Assignment 1, Solutions

1. [5 pts] We solve this problem by separation of variables. We have

$$
\frac{d y}{y^{2}+1}=3 x^{2} d x \Rightarrow \int \frac{d y}{y^{2}+1}=\int 3 x^{2} d x \Rightarrow \tan ^{-1} y=x^{3}+C \Rightarrow y(x)=\tan \left(x^{3}+C\right)
$$

Using the initial condition $y(0)=1$, we have $1=\tan (C)$, so that $C=\frac{\pi}{4} \pm k \pi, k=1,2, \ldots$. By the periodicity of $\tan (x)$, each value of C gives the same representation, so without loss of generality we take $C=\frac{\pi}{4}$. Hence,

$$
y(x)=\tan \left(x^{3}+\frac{\pi}{4}\right)
$$

The domain of $\tan (x)$ containing $x=0$ is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, so our domain is described by the inequality

$$
-\frac{\pi}{2}<x^{3}+\frac{\pi}{4}<\frac{\pi}{2} \Rightarrow-\frac{3 \pi}{4}<x^{3}<\frac{\pi}{4} \Rightarrow\left(-\frac{3 \pi}{4}\right)^{1 / 3}<x<\left(\frac{\pi}{4}\right)^{1 / 3}
$$

2. [5 pts] We solve this problem by the integrating factor method. For

$$
\mu(x)=e^{\int \frac{3 x}{x^{2}+1} d x}=\left(x^{2}+1\right)^{3 / 2},
$$

we have

$$
\left(x^{2}+1\right)^{3 / 2} y(x)=\int 6 x \sqrt{x^{2}+1} d x=2\left(x^{2}+1\right)^{3 / 2}+C \Rightarrow y(x)=\frac{C}{\left(x^{2}+1\right)^{3 / 2}}+2
$$

3. [5 pts] The general solution for $y^{\prime \prime}(x)+3 y(x)=0$ is $y(x)=C_{1} \sin \sqrt{3} x+C_{2} \cos \sqrt{3} x$. Setting $y(0)=0$, we have $0=C_{2}$, while setting $y(\pi)=0$, we have $0=C_{1} \sin \sqrt{3} \pi$. Since $\sin \sqrt{3} \pi \neq 0$, we must have $C_{1}=0$. Consequently, C_{1} and C_{2} are both 0 , and $y(x) \equiv 0$ is the only possible solution.
4. [5 pts] The general solution for $y^{\prime \prime}(x)+4 y=0$ is $y(x)=C_{1} \sin 2 x+C_{2} \cos 2 x$. Setting $y(0)=0$, we find that $C_{2}=0$, but setting $y(\pi)=0$, we have $0=C_{1} \sin 2 \pi$, which is satisfied for any value of C_{1}. Consequently, we have an infinite number of solutions, $y(x)=C_{1} \sin 2 x$, for any C_{1}.
5. [10 pts] For $\lambda>0$, the general solution for $y^{\prime \prime}(x)+\lambda y(x)=0$ is $y(x)=C_{1} \sin \sqrt{\lambda} x+C_{2} \cos \sqrt{\lambda} x$. Setting $y(0)=0$, we have $0=C_{2}$, while setting $y(\pi)=0$, we have $0=C_{1} \sin \sqrt{\lambda} \pi$. Hence, we have a nontrivial solution if and only if $\sin \sqrt{\lambda} \pi=0$, or $\sqrt{\lambda} \pi=n \pi$, for $n=1,2, \ldots$. Therefore, the positive eigenvalues are $\lambda=n^{2}, n=1,2,3, \ldots$
For $\lambda=0$, the general solution is $y(x)=C_{1} x+C_{2}$, for which $y(0)=0 \Rightarrow C_{2}=0$ and $y(\pi)=0 \Rightarrow C_{1}=0$. So, $\lambda=0$ is not an eigenvalue.

For $\lambda<0$, the general solution is $y(x)=C_{1} e^{\sqrt{-\lambda} x}+C_{2} e^{\sqrt{\lambda} x}$. Again, we find $C_{1}=C_{2}=0$, so that no $\lambda<0$ are eigenvalues.

