M412 Assignment 1, due Friday, September 2

A prerequisite for M412 is M308, Differential Equations. These problems constitute a brief review of the some of the material covered in M308.

1. [5 pts] Solve the initial value problem

$$
\frac{d y}{d x}=3 x^{2}\left(y^{2}+1\right) ; \quad y(0)=1
$$

For what domain is your solution valid?
2. [5 pts] Find a general solution for the differential equation

$$
\left(x^{2}+1\right) \frac{d y}{d x}+3 x y=6 x
$$

3. [5 pts] Show that the boundary value problem

$$
y^{\prime \prime}(x)+3 y(x)=0 ; \quad y(0)=0, \quad y(\pi)=0
$$

has only the trivial solution $y(x) \equiv 0$.
4. [5 pts] Show that the boundary value problem

$$
y^{\prime \prime}(x)+4 y(x)=0, \quad y(0)=0, \quad y(\pi)=0
$$

has an infinite number of solutions.
5. [10 pts] Consider the boundary value problem

$$
\begin{equation*}
y^{\prime \prime}(x)+\lambda y(x)=0 ; \quad y(0)=0, \quad y(\pi)=0, \tag{1}
\end{equation*}
$$

for some parameter λ. If there exists a nontrivial solution to (1) for some value of λ, then we say that λ is an eigenvalue of (1). We refer to the corresponding solution as the eigenfunction associated with λ. Notice that we saw in Problem 3 that $\lambda=3$ is not an eigenvalue, while we saw in Problem 4 that $\lambda=4$ is an eigenvalue. For equation (1), find the real values of λ that are eigenvalues and determine their associated eigenfunctions.

