0 to S1. Let lΓ1 be the first half.

We get in this way a collection {lA1 , lB1 , lΓ1} (a spider) of the paths connecting infinity with
the points A1, B1 and Γ1 in the plane C1. We can use these paths, in the same way as we used
the paths {lA0 , lB0 , lΓ0}, to construct the next spider {lA2 , lB2 , lΓ2}, to partition the plane C2 into
two parts S0, S1, and to get the next letter x2 of the word w.

We proceed inductively, and get spiders {lAi , lBi , lΓi} such that

1. lAi ⊂ f−1
i

(
lBi−1

)
, lBi ⊂ f−1

i

(
lΓi−1

)
, lΓi ⊂ f−1

i

(
lAi−1

)
,

2. the curve f−1
i

(
lAi−1

)
divides the plane Ci into two parts S0, S1, where the point Ai belongs

to S1,

3. if Bi ∈ S1, then xi = 0, otherwise xi = 1,

17



Figure 5: Spiders

4. if one goes in the positive direction around Γi, then the path lΓi is crossed when coming
from S1 to S0.

See Figure 5 for a picture of these curves.

Proposition 4.3. Let {lAi , lBi , lCi} be the spiders, constructed above and let w = x1x2 . . . be the
obtained sequence. Then the iterated monodromy group IMG (f1, f2, . . .) is isomorphic to Gw.

Proof. For every tn ∈ Ln, let Λ(tn) = a1a2 . . . an be the itinerary of tn, i.e., such a sequence that
ai = 0 if fi ◦ · · · ◦ fn(tn) belongs to the sector S0 of the plane Ci and ai = 1 if it belongs to S1.
We set Λ(t) = ∅.

It follows directly from the definition that if Λ(tn) = a1a2 . . . an, then Λ(fn(tn)) = a1a2 . . . an−1.
This easily implies, that the map Λ : T → {0, 1}∗ is an isomorphism of the rooted trees.

If x, y ∈ Ci\(lAi ∪ lBi ∪ lΓi), and ∆ ∈ {Ai,Bi,Γi}, then we denote by �∆(x, y) the path starting
in x, ending in y and crossing the spider lAi ∪ lBi ∪ lΓi only once, intersecting it along l∆ in positive
direction (i.e., so that the point ∆ is on the left-hand side from l∆ at the intersection point with
�∆(x, y)). The curve �∆(x, y) is uniquely defined, up to a homotopy in Mi. We also denote by
�i(x, y) the path from x to y disjoint with the spider. It is also well defined, up to a homotopy.

For a given point x ∈ Ci \ (lAi ∪ lBi ∪ lΓi) we denote by x0 the fi+1-preimage of x, belonging
to S0 and by x1 the preimage, belonging to S1.

It follows then from the definitions that

f−1
i

(
�Ai−1(x, y)

)
= �Γi(x1, y0) ∪ �i(x0, y1)

f−1
i

(
�Bi−1(x, y)

)
= �Ai(x1, y1) ∪ �i(x0, y0)

f−1
i

(
�Γi−1(x, y)

)
=
{
�Bi(x1, y1) ∪ �i(x0, y0) if xi = 0
�Bi(x0, y0) ∪ �i(x1, y1) if xi = 1

f−1
i (�i−1(x, y)) = �i(x0, y0) ∪ �i(x1, y1).

Let α = �A0(t, t), β = �B0(t, t) and γ = �Γ0(t, t). An easy inductive argument shows that
the isomorphism Λ : T → {0, 1}∗ conjugates the action of α, β, γ on T with αw, βw and γw,
respectively.

It is also easy to deduce from the proof of the proposition that every group Gw can be realized
as the iterated monodromy group of a sequence f1, f2, . . .. We will also prove this later using other
methods.
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4.3 The group Ĝ as an iterated monodromy group

Let us choose any complex structure on the plane C0, identifying it with C. The complex structures
on Ci is defined then as the pull-back of the complex structure on C0 by the map f1 ◦ f2 ◦ · · · fi.
Then the maps fi become quadratic polynomials. Applying the respective affine transformations,
we may assume that Γi coincides with 0 and Ai coincides with 1 ∈ C. Let us denote by pi the
complex number, identified then with Bi. Then fi is a quadratic polynomial such that

1. its critical point is 0,

2. fi(0) = 1,

3. fi(1) = pi−1,

4. and fi(pi) = 0.

The first two conditions imply that fi is a quadratic polynomial of the form az2 + 1. The last
condition implies that a = − 1

p2
i
.

We conclude that pi−1 = 1 − 1
p2

i
and fi(z) = 1 − z2

p2
i
.

We get thus a map (
z
p

)
�→
(

1 − z2

p2

1 − 1
p2

)
.

It can be considered as a map from CP2 to itself, defined in the homogeneous coordinates by
the formula

F : [z : p : u] �→ [
p2 − z2 : p2 − u2 : p2

]
.

The Jacobian of the map F is ∣∣∣∣∣∣
−2z 0 0
2p 2p 2p
0 −2u 0

∣∣∣∣∣∣ = −8zpu,

hence the critical set is the union of the three lines z = 0, p = 0 and u = 0.
The orbits of these lines are

{z = 0} �→ {z = u} �→ {z = p} �→ {z = 0},
{p = 0} �→ {u = 0} �→ {p = u} �→ {p = 0}.

Hence, the post-critical set of the map F is the union of the lines p = 0, z = 0, u = 0, p =
z, p = u, z = u. (Or, in non-homogeneous coordinates, the lines p = 0, z = 0, p = 1, z = 1, p = z
and the line at infinity.) Thus, it is post-critically finite. It also follows that F is hyperbolic, i.e.,
expanding on a neighborhood of its Julia set, since the complement M of these lines in CP2 is
Kobayashi hyperbolic.

Theorem 4.4. The group IMG (F ) is isomorphic to the group Ĝ. The group IMG
(
1 − 1

p2

)
is

isomorphic to the quotient Ĝ/G = H.

Proof. Let M be the complement of the post-critical set of F in CP2. The space M can be
interpreted as the configuration space of pairs (z, p) of points of C different from 0 and 1 and
different from each other.

Every given value of p defines the function fp(z) = 1 − z2

p2 as a polynomial over z. Its critical
point is 0 and

fp(0) = 1

fp(1) = 1 − 1
p2

fp(p) = 0.

19



Thus the polynomial fp maps the points (0, 1, z, p) to the points
(
1, 1 − 1

p2 , 1 − z2

p2 , 0
)
. The

second and the third value are precisely the second and the first coordinate of F (z, p), respectively.
One can use this interpretation of the map F : F−1(M) → M to compute IMG (F ).
The map p �→ 1 − 1

p2 has three fixed points. They are the roots of the polynomial p3 − p2 + 1
and are equal approximately to 0.8774± 0.7449i and −0.7549. The corresponding polynomial fp

will be post-critically finite with the critical dynamics of the form

0 �→ 1 �→ p �→ 0.

The polynomial fp for p ≈ 0.8774+0.7449i is called “Douady rabbit”, for p ≈ −0.7549 is called
“airplane”. These names originate from the shape of their Julia sets (see Figure 6). Let us call fp

for p ≈ 0.8774− 0.7449i “co-rabbit”.

Figure 6: Airplane and Rabbit

Let r ≈ 0.8774+0.7449i be the value of the parameter p, corresponding to the rabbit polynomial
1 − z2

r . This polynomial has two fixed points: a ≈ 0.6865 + 0.2580i and b ≈ −0.9016 − 1.5652i.
See their position relatively to the Julia set of the rabbit on right-hand side of Figure 6.

Let us take the pair (z, p) = (a, r) as a basepoint of the space M. It is a fixed point under
F and its F -preimages are the four pairs (a, r), (−a, r), (a,−r) and (−a,−r). The fundamental
group of the space M is generated by the elements α, β, γ, S, T . Here α, β, γ are the loops in the
configuration space M obtained by moving the point z around the points 1, r and 0, respectively,
as it is shown on Figure 7, the point p being fixed at r. The generators S and T are loops obtained
by moving the point p around 0 and 1, respectively, as it is also shown on Figure 7, the point z
being fixed at a.

Figure 7: Generators of IMG (F )
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It is known that the fundamental group of M is (a quotient of?) the semidirect product of the
free groups 〈α, β, γ〉 � 〈S, T 〉, where the action is given by

TαT−1 =βαβ−1, SαS−1 =α,

TβT−1 =βαβα−1β−1, SβS−1 =γβγ−1,

T γT−1 =γ, SγS−1 =γβγβ−1γ−1,

since S and T correspond to the Dehn twists around the simple curves, shown on Figure 8. It is
also known that the subgroup 〈α, β, γ〉 has trivial centralizer in 〈α, β, γ, S, T 〉, hence every element
g of π1 (M) is uniquely defined by the elements gαg−1, gβg−1 and gγg−1.

Figure 8: Dehn twists S and T

We will compute the associated virtual endomorphism φ. The domain of the virtual endo-
morphism is the subgroups of the loops in M such that their F -preimage starting at the base-
point (a, r) is again a loop. It is a subgroup of index 4 in π1 (M, (a, r)) and is generated by
α2, β, γ, αβα−1, αγα−1, S, T 2 and TST−1.

Figure 9 shows the fr-preimages of the loops α, β, γ and the Dehn twists S, T . It follows that

φ
(
α2
)

= γ, φ
(
αβα−1

)
= 1

φ(β) = α, φ
(
αγα−1

)
= 1

φ(γ) = β, φ(S) = 1

and that R = φ
(
T 2
)

is equal to the Dehn twist along the curve going around the points 0 and 1.

Figure 9: Generators and their preimages
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We have

RαR−1 = αγαγ−1α−1

RβR−1 = β

RγR−1 = αγα−1,

which implies that R = T−1S−1γβγ−1αγ. This can be proved showing that T−1S−1γβγ−1αγ
acts in the same way by conjugation on 〈α, β, γ〉, as R does. Similar topological considerations
show that φ

(
TST−1

)
= 1.

We can, however, find φ(S), φ
(
T 2
)

and φ
(
TST−1

)
algebraically in the following way.

We have

φ (S)αφ (S)−1 = φ
(
SβS−1

)
= φ

(
γβγ−1

)
= βαβ−1,

φ (S)βφ (S)−1 = φ
(
SγS−1

)
= φ

(
γβγβ−1γ−1

)
= βαβα−1β−1,

φ (S) γφ(S)−1 = φ
(
Sα2S−1

)
= φ

(
α2
)

= γ,

which implies that φ(S) = T .
We have

φ
(
T 2
)
αφ
(
T 2
)−1

= φ
(
T 2βT−1

)
= φ

(
βαβαβα−1β−1α−1β−1

)
= αγαγ−1α−1,

φ
(
T 2
)
βφ
(
T 2
)−1

= φ
(
T 2γT−2

)
= φ (γ) = β,

φ
(
T 2
)
γφ
(
T 2
)−1

= φ
(
T 2α2T−2

)
= φ

(
βαβα2β−1α−1β−1

)
= αγα−1,

which implies that φ
(
T 2
)

= R = T−1S−1γβγ−1αγ.
Finally,

φ
(
TST−1

)
αφ
(
TST−1

)−1
= φ

(
TST−1βTS−1T−1

)
= φ (β) = α,

φ
(
TST−1

)
βφ
(
TST−1

)−1
= φ

(
TST−1γTS−1T−1

)
= φ

(
γβαβα−1β−1γβαβ−1α−1β−1γ−1

)
= β,

and

φ
(
TST−1

)
γφ
(
TST−1

)−1
= φ

(
TST−1α2TS−1T−1

)
=

φ
(
βα−1β−1γβαβ−1α−1β−1γ−1βα2β−1γβαβα−1β−1γ−1βαβ−1

)
= γ,

hence φ
(
TST−1

)
= 1.

We know that the group Ĝ is given by the recursion

α = σ (1, γ, 1, γ)
β = (α, 1, 1, α)
γ = (1, β, 1, β) ,
S = (1, 1, T, T )

T = π
(
T−1S−1γβ, T−1S−1γβγ−1αγ, α, 1

)
.

We have then

α2 = (γ, γ, γ, γ)

αβα−1 =
(
1, α, γαγ−1, 1

)
αγα−1 =

(
γβγ−1, 1, γβγ−1, 1

)
,

S = (1, 1, T, T )

T 2 =
(
αT−1S−1γβ, T−1S−1γβγ−1αγ, T−1S−1γβα, T−1S−1γβγ−1αγ

)
,

TST−1 =
(
αTα−1, T, 1, 1

)
.
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Figure 10: Computation of IMG
(
1 − 1

p2

)

We see that the virtual endomorphism of π1 (M), associated with the self-covering F coincides
with the virtual endomorphism of the self-similar group Ĝ, associated to the last coordinate of
the wreath recursion. This proves that IMG (F ) coincides with Ĝ, since the associated virtual
endomorphism determines the iterated monodromy group uniquely.

Let us show that Ĝ/G ∼= IMG
(
1 − 1

p2

)
directly, computing the standard action of IMG

(
1 − 1

p2

)
on X∗. Another proof is just to use the semi-conjugacy of F with IMG

(
1 − 1

p2

)
(obtained by pro-

jecting F onto the second coordinate) and Proposition 4.1.
Let us take the fixed point r ≈ 0.8774+0.7449i of 1− 1

p2 as the basepoint. It has two preimages:
itself and −r. Let �1 be the trivial path at r and let �0 be the path connecting r with −r and
going above the puncture 0. Then we get the following wreath recursions for the corresponding
standard action (see Figure 10 for the loops S, T , their preimages and the Julia set):

S = (1, T ), T = σ(T−1S−1, 1),

which coincides with the wreath recursion for H = Ĝ/G.

Note that the group H = IMG
(
1 − 1

z2

)
is a subgroup of the iterated monodromy group G111...

of the rabbit. This implies existence of a surjective continuous map from the Julia set of 1− 1
z2 to

the “Douady rabbit”, which is a semi-conjugacy of the respective topological dynamical systems.

4.4 Limit spaces of G and Ĝ

Since the complement of the post-critical set of F : (z, p) �→
(
1 − z2

p2 , 1 − 1
p2

)
is Kobayashi hy-

perbolic, the map F is expanding with respect to some Riemann metric on a neighborhood of its
Julia set, and therefore its iterated monodromy group IMG (F ) = Ĝ is contracting. The group
G < Ĝ is hence also contracting.

The limit space JĜ is homeomorphic, by [5, Theorem 5.5.3], to the Julia set of F .
Recall, that the limit space JĜ is the quotient of the space of left-infinite sequences (X × X)−ω

by the asymptotic equivalence relation. Two sequences . . . (x2, y2)(x1, y1) and . . . (x′2, y
′
2)(x

′
1, y

′
1)

are asymptotically equivalent if and only if there exists a sequence gn ∈ Ĝ, assuming only a finite
number of different values, such that

gn ((xn, yn) . . . (x2, y2)(x1, y1)) = (x′n, y
′
n) . . . (x′2, y

′
2)(x

′
1, y

′
1).
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Proposition 4.5. We have the following commutative diagram of continuous surjective maps

JG → JĜ↓ ↓
X−ω → JH

where the maps JG → JĜ and X−ω → JH are induced by the inclusions of self-similar groups G <

Ĝ and {1} < H, respectively, and the vertical arrows are induced by the map (X × X)−ω → X−ω,
projecting the letters to their second coordinates (and the respective epimorphisms of groups).

Moreover, if J is the preimage of a point ζ ∈ JH under the surjection JĜ → JH , then preimage
of J under the surjection P : JG → JĜ is a disjoint union of a finite number of sets J1, J2, . . . , Jk,
which are fibers of the projection JG → X−ω and are such that P : Ji → J is a homeomorphism.

Connected components of JG are precisely the fibers of the projection JG → X−ω.

Proof. Commutativity of the diagram follows directly from the commutativity of the corresponding
diagram of homomorphisms of self-similar groups and Proposition 4.1.

Let us prove the statement about the fibers of the vertical arrows. It follows from the com-
mutativity of the diagram that if w1, . . . , wk ∈ X−ω are the preimages of a point ξ ∈ JH , and
J1, . . . , Jk are the preimages of the points w1, . . . , wk under the map JG → X−ω , then J1�· · ·�Jk

is equal to the preimage of J in JG. If wi = . . . y2y1, then the preimage Ji of wi consists of the
points of JG, which are represented by the sequences of the form . . . (x2, y2)(x1, y1) ∈ (X × X)−ω.

We have to prove that for every pair 1 ≤ i, j ≤ k and every point ξi ∈ Ji there exists a unique
point ξj ∈ Jj such that the images of ξi and ξj in JĜ are equal. This will prove that the restriction
of P onto every Ji is a bijection with J , and thus a homeomorphism.

The sequences wi = . . . y′2y
′
1 and wj = . . . y′′2 y

′′
1 ∈ X−ω are asymptotically equivalent with

respect to H . Consequently, there exists a bounded sequence hn ∈ H = Ĝ/G such that

hn (y′n . . . y
′
1) = y′′n . . . y

′′
1 .

Let gn ∈ Ĝ be a bounded sequence such that hn is the image of gn under the canonical homo-
morphism Ĝ → H . Let ξi be represented by a sequence . . . (x′2, y

′
2)(x

′
1, y

′
1). Then every partial

limit in X∗ � X−ω of the sequence of words gn ((x′n, y
′
n) . . . (x′1, y

′
1)) is an infinite word of the form

. . . (x′′2 , y
′′
2 )(x′′1 , y

′′
1 ) and is asymptotically equivalent to . . . (x′2, y

′
1)(x

′
1, y

′
1) with respect to Ĝ. Hence,

every point ξi ∈ Ji is glued with some point ξj ∈ Jj by the map P : JG → JĜ.
Suppose that ξi ∈ Ji and ξ′j , ξ

′′
j ∈ Jj such that P

(
ξ′j
)

= P
(
ξ′′j
)

= P (ξi). Let ξ′j and ξ′′j be
represented by the sequences . . . (a2, y

′′
2 )(a1, y

′′
1 ) and . . . (b2, y′′2 )(b1, y′′1 ), respectively. Then these

two sequences are asymptotically equivalent with respect to the action of the group Ĝ, i.e., there
exists a sequence gn of the elements of the nucleus of Ĝ such that

gn · (an, y
′′
n) = (bn, y′′n) · gn−1

for every n.
Let hn be the images of gn in H = Ĝ/G. Then we have

hn · y′′n = y′′n · hn−1.

But the orbifold JH has no singular points. This can be shown either directly, or just mentioning
that the rational function 1 − 1

p2 is hyperbolic, thus its Julia set contains no post-critical points.
This implies that hn = 1 for all n, since, otherwise, hn would be a non-trivial element of the
isotropy group of the point represented by . . . y′′n+2y

′′
n+1. Hence gn ∈ G for all n, which shows that

the points ξ′j and ξ′′j of Jj ⊂ JG coincide.
It remains to prove the statement about the connected components of JG. It is sufficient to

prove that the fibers of the map JG → X−ω are connected. This follows from the level transitivity
of the group G on the second coordinates of the words of (X × X)∗, i.e., from the level transitivity
of the groups Gw, in the same way, as connectivity of the limit spaces follows from the level
transitivity of the self-similar groups.
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Figure 11: Julia set of F .

We know that JH is homeomorphic to the Julia set of 1 − 1
p2 , the limit space JĜ is homeo-

morphic to the Julia set JF of the map F : (z, p) �→
(
1 − z2

p2 , 1 − 1
p2

)
. It also follows that the

map JĜ → JH is in this interpretation just the projection of the Julia set of F onto the second
coordinate. Then the fiber of a point p0 ∈ JF under the projection map is the Julia set of the
forward iteration of the quadratic polynomials

C
1− z2

p0−−−→ C
1− z2

p1−−−→ C
1− z2

p2−−−→ · · · ,

where pi = 1 − 1
p2

i−1
. This can be used for computer aided visualization of the fibers of the limit

space JĜ = JF . See Figure 11 for the Julia set of 1 − 1
p2 and the fibers of the Julia set of F over

the respective points of J1−1/p2 . Recall, that these fibers are also the connected components of
JG.
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