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Self-similar groups

Self-similar groups

Definition

A self-similar group (G ,X) is a faithful action of a group G on X∗ such
that for every g ∈ G and every x ∈ X there exist h ∈ G and y ∈ X such
that

g(xw) = yh(w)

for all w ∈ X∗.

Example: take G ∼= Z generated by a. Define an action of G on {0, 1}∗ by
the rule

a(0w) = 1w , a(1w) = 0a(w).

It describes the process of adding 1 to a diadic integer.
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Self-similar groups

For every v ∈ X∗ and every g ∈ G there exists h ∈ G such that

g(vw) = g(v)h(w)

for all w ∈ X∗.
It follows that G acts on X∗ by the automorphisms of the associated
rooted tree (the right Cayley graph of the free monoid X∗).
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Self-similar groups

If g(vw) = g(v)h(w) for all w , then we denote

h = g |v

and call h the section (or restriction) of g at v .
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Self-similar groups

We have the following properties of sections:

g |v1v2 = g |v1 |v2, (g1g2)|v = g1|g2(v)g2|v .

A self-similar group (G ,X) is self-replicating if it is level-transitive and for
every h ∈ G and x ∈ X there exists g ∈ G such that

g(x) = x , g |x = h.
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Self-similar groups

Actions of Zn

Let A be an n × n matrix with integral entries. Let d = det A, then A(Zn)
is a subgroup of index d of Z

n.
Choose a coset transversal r1, r2, . . . , rd of Z

n/A(Zn). We can represent
then every element g ∈ Z

n as a formal series

g = ri0 + A(ri1) + A2(ri2) + · · ·

in a unique way.
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Self-similar groups

The group Z
n acts on the series

ri0 + A(ri1) + A2(ri2) + · · ·

self-similarly:

g+
(
ri0 + A(ri1) + A2(ri2) + · · ·

)
= rj0+A

(
h + ri1 + A(ri2) + A2(ri3) + · · ·

)
,

where rj0 and h ∈ Z
n are uniquely determined by

g + ri0 = rj0 + A(h).
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Self-similar groups

Iterated monodromy groups

Let f : M1 −→ M be a covering of a space by a subset.
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Self-similar groups

Choose an alphabet X, |X| = deg f , a bijection Λ : X → f −1(t), and a path
`(x) from t to Λ(x) for every x ∈ X.

Define the map Λ : X∗ → Tt inductively by the rule:

Λ(xv) is the end of the f |v |-lift of `(x) starting at Λ(v).

The map Λ : X∗ → Tt is an isomorphism of rooted trees.
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Self-similar groups

The isomorphism Λ : X∗ → Tt conjugates the iterated monodromy action
of π1(M, t) on Tt to a self-similar action

γ (xv) = yδ(v),

where v ∈ X∗, x ∈ X and δ is the loop `(x)γx`(y)−1
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Self-similar groups

IMG
(
z2 − 1

)
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Contracting groups

Contracting groups

Definition

A self-similar group G is called contracting if there exists a finite set
N ⊂ G such that for every g ∈ G there exists n such that g |v ∈ N
whenever |v | ≥ n.

The smallest set N satisfying this property is called the nucleus of the
group.
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Contracting groups

Let (G ,X) be a finitely generated self-similar group. The number

ρ = lim sup
n→∞

n

√
lim sup
l(g)→∞

max
v∈Xn

l (g |v )

l(g)

is the contraction coefficient.

Proposition

The action is contracting if and only if its contraction coefficient ρ is less
than 1.
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Contracting groups

Recall that a self-similar action of Z
n defined by a matrix A and a coset

transversal r1, r2, . . . , rd is given by the rule

g + (ri0 + A(ri1) + A2(ri2) + · · · ) = rj0 + A(h + ri1 + A(ri2) + · · · ),

where h = A−1(g + ri0 − rj0).

It follows that this action is contracting if and only if the spectral radius of
A−1 is less than one.
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Contracting groups

If f : M1 −→ M is an expanding covering, then IMG (f ) is contracting.

In particular, if f : Ĉ → Ĉ is a post-critically finite rational function, then
IMG (f ) is contracting.
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Contracting groups

The Grigorchuk group

a(0w) = 1w a(1w) = 0w
b(0w) = 0a(w) b(1w) = 1c(w)
c(0w) = 0a(w) c(1w) = 1d(w)
d(0w) = 0w d(1w) = 1b(w).

is contracting with ρ = 1/2.
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Contracting groups

Let A ≤ Symm (X) be a 2-transitive permutation group on X, |X| > 2. Fix
x1, x2 ∈ X.

The group W(A) is generated by A acting on the first letter of words from
X∗ and by the set A of the transformations

α(x1w) = x1α(w), α(x2w) = x2α(w), α(xiw) = xiw .

L. Bartholdi showed that W(A) for A = PSL(3, 2) acting on P2
F2 has

non-uniform exponential growth.
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Absence of free subgroups

Germs

Definition

Let G be a group acting on a locally finite rooted tree T . For w ∈ ∂T the
group of germs is

G(w) = Gw/{g ∈ Gw : g acts trivially on a nbhd of w}.

If G is contracting, then |G(w)| ≤ |N | for all w ∈ ∂X∗ = Xω.
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Absence of free subgroups

Free groups acting on rooted trees

Theorem

Let G be a group acting faithfully on a locally finite rooted tree T . Then
one of the following is true

1 G has no free subgroups,

2 G(w) has a free subgroup for some w ∈ ∂T,

3 there is a free subgroup F < G and w ∈ ∂T such that Fw = {1}.
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Absence of free subgroups

Let G be a finitely generated group acting on a set A. Growth degree of
the G -action is

γ = sup
w∈A

lim sup
r→∞

log |{g(w) : l(g) ≤ r}|

log r
.

Proposition

Let (G ,X) be contracting. Then the growth degree of the action of G on

Xω is ≤ log |X|
− log ρ

.

Corollary

Contracting groups have no free subgroups.
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Limit spaces

Schreier graphs

Let (G ,X) be a finitely generated contracting group. The Schreier graphs
Γn = Γn(G ,S) are the graphs with the set of vertices Xn where v is
connected to s(v) for all v ∈ Xn and s ∈ S .

The Schreier graphs of contracting groups seem to converge as n → ∞ to
fractals.
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Limit spaces

Graphs for IMG
(
z2 − 1

)
.
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Limit spaces

Julia set of z2 − 1.
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Limit spaces

“Hanoi tower” group
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Limit spaces

“Gupta-Fabrikowski group”
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Limit spaces

IMG
(
z2 − 0.2282 . . . + 1.1151 . . . i

)
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Limit spaces

Real numeration systems

If A ∈ Mn×n(Z) is an expanding matrix and r1, r2, . . . , rd is a coset
transversal of Z

n/A(Zn), then every series

r + A−1(ri1) + A−2(ri2) + · · ·

converges in R
n, and we get an “A-adic” numeration system on R

n.
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Limit spaces

Limit space JG

Consider the space X−ω of the left-infinite words . . . x2x1.
Fix a self-similar group G . Two sequences . . . x2x1, . . . y2y1 are equivalent
if there exists a finite set A ⊂ G and a sequences gk ∈ A such that

gk(xk . . . x1) = yk . . . y1.

for all k.
The quotient of X−ω by this equivalence relation is the limit space JG .
The equivalence relation is invariant under the shift . . . x2x1 7→ . . . x3x2,
hence the shift induces a continuous map s : JG −→ JG , called the limit
dynamical system.
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Limit spaces

The Moore diagram of the nucleus N of a contracting group is the labeled
graph with the set of vertices N , where g is connected to g |x by an arrow
labeled by (x , g(x)).

is the Moore diagram of the adding machine action.
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Limit spaces

Proposition

Sequences . . . x2x1, . . . y2y1 ∈ X−ω are equivalent if and only if there exists
a path . . . e2e1 in the Moore diagram of the nucleus N such that the
arrow en is labeled by (xn, yn).
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Limit spaces

Elementary properties

The limit space JG is metrizable, finite-dimensional, compact.

It is connected if the group G is level-transitive.

It is locally connected if the group G is self-replicating.
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Limit spaces

Julia sets and limit spaces

If f : M1 −→ M is an expanding partial self-covering, then IMG (f ) is
contracting and (JIMG(f ), s) is topologically conjugate to (Jf , f ),where Jf

is the set of accumulation points of the inverse orbit

⋃

n≥0

f −n(t),

i.e., the support of the measure of maximal entropy.

A choice of connecting paths provides a symbolic presentation of the limit
dynamical system.
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Limit spaces

In particular, the limit space of the A-adic adding machine action of Z
n (if

A is expanding) is R
n/Z

n, since this action is the iterated monodromy
group of the self-covering of R

n/Z
n induced by A.
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Limit spaces

Limit spaces as Gromov boundaries

Let a contracting group G be generated by a finite set S . Consider the
graph with the set of vertices X∗ where a vertex v is connected to s(v) for
s ∈ S and to xv for x ∈ X.

This graph is Gromov hyperbolic and its boundary is homeomorphic to JG .

V. Nekrashevych (Texas A&M) Contracting Groups July 9–13, 2007, ESI, Vienna 35 / 68



Limit spaces

Limit G -space

Let (G ,X) be a contracting group. Consider the topological space
X−ω × G and take its quotient by the equivalence relation

. . . x2x1 · g ∼ . . . y2y1 · h iff

gk(xk . . . x2x1) = yk . . . y2y1, gk |xk ...x2x1g = h

for some bounded sequence {gk}.
The condition can be written as

gk(xk . . . x2x1g(w)) = yk . . . y2y1h(w)

for all w ∈ X∗.
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Limit spaces

The quotient XG of X−ω × G is called the limit G-space.

The group G acts on XG by a natural right action.This action is proper
and co-compact.

The space XG is locally compact, metrizable and finite-dimensional. It is
connected and locally connected if (G ,X) is self-replicating.
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Limit spaces

In the case of the A-adic adding machine action, the limit G -space of Z
n is

R
n with the natural action.

The symbolic representation of the points of XZn as . . . x2x1 · g
corresponds to the representation of the points of R

n as series

g + A−1(ri1) + A−2(ri2) + · · · .
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Limit spaces

Tiles

The image of the set X−ω · 1 in XG is called the tile T of the group (G ,X).
We have

XG =
⋃

g∈G

T · g .

If for every g ∈ G there exists v ∈ X∗ such that g |v = 1, then tiles T · g
have disjoint interiors and are closures of their interiors.
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Limit spaces

A tile of a Z2 action
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Limit spaces

Some other tiles of Z2 actions
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Bounded automata

Proposition

The tile T is the quotient of the space X−ω by the equivalence relation
identifying . . . x2x1 and . . . y2y1 if there is a path . . . e2e1 in the Moore
diagram of N ending in identity and such that en is labeled by (xn, yn).

Proposition

Two tiles T · g and T · h intersect if and only if gh−1 ∈ N .

Proposition

If for every g ∈ G there exists v ∈ X∗ such that g |h = 1, then ∂T is the
intersection of T with

⋃
g 6=1 T · g. It consists of the images of sequences

. . . x2x1 · 1 such that there exists a path . . . e2e1 in the Moore diagram of
the nucleus ending in a non-trivial element of N and such that for all k
the arrow ek is labeled by (xk , yk) for some yk .
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Bounded automata

For given v ∈ X∗ and g ∈ G the corresponding tile T · v · g is the image of
the sequences . . . xn+1v · g .
The tile T · v · g is homeomorphic to the tile T and

T =
⋃

v∈Xn

T · v .

For ξ ∈ XG the set

Un(ξ) =
⋃

v ·g∈Xn×G ,ξ∈T ·v ·g

T · v · g

is a neighborhood of ξ and {Un(ξ) : n ≥ 0} is a basis of neighborhoods
of ξ.
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Bounded automata

If ∂T is finite, then JG and XG are topologically one dimensional.
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Bounded automata

“Basilica”.
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Bounded automata

“Airplane and Rabbit”
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Bounded automata
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Bounded automata

An automorphism g of the tree X∗ is finitary if there exists n such that
g |v = 1 for all v ∈ Xn. The smallest n is called finitary depth of g .

An automorphism g is called directed if there exists n and a path w ∈ Xω

such that g |v is finitary of depth ≤ n if v is not a beginning of w .

An automorphism g of X∗ is bounded if there exists n such that g |v is
either finitary or directed for v ∈ Xn. The set of bounded automorphisms
of X∗ is a group.
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Bounded automata

Grigorchuk group
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Bounded automata

IMG
(
z2 − 1

)
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Bounded automata

An automorphism g of X∗ is automatic if the set {g |v : v ∈ X∗} is finite.

Theorem (E. Bondarenko, V.N.)

A self-similar group of bounded automatic automorphisms of X∗ is
contracting and has finite boundary of the tile T ⊂ XG .
If a contracting group (G ,X) satisfies the “open set condition” and has
finite boundary of the tile, then it consists of bounded automatic
automorphisms of X∗.
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Bounded automata

The group of bounded automorphisms of X∗ has no free subgroups.

Is it amenable?

Theorem (L. Bartholdi, B. Virag, V. Kaimanovich, V.N.)

The group of bounded automatic automorphisms of X∗ is amenable.

Corollary

Iterated monodromy groups of post-critically finite polynomials are
amenable.
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Bounded automata

Sketch of the proof

Notation:
a = π(a0, a1, . . . , ad−1)

for π ∈ Symm (X) and X = {0, 1, 2, . . . , d − 1} means

a(iw) = π(i)ai (w).

It is sufficient to prove the theorem for finitely generated subgroups G of
the group of bounded automatic automorphisms. Passing to sections and
replacing X by Xn, we may assume that the generators of G are either
elements of Symm (X) (acting on the first letter) or of the form

a = π(a0, . . . , ad−1),

where ax = a for some x and ai ∈ Symm (X) for i 6= x .
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Bounded automata

Conjugating by
δ = (δ, ς−1δ, ς−2δ, . . . , ς−(d−1)δ),

where ς = (0, 1, . . . , d − 1), we get

δaδ−1 = (δ, ς−1δ, . . . , ς−(d−1)δ)π(a0, . . . , ad−1)(δ
−1, δ−1ς, . . . , δ−1ςd−1)

= π(ς−π(0)δa0δ
−1, ς−π(1)δa1δ

−1ς, . . . , ς−π(d−1)δad−1δ
−1ςd−1).

Note that the coordinate number x is ς−π(x)δaδ−1ςx , which is

ς−π(x)πςx(ς−π(x)δaδ−1ςx , . . . , ς−π(x+d−1)δax+d−1δ
−1ςx+d−1),

and that ς−π(x)πςx(0) = 0.
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Bounded automata

If a ∈ Symm (X), then δaδ−1 is finitary of depth ≤ 2. Hence, passing again
to X2, we may assume that the generators of G either belong to
Symm (X), or are of the form

a = π(a, a1, . . . , ad−1)

for ai ∈ Symm (X) and π ∈ Symm (X) such that π(0) = 0.

The set of automorphisms of X∗ of the second type form a group B
isomorphic to Symm (X) o Symm (X \ 0). We denote A = Symm (X).

Let M(X) be the group generated by A and B .
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Bounded automata

We have proved

Proposition

Any finitely generated group of bounded automatic automorphisms of X∗

can be embedded as a subgroup into M(Xn) o Symm (Xn).

Hence it is sufficient to show that M(X) is amenable for every X.
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Bounded automata

Let mA and mB be the uniform probability measures on the finite groups
A = Symm (X) and B = Symm (X) o Symm (X \ 0). Consider their
convolution µ = mB ∗ mA and consider the corresponding random walk on
M(X).

By self-similarity of M(X) we get a natural Markov chain on X · M(X):

(i , g) 7→ (h(i), h|i · g) with probability µ(h).

Projection of this chain onto X is a sequence of independent X-valued
random variables. Projection onto G is the random walk determined by the
measure

µ̃ =
d − 1

d
mA +

1

d
mB .
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Bounded automata

Considering the projections we conclude that

H(µ∗n) ≤ dH(µ̃∗n) + d log d ,

hence h(M(X), µ) ≤ dh(M(X), µ̃).

On the other side, using that mA and mB are idempotents, one can
estimate

h(M(X), µ̃) ≤
d − 1

d2
h(M(X), µ),

hence h(M(X), µ) ≤ d−1
d

h(M(X), µ), i.e., h(µ) = 0, which implies
amenability of M(X).
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Operator algebras

The Markov chain on X × G is described by the transition matrix

M = (µxy)x ,y∈X ,

where µxy(h) is the probability of the transition from y · g to x · hg .
In general, if a =

∑
g∈G αgg ∈ C[G ], then the corresponding matrix

φ(a) = (axy)x ,y∈X is given by

axy =
∑

g(y)=x

αgg |y .

The map φ : C[G ] −→ Md×d(C[G ]) is a homomorphism of algebras called
the matrix recursion.
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Operator algebras

For example, in the case of the binary adding machine the recursion is

a 7→

(
0 a
1 0

)
.

For IMG
(
z2 − 1

)
we have

a 7→

(
0 b
1 0

)
, b 7→

(
1 0
0 a

)

since

a(0w) = 1w , a(1w) = 0b(w), b(0w) = 0w , b(1w) = 1a(w).
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Operator algebras

The Cuntz-Pimsner algebra OG = O(G ,X) of a self-similar group (G ,X) is
the universal C ∗-algebra generated by G and Sx (for x ∈ X) satisfying

1 relations of G ;

2 Cuntz algebra relations

S∗
x Sx = 1,

∑

x∈X

SxS
∗
x = 1;

3 for all g ∈ G , x ∈ X:
g · Sx = Sy · h

whenever g(xw) = yh(w) for all w .
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Operator algebras

The action of a self-similar group G on X∗ extends naturally onto the
boundary Xω. We get in this way a natural unitary representation of G on
L2(Xω).
There is also a natural representation of the Cuntz algebra on L2(Xω)
induced by the transformations

Tx : w 7→ xw .

The condition g(xw) = yh(w) is equivalent to

g · Tx = Ty · h.

Hence we get a representation of OG .
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Operator algebras

Let f : X1 −→ X be an expanding covering of a space by a subset.
Choose t ∈ C and consider

Tf =
⊔

n≥0

f −n(t).

OIMG(f ) is the universal C ∗-algebra generated by Sγ , where γ are
homotopy classes of paths connecting the points of Tf , satisfying

1 S1t = 1.

2 Sγ1γ2 = Sγ1Sγ2 .

3 Sγ−1 = S∗
γ .

4 Sγ =
∑

δ∈f −1(γ) Sδ.
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Operator algebras

Define for z ∈ C, |z | = 1
Γz(g) = g

for all g ∈ G and
Γz(Sx) = zSx

for all x ∈ X.
We get a gauge action of the circle on OG .
The algebra of fixed points of the gauge action is the closed linear span of

SvgS
∗
u , for |v | = |u|.

We denote it MG .
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Operator algebras

Proposition

The gauge invariant sub-algebra MG is isomorphic to the inductive limit of

C ∗(G ) −→ Md(C ∗(G )) −→ Md2(C ∗(G )) −→ · · · ,

where the homomorphism are induced by the matrix recursions.
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Operator algebras

Theorem

If the self-similar group (G ,X) is contracting (e.g., it is IMG (f ) for an
expanding f ), then OG is defined by a finite number of relations.

For example, OIMG(f ), where f is a hyperbolic quadratic polynomial is
generated by the Cuntz algebra O2 = 〈S0,S1〉 and one unitary a such that

a = S1S
∗
0 + S0(1 − SvS

∗
v + SvaS

∗
v )S∗

1 .
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Operator algebras

Theorem

If (G ,X) is a regular (i.e., the groups of germs are trivial) contracting
self-similar group, then OG is simple, purely infinite, nuclear.

Theorem

Let f be a hyperbolic rational function of degree d. Denote by c the
number of attracting cycles of f , by k the sum and by l the greatest
common divisor of their lengths.
Then

K0(MIMG(f )) = Z[1/d ], K1(MIMG(f )) = Z
k−1

and

K0(OIMG(f )) = Z/(d − 1)Z ⊕ Z
c−1, K1(OIMG(f )) = Z/lZ ⊕ Z

c−1.
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Operator algebras

Theorem

Let f1, f2 be hyperbolic rational functions. Then the following two
conditions are equivalent.

1 The C ∗-dynamical systems (OIMG(f1),Γz) and (OIMG(f2),Γz ) are
conjugate.

2 The topological dynamical systems (Jf1 , f1) and (Jf2, f2) are conjugate,
where Jfi are the Julia sets of fi , i.e., the closure of the set of repelling
cycles of fi .
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