
M412 Practice Problems for Exam 3

Qualititative properties of the Laplace equation

1. For the Laplace equation

uxx + uyy =0; 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

u(x, 0) = 10x(1 − x); u(x, 1) = 1 − x

u(0, y) = 10y(1 − y); u(1, y) = 1 − y,

find upper and lower bounds on u(x, y) in the square (x, y) ∈ [0, 1] × [0, 1].

2. For the Laplace equation

uxx + uyy = 0; 0 ≤ x ≤ π, 0 ≤ y ≤ π

uy(x, 0) = sin x; uy(x, 1) = sinx

u(0, y) = 1; u(1, y) = 0,

compute ∫ π

0

∫ π

0

u(x, y)dxdy.

Well-posedness

3. Show that solutions to the heat equation

ut =uxx

u(t, 0) =0
u(t, L) =0
u(0, x) = f(x)

are stable with respect to small changes in f(x). Specify any assumptions you are making on f(x) and small
changes to f(x).

Convergence, integration, and differentiation of Fourier series

4. Show that if f(x) is piecewise continuous on the interval [−L, L], then

∫ +L

−L

f(x)2dx = 2LA2
0 + L

∞∑
n=1

(A2
n + B2

n),

where

f(x) = A0 +
∞∑

n=1

An cos
nπx

L
+ Bn sin

nπx

L
.

5. Suppose f(x) is piecewise smooth on the interval [0, L]. Prove that the Fourier sine series of f(x) can be
integrated term-by-term on y ∈ [0, x] for all x ∈ [0, L].
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The method of eigenfunction expansion

6. Haberman 8.3.6.

7. Haberman 8.3.7.

8. Use the method of eigenfunction expansion to solve the wave equation

utt =uxx, 0 < x < 1, t > 0
ux(t, 0) =0
ux(t, 1) =0
u(0, x) = f(x)

ut(0, x) = g(x).

(This problem was on the previous practice exam as well, and can be solved by separation of variables. Solve
it here with the method of eigenfunction expansion.)

9. Solve the Laplace equation

uxx + uyy = − π2 sin πx; 0 ≤ x ≤ 1, 0 ≤ y ≤ 2,

u(x, 0) =0; u(x, 2) = 0

u(0, y) =2 sinπy; u(1, y) = sin
πy

2
.

Fourier Transforms

10. Show that solutions to the quarter-plane problem

ut =uxx

u(t, 0) =0
|u(t,∞)| bounded
u(0, x) = f(x),

can be written in the form
u(t, x) =

∫ ∞

0

2ωC(ω)e−ω2t sin ωxdω,

for some appropriate constant C(ω).

Solutions.

1. By the maximum principle, 0 ≤ u(x, y) ≤ 5
2 .

2.
∫ π

0

∫ π

0
u(x, y)dxdy = π2 − π3

2 .

3. Let w(t, x) solve the same problem with slightly different changed f(x): w(0, x) = f(x) + εh(x), where
f(x) and h(x) are both assumed continuous with piecewise continuous first derivatives (this will guarantee
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not only that we have solutions, but that they are continuous as t → 0). The variable v = w − u solves

vt = vxx

v(t, 0) =0
v(t, L) =0
v(0, x) = εh(x).

Solving for v(t, x), we have the Fourier sine series

v(t, x) =
∞∑

n=1

Bne−
n2π2

L2 t sin
nπx

L
,

where

Bn =
2
L

∫ L

0

εh(x) sin
nπx

L
dx.

Setting

B̄n =
2
L

∫ L

0

h(x) sin
nπx

L
dx,

we see that

v(t, x) = ε

∞∑
n=1

B̄ne−
n2π2

L2 t sin
nπx

L
,

where according to our assumptions this sum converges. Therefore the smaller we take ε to be, the smaller
v(t, x) will be.

4. Compute directly,
∫ +L

−L

f(x)2dx =
∫ +L

−L

(A0 +
∞∑

n=1

An cos
nπx

L
+ Bn sin

nπx

L
)2dx,

and use the orthogonality relations for integrals over sine and cosine.

5. Set F (x) =
∫ x

0
f(y)dy and show that the Fourier cosine series of F (x) is precisely the term-by-term

anti-derivative of f(y).

6.

u(t, x) = (1 − x

π
) +

∞∑
n=1

cn(t) sin nx,

where

cn(t) =

{
− 2

nπ e−n2t, n 6= 5
1
23e−2t − ( 1

23 + 2
5π )e−25t, n = 5.

7.

u(t, x) =
x

L
t +

∞∑
n=1

(−1)n 2L2

n3π3
(1 − e−

n2π2

L2 t) sin
nπx

L
.

8.

u(t, x) = A0 + B0t +
∞∑

n=1

(An cosnπt + Bn sinnπt) cos nπx,

3



where

A0 =
∫ 1

0

f(x)dx

An =2
∫ 1

0

f(x) cosnπxdx

B0 =
∫ 1

0

g(x)dx

Bn =
2

nπ

∫ 1

0

g(x) cos nπxdx.

9.

u(x, y) =
sinh πx

2

sinh π
2

sin
πy

2
+

(
1 + coshπx − (

1
sinh π

+
coshπ

sinh π
) sinhπx

)
sinπy.

10. The solution is in the statement of the problem.
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