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Outline

© Self-similar contracting groups: definitions, examples and elementary
properties.

© Absence of free subgroups.
© Schreier graphs and limit spaces of contracting groups.
© Bounded automata. Amenability of a class of contracting groups.

© Operator algebras associated with contracting groups.
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Self-similar groups

Self-similar groups

Definition
A self-similar group (G, X) is a faithful action of a group G on X* such
that for every g € G and every x € X there exist h € G and y € X such
that

g(xw) = yh(w)

for all w € X*. )

Example: take G = Z generated by a. Define an action of G on {0,1}* by

the rule
a(0w) = 1w, a(lw) = 0a(w).

It describes the process of adding 1 to a diadic integer.

V. Nekrashevych (Texas A&M) Contracting Groups July 9-13, 2007, ESI, Vienna 3/68



For every v € X* and every g € G there exists h € G such that
g(vw) = g(v)h(w)

for all w € X*.
It follows that G acts on X* by the automorphisms of the associated
rooted tree (the right Cayley graph of the free monoid X*).

1%
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If g(vw) = g(v)h(w) for all w, then we denote

h=gl,

and call h the section (or restriction) of g at v.

g(v)

‘\\

vX* g(v)X*

/
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Self-similar groups

We have the following properties of sections:

g|v1v2 :g|V1‘V27 (g1g2)|v :gl‘gQ(v)g2|v'

A self-similar group (G, X) is self-replicating if it is level-transitive and for
every h € G and x € X there exists g € G such that

g(x)=x, glx=nh
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Actions of Z"

Let A be an n x n matrix with integral entries. Let d = det A, then A(Z")

is a subgroup of index d of Z".
Choose a coset transversal r1, o, ..., ry of Z"/A(Z"). We can represent

then every element g € Z" as a formal series

g = rig + A(ri,) +A2(ri2) +

in a unique way.
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Self-similar groups

The group Z" acts on the series
rip + A(ry) + A%(r,) + - -+
self-similarly:
g+(rig + Ary) + A%(ry) + -+ ) = rg+A (h+ iy + A(r,) + A%(rg) + -+ ),
where rj; and h € Z" are uniquely determined by

g+trip=rpy+ A(h).
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lterated monodromy groups

Let f : M1 — M be a covering of a space by a subset.
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Self-similar groups

Choose an alphabet X, |X| = deg f, a bijection A : X — f~1(t), and a path
{(x) from t to A(x) for every x € X.

Define the map A : X* — T; inductively by the rule:

A(xv) is the end of the flVlift of ¢(x) starting at A(v).

The map A : X* — T; is an isomorphism of rooted trees.
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Self-similar groups

The isomorphism A : X* — T; conjugates the iterated monodromy action
of m1(M, t) on T; to a self-similar action

7 (xv) = yé(v),

where v € X*, x € X and § is the loop £(x)vx£(y)!

Y Vx
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Self-similar groups

IMG (22 — 1)
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Contracting groups

Contracting groups

Definition
A self-similar group G is called contracting if there exists a finite set
N C G such that for every g € G there exists n such that g|, € N/

whenever |v| > n.

The smallest set N satisfying this property is called the nucleus of the
group.
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Contracting groups

Let (G, X) be a finitely generated self-similar group. The number

/
p = limsup ¢/lim sup max (gl)
n— o0 I(g)—>oo vexn I(g)
is the contraction coefficient.
Proposition

The action is contracting if and only if its contraction coefficient p is less
than 1.
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Contracting groups

Recall that a self-similar action of Z" defined by a matrix A and a coset
transversal ri, ro, ..., rq is given by the rule

g + (rig + A(ris) + A%(ri) + ) = rig + Alh + riy + Alr) +--+),

where h = A7Y(g + riy — rjp).

It follows that this action is contracting if and only if the spectral radius of
A~ is less than one.
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Contracting groups

If f: My — M is an expanding covering, then IMG (f) is contracting.

A(z)
7
7
(), "
// Y
//
t

In particular, if f : C—Cisa post-critically finite rational function, then
IMG (f) is contracting.
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Contracting groups

The Grigorchuk group

a(0w) = 1w a(lw
b(Ow) = 0a(w) b(1lw
c(Ow) = 0a(w) c(1w
d(0w) = 0w d(1

is contracting with p = 1/2.
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Contracting groups

Let A < Symm (X) be a 2-transitive permutation group on X, |X| > 2. Fix
X1, X2 € X.

The group W(A) is generated by A acting on the first letter of words from
X* and by the set A of the transformations

alaw) = xa(w), alew)=xa(w), a(xw)=xw.

L. Bartholdi showed that W(A) for A = PSL(3,2) acting on P2F, has
non-uniform exponential growth.
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Germs

Definition
Let G be a group acting on a locally finite rooted tree T. For w € OT the
group of germs is

Gw) = Gw/{g € Gw : g acts trivially on a nbhd of w}.

If G is contracting, then |G| < |V for all w € OX* = X¥.
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Absence of free subgroups

Free groups acting on rooted trees

Theorem

Let G be a group acting faithfully on a locally finite rooted tree T. Then
one of the following is true

© G has no free subgroups,
Q Gy has a free subgroup for some w € T,
@ there is a free subgroup F < G and w € OT such that F,, = {1}.
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Absence of free subgroups

Let G be a finitely generated group acting on a set A. Growth degree of
the G-action is

I l(g) <
7 = sup limsup og|{g(w) (g)_r}|'
WwEA r—oo |0gr

Proposition
Let (G, X) be contracting. Then the growth degree of the action of G on
X¥ s < —Iofm .

= —logp

Corollary

Contracting groups have no free subgroups.
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Schreier graphs

Let (G, X) be a finitely generated contracting group. The Schreier graphs
In=Th(G,S) are the graphs with the set of vertices X" where v is
connected to s(v) for all v € X" and s € S.

The Schreier graphs of contracting groups seem to converge as n — oo to
fractals.
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Graphs for IMG (22 — 1).

e
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Julia set of z2 — 1.
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“Hanoi tower” group

OO
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Limit spaces

“Gupta-Fabrikowski group
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IMG (22— 0.2282... + 1.1151. . ./)
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Real numeration systems

If A€ Mpxn(Z) is an expanding matrix and ri, ra, ..., rq is a coset
transversal of Z"/A(Z"), then every series

r+ A_l(r,-l) + A_z(r,-Z) + -

converges in R"”, and we get an “A-adic” numeration system on R”".
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Limit space Jg

Consider the space X~ of the left-infinite words ... xxi.
Fix a self-similar group G. Two sequences ... xpx1,...yoy; are equivalent
if there exists a finite set A C G and a sequences gx € A such that

gk(Xk---Xl) =Yk-.---1.

for all k.

The quotient of X~ by this equivalence relation is the limit space Jg.
The equivalence relation is invariant under the shift ... xox3 — ... x3x0,
hence the shift induces a continuous map s: Jg — Jg, called the /imit
dynamical system.
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The Moore diagram of the nucleus N of a contracting group is the labeled
graph with the set of vertices N, where g is connected to g|x by an arrow
labeled by (x, g(x)).

—

0,0)

wo o % 1,0) oo

(1,1

~—

is the Moore diagram of the adding machine action.
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Proposition

Sequences . .. xox1,...Yyoy1 € X™¥ are equivalent if and only if there exists
a path ...exe; in the Moore diagram of the nucleus N such that the
arrow e, is labeled by (xp, yn).
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Elementary properties

The limit space J¢ is metrizable, finite-dimensional, compact.
It is connected if the group G is level-transitive.

It is locally connected if the group G is self-replicating.
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Julia sets and limit spaces

If f: My — M is an expanding partial self-covering, then IMG (f) is
contracting and (Jnvq(r),s) is topologically conjugate to (Jr, f),where J¢
is the set of accumulation points of the inverse orbit

U m.

n>0

i.e., the support of the measure of maximal entropy.

A choice of connecting paths provides a symbolic presentation of the limit
dynamical system.

V. Nekrashevych (Texas A&M) Contracting Groups July 9-13, 2007, ESI, Vienna 33 /68



In particular, the limit space of the A-adic adding machine action of Z" (if
A is expanding) is R"/Z", since this action is the iterated monodromy
group of the self-covering of R"/Z" induced by A.
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Limit spaces as Gromov boundaries

Let a contracting group G be generated by a finite set S. Consider the
graph with the set of vertices X* where a vertex v is connected to s(v) for
s € S and to xv for x € X.

This graph is Gromov hyperbolic and its boundary is homeomorphic to Jg.
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Limit G-space

Let (G, X) be a contracting group. Consider the topological space
X~% x G and take its quotient by the equivalence relation

...X2X1-gN...y2y1-h iff

gk(Xk~~~X2X1) =Yk---Yo¥1, gk|Xk...X2X1g: h

for some bounded sequence {gx}.
The condition can be written as

gk(xk ... xox18(W)) = yk ... yay1 h(w)

for all w € X*.
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The quotient X of X~ x G is called the limit G-space.

The group G acts on X by a natural right action.This action is proper
and co-compact.

The space X is locally compact, metrizable and finite-dimensional. It is
connected and locally connected if (G, X) is self-replicating.
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In the case of the A-adic adding machine action, the limit G-space of Z" is
R™ with the natural action.

The symbolic representation of the points of Azn as ...xox1 - g
corresponds to the representation of the points of R" as series

g +A_1(ri1) + A_2(ri2) +oeee
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Tiles

The image of the set X~ -1 in X is called the tile 7 of the group (G, X).

We have
Xe = U T-g.
geiG

If for every g € G there exists v € X* such that g|, =1, then tiles 7 - g
have disjoint interiors and are closures of their interiors.
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A tile of a Z?2 action

S

ARA
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Some other tiles of Z?2 actions
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Bounded automata

Proposition

The tile T is the quotient of the space X™“ by the equivalence relation
identifying ...xox1 and ... y»y1 if there is a path ... exe; in the Moore
diagram of N ending in identity and such that e, is labeled by (xn, ¥n)-

Proposition

Two tiles T - g and T - h intersect if and only if gh=* € N

Proposition

If for every g € G there exists v € X* such that g|, = 1, then 0T is the
intersection of T with |J g1 T - g. It consists of the images of sequences
...xox1 - 1 such that there exists a path ... eye; in the Moore diagram of
the nucleus ending in a non-trivial element of N and such that for all k
the arrow ey is labeled by (xk, yx) for some yj.
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Bounded automata

For given v € X* and g € G the corresponding tile 7 - v - g is the image of
the sequences ... x,11v - g.
The tile 7 - v - g is homeomorphic to the tile 7 and

T:UT-V.

vexXn
For £ € X the set

Un(§) = U T-v-g

v-geEX"XGEET v-g

is a neighborhood of £ and {U,(§) : n > 0} is a basis of neighborhoods
of &.
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Bounded automata

If 0T is finite, then Js and X are topologically one dimensional.
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1 - n
Basilica” .
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“Airplane and Rabbit"
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Bounded automata

~{
T

pu '}
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Bounded automata

An automorphism g of the tree X* is finitary if there exists n such that
gly = 1 for all v € X". The smallest n is called finitary depth of g.

An automorphism g is called directed if there exists n and a path w € X¥
such that g|, is finitary of depth < n if v is not a beginning of w.

An automorphism g of X* is bounded if there exists n such that g|, is
either finitary or directed for v € X". The set of bounded automorphisms
of X* is a group.
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Grigorchuk group

A
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IMG (22— 1)

Mliggy iy
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Bounded automata

An automorphism g of X* is automatic if the set {g|, : v € X*} is finite.

Theorem (E. Bondarenko, V.N.)

A self-similar group of bounded automatic automorphisms of X* is
contracting and has finite boundary of the tile T C Xg.

If a contracting group (G, X) satisfies the “open set condition” and has
finite boundary of the tile, then it consists of bounded automatic
automorphisms of X*.
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Bounded automata

The group of bounded automorphisms of X* has no free subgroups.

Is it amenable?

Theorem (L. Bartholdi, B. Virag, V. Kaimanovich, V.N.)

The group of bounded automatic automorphisms of X* is amenable.

Corollary

Iterated monodromy groups of post-critically finite polynomials are
amenable.
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Sketch of the proof

Notation:
a=m(ag,a1,...,ad-1)

for m € Symm (X) and X ={0,1,2,...,d — 1} means

a(iw) = w(i)a;(w).
It is sufficient to prove the theorem for finitely generated subgroups G of
the group of bounded automatic automorphisms. Passing to sections and

replacing X by X", we may assume that the generators of G are either
elements of Symm (X) (acting on the first letter) or of the form

a=m(ao,...,ad-1),
where a, = a for some x and a; € Symm (X) for i # x.
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Bounded automata

Conjugating by
§=(6,10,¢726,...,¢ @ 1g),

where ¢ = (0,1,...,d — 1), we get

6ad~t = (0,¢7%,... .U V) m(ap, ... ag-1) (0L, 07, ..., 07 TTY)

:7r(§_7r(0)530(5_1,C_”(l)éalé_lg,...,g m(d=1)§a,_ 161 h.

Note that the coordinate number x is ¢~ ™X)§ad~1¢X, which is
g—ﬂ(x)ﬂ_gx(g—w(x)éaé—1§X7 o ’g—ﬂ(x—i-d—l)5ax+d_15—lgx+d—1)’

and that ¢~"®)7¢x(0) = 0.
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Bounded automata

If a € Symm (X), then §ad~! is finitary of depth < 2. Hence, passing again
to X2, we may assume that the generators of G either belong to
Symm (X), or are of the form

a=m(a,a1,...,a4-1)

for a; € Symm (X) and m € Symm (X) such that 7(0) = 0.

The set of automorphisms of X* of the second type form a group B
isomorphic to Symm (X) : Symm (X\ 0). We denote A = Symm (X).

Let M(X) be the group generated by A and B.
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Bounded automata

We have proved

Proposition

Any finitely generated group of bounded automatic automorphisms of X*
can be embedded as a subgroup into M(X") ¢ Symm (X").

Hence it is sufficient to show that M(X) is amenable for every X.
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Bounded automata

Let my and mg be the uniform probability measures on the finite groups
A = Symm (X) and B = Symm (X) ¢ Symm (X \ 0). Consider their
convolution pt = mg * ma and consider the corresponding random walk on
M(X).

By self-similarity of M(X) we get a natural Markov chain on X - M(X):

(i,g) — (h(i), h|i - g) with probability u(h).

Projection of this chain onto X is a sequence of independent X-valued
random variables. Projection onto G is the random walk determined by the

measure
N_d—lm . 1m
m= d A d B-
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Bounded automata

Considering the projections we conclude that
H(p™") < dH(i™") + dlog d,

hence h(M(X), ) < dh(M(X), ).

On the other side, using that m4 and mg are idempotents, one can
estimate

d-—1
h(M( 5—h(M(X), 1),

hence h(M(X), 1) < SZEh(M(X), ), i.e., h(1) = 0, which implies
amenability of M(X).
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Operator algebras

The Markov chain on X x G is described by the transition matrix

M = (ny)x7yex7

where 1, (h) is the probability of the transition from y - g to x - hg.
In general, if a=3_, . agg € C[G], then the corresponding matrix

¢(a) = (axy), ,ex is given by

ayy = Z aggly.

g(y)=x

The map ¢ : C[G] — Myx4(C[G]) is a homomorphism of algebras called
the matrix recursion.
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Operator algebras

For example, in the case of the binary adding machine the recursion is

. 0 a
a 10/
For IMG (22—1) we have
. 0 b b 10
1 0 )’ 0 a

a(0w) = 1w, a(lw) = 0b(w), b(Ow) = 0w, b(1lw) = la(w).

since
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Operator algebras

The Cuntz-Pimsner algebra O = O x) of a self-similar group (G, X) is
the universal C*-algebra generated by G and S, (for x € X) satisfying

O relations of G;
© Cuntz algebra relations

SiSe=1, ) _SSi=1;

xeX

Q forallge G, xeX:
g-5=5,-h

whenever g(xw) = yh(w) for all w.
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Operator algebras

The action of a self-similar group G on X* extends naturally onto the
boundary X“. We get in this way a natural unitary representation of G on
L2(X%).

There is also a natural representation of the Cuntz algebra on L%(X¥)
induced by the transformations

Ty :wr— xw.

The condition g(xw) = yh(w) is equivalent to

g-Tx=T,-h

Hence we get a representation of Og.
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Operator algebras

Let f: X3 — X be an expanding covering of a space by a subset.
Choose t € C and consider

Te=||f ()

n>0

Onua(r) is the universal C*-algebra generated by S, where ~y are
homotopy classes of paths connecting the points of Ty, satisfying

Q 5, =1

o S’Yl’Yz = 5715’72-

(%] 5,y—1 = Sfyk.

Q 5y =D ser1(y) 55
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Operator algebras

Define for z € C, |z| = 1
for all g € G and

for all x € X.
We get a gauge action of the circle on Og.
The algebra of fixed points of the gauge action is the closed linear span of

5.8S;, for |v| = |u|.

We denote it M.
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Operator algebras

Proposition
The gauge invariant sub-algebra M ¢ is isomorphic to the inductive limit of

C(6) — Ma(C*(G)) — Mp(C*(G)) — -+,

where the homomorphism are induced by the matrix recursions.
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Operator algebras

Theorem

If the self-similar group (G, X) is contracting (e.g., it is IMG (f) for an
expanding f ), then Og is defined by a finite number of relations.

For example, Onyg(f), where f is a hyperbolic quadratic polynomial is
generated by the Cuntz algebra O, = (Sp, S1) and one unitary a such that

a= 515+ So(1—S,S% + S,aS?)S;.
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Operator algebras

Theorem

If (G, X) is a regular (i.e., the groups of germs are trivial) contracting
self-similar group, then Og¢ is simple, purely infinite, nuclear.

Theorem

Let f be a hyperbolic rational function of degree d. Denote by c the
number of attracting cycles of f, by k the sum and by | the greatest
common divisor of their lengths.

Then

Ko(Mivc(ry) = Z[1/d], Ki(Miva(r)) = k-1

and

Ko(Onaa(r) = Z/(d = 1)Z & 27, Ki(Onaa(r) = Z/1Z& 2.

v
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Operator algebras

Theorem
Let f1, f, be hyperbolic rational functions. Then the following two

conditions are equivalent.
@ The C*-dynamical systems (Oniqr), [2z) and (Onig(s), T2) are
conjugate.

@ The topological dynamical systems (Jg, f1) and (J,, f2) are conjugate,
where Jg are the Julia sets of f;, i.e., the closure of the set of repelling

cycles of f;.

4
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