M412 Assignment 3 Solutions

1. [10 pts] Use the method of characteristics to solve the PDE

$$
\begin{aligned}
& u_{x}-u_{y}+2 y=0 \\
& \quad u(x, y)=x y \text { on the line } x+2 y=1 .
\end{aligned}
$$

Solution. In this case, set $U(t)=u(x(t), y(t))$ and choose

$$
\begin{aligned}
& \frac{d x}{d t}=1 ; \quad x(0)=x_{0} \Rightarrow x=t+x_{0} \\
& \frac{d y}{d t}=-1 ; \quad y(0)=y_{0} \Rightarrow y=-t+y_{0} \\
& \frac{d U}{d t}=-2 y(t)=2\left(t-y_{0}\right) ; \quad U(0)=x_{0} y_{0} \Rightarrow U(t)=\left(t-y_{0}\right)^{2}+x_{0} y_{0}-y_{0}^{2}
\end{aligned}
$$

Using $x_{0}+2 y_{0}=1$ and the expressions above to eliminate t, x_{0}, and y_{0}, we find

$$
u(x, y)=(1-x-y)(-2+3 x+3 y)+y^{2}
$$

2. [10 pts] For the PDE

$$
\begin{aligned}
u_{t}+f(u)_{x} & =0 \\
u(0, x) & =g(x),
\end{aligned}
$$

use the method of characteristics to show that solutions satisfy the implicit relationship

$$
u(t, x)=g\left(x-f^{\prime}(u(t, x)) t\right)
$$

Solution. First, use the chain rule to re-write this in quasilinear form,

$$
u_{t}+f^{\prime}(u) u_{x}=0
$$

Next, set $U(t)=u(t, x(t))$ and choose

$$
\begin{aligned}
\frac{d x}{d t} & =f^{\prime}(U) ; \quad x(0)=x_{0} \\
\frac{d U}{d t} & =0 ; \quad U(0)=g\left(x_{0}\right)
\end{aligned}
$$

From the second of these equations, we see that $U(t)$ is constant, with $U(t)=g\left(x_{0}\right)$ for all t. Substituting this back into the first equation, we have

$$
x(t)=f^{\prime}\left(g\left(x_{0}\right)\right) t+x_{0} \Rightarrow x_{0}=x-f^{\prime}\left(g\left(x_{0}\right)\right) t=x-f^{\prime}(U(t)) t
$$

We conclude

$$
u(t, x)=g\left(x_{0}\right)=g\left(x-f^{\prime}(u(t, x)) t\right)
$$

3. [20 pts] Use the methods of characteristics and diagonalization to solve the PDE system

$$
\begin{aligned}
u_{1_{t}}-u_{1_{x}}-u_{2_{x}}=0, & u_{1}(0, x)=f(x) \\
u_{2_{t}}-u_{1_{x}}=0, & u_{2}(0, x)=g(x)
\end{aligned}
$$

Solution. We write this in system notation

$$
\binom{u_{1}}{u_{2}}_{t}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\binom{u_{1}}{u_{2}}_{x}
$$

The matrix

$$
A=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)
$$

has the eigenvalue-eigenvector pairs

$$
\frac{1-\sqrt{5}}{2},\binom{\frac{1}{2}}{\frac{1-\sqrt{5}}{}} \quad \text { and } \quad \frac{1+\sqrt{5}}{2},\binom{\frac{1}{2}}{\frac{2}{1+\sqrt{5}}}
$$

In order to diagonalize the system, we construct

$$
P=\left(\begin{array}{cc}
1 & 1 \\
\frac{2}{1-\sqrt{5}} & \frac{2}{1+\sqrt{5}}
\end{array}\right)
$$

Introducing the variable transformation

$$
\begin{equation*}
\binom{u_{1}}{u_{2}}=P\binom{w_{1}}{w_{2}} \tag{1}
\end{equation*}
$$

we find

$$
\binom{w_{1}}{w_{2}}_{t}=\left(\begin{array}{cc}
\frac{2}{1-\sqrt{5}} & 0 \\
0 & \frac{2}{1+\sqrt{5}}
\end{array}\right)\binom{w_{1}}{w_{2}}_{x}
$$

from which we have

$$
\begin{aligned}
& w_{1_{t}}-\frac{1-\sqrt{5}}{2} w_{1_{x}}=0 ; \quad w_{1}(0, x)=h(x) \\
& w_{2_{t}}-\frac{1+\sqrt{5}}{2} w_{2_{x}}=0 ; \quad w_{2}(0, x)=k(x)
\end{aligned}
$$

where the functions $h(x)$ and $k(x)$ will be determined in terms of $f(x)$ and $g(x)$. Solving each of these equations by the method of characteristics, we find

$$
\begin{aligned}
& w_{1}(t, x)=h\left(x+\frac{1-\sqrt{5}}{2} t\right) \\
& w_{2}(t, x)=k\left(x+\frac{1+\sqrt{5}}{2}\right) .
\end{aligned}
$$

Returning through (1) to variables u_{1} and u_{2}, we conclude

$$
\begin{aligned}
& u_{1}(t, x)=h\left(x+\frac{1-\sqrt{5}}{2} t\right)+k\left(x+\frac{1+\sqrt{5}}{2}\right) \\
& u_{2}(t, x)=\frac{2}{1-\sqrt{5}} h\left(x+\frac{1-\sqrt{5}}{2} t\right)+\frac{2}{1+\sqrt{5}} k\left(x+\frac{1+\sqrt{5}}{2}\right)
\end{aligned}
$$

Finally, we solve for $h(x)$ and $k(x)$ in terms of $f(x)$ and $g(x)$, with

$$
\begin{aligned}
& f(x)=h(x)+k(x) \\
& g(x)=\frac{2}{1-\sqrt{5}} h(x)+\frac{2}{1+\sqrt{5}} k(x) .
\end{aligned}
$$

We find

$$
\begin{aligned}
& h(x)=\frac{3-\sqrt{5}}{5-\sqrt{5}} f(x)-\frac{1}{\sqrt{5}} g(x) \\
& k(x)=\frac{2}{5-\sqrt{5}} f(x)+\frac{1}{\sqrt{5}} g(x)
\end{aligned}
$$

Finally,

$$
\begin{aligned}
u_{1}(t, x) & =\frac{3-\sqrt{5}}{5-\sqrt{5}} f\left(x+\frac{1-\sqrt{5}}{2} t\right)-\frac{1}{\sqrt{5}} g\left(x+\frac{1-\sqrt{5}}{2} t\right)+\frac{2}{5-\sqrt{5}} f\left(x+\frac{1+\sqrt{5}}{2} t\right)+\frac{1}{\sqrt{5}} g\left(x+\frac{1+\sqrt{5}}{2} t\right) \\
u_{2}(t, x) & =\frac{2}{1-\sqrt{5}}\left[\frac{3-\sqrt{5}}{5-\sqrt{5}} f\left(x+\frac{1-\sqrt{5}}{2} t\right)-\frac{1}{\sqrt{5}} g\left(x+\frac{1-\sqrt{5}}{2} t\right)\right] \\
& +\frac{2}{1+\sqrt{5}}\left[\frac{2}{5-\sqrt{5}} f\left(x+\frac{1+\sqrt{5}}{2} t\right)+\frac{1}{\sqrt{5}} g\left(x+\frac{1+\sqrt{5}}{2} t\right)\right] .
\end{aligned}
$$

4. $[10 \mathrm{pts}]$ Haberman Problem 12.4.4.

Solution.

(a) Proceeding as in class, we know that solutions must have the form

$$
u(t, x)=F(x-c t)+G(x+c t)
$$

for some functions $F(x)$ and $G(x)$. For $x>0$, we can proceed as in class to find

$$
\begin{align*}
& F(x)=\frac{1}{2} f(x)-\frac{1}{2 c} \int_{0}^{x} g(y) d y \\
& G(x)=\frac{1}{2} f(x)+\frac{1}{2 c} \int_{0}^{x} g(y) d y \tag{2}
\end{align*}
$$

where we have dropped off the constants of integration that cancel upon adding F and G. The issue is to determine the behavior of $F(x)$ and $G(x)$ for $x<0$. We accomplish this by observing that our boundary condition $u_{x}(t, 0)=0$ gives that for $x<0$

$$
F^{\prime}(-c t)+G^{\prime}(c t)=0 \Rightarrow F^{\prime}(x)=-G^{\prime}(-x)
$$

In this way,

$$
\int_{0}^{x} F^{\prime}(y) d y=-\int_{0}^{x} G^{\prime}(-x) d x \Rightarrow F(x)-F(0)=G(-x)-G(0)
$$

or

$$
F(x)=G(-x)
$$

(It's clear from (2) that $F(0)$ and $G(0)$ cancel.) For $x-c t>0$, the arguments of F and G are both positive, and we have

$$
u(t, x)=\frac{1}{2}[f(x-c t)+f(x+c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(y) d y
$$

that is, the usual d'Alembert solution. For $x-c t<0$, we have, rather,

$$
\begin{aligned}
u(t, x) & =F(x-c t)+G(x+c t) \\
& =G(c t-x)+G(x+c t) \\
& =\frac{1}{2} f(c t-x)+\frac{1}{2 c} \int_{0}^{c t-x} g(y) d y+\frac{1}{2} f(x+c t)+\frac{1}{2 c} \int_{0}^{x+c t} g(y) d y \\
& =\frac{1}{2}[f(c t-x)+f(x+c t)]+\frac{1}{2 c} \int_{c t-x}^{x+c t} g(y) d y
\end{aligned}
$$

Altogether, we have

$$
u(t, x)= \begin{cases}\frac{1}{2}[f(x-c t)+f(x+c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(y) d y, & x-c t>0 \\ \frac{1}{2}[f(c t-x)+f(x+c t)]+\frac{1}{2 c} \int_{c t-x}^{x+c t} g(y) d y, & x-c t<0\end{cases}
$$

(b) If we take

$$
u(0, x)= \begin{cases}f(x), & x>0 \\ f(-x), & x<0\end{cases}
$$

and similarly

$$
u_{t}(0, x)= \begin{cases}g(x), & x>0 \\ g(-x), & x<0\end{cases}
$$

d'Alembert's solution becomes precisely $u(t, x)$ from (a).
In this case, the block

$$
u(0, x)= \begin{cases}1, & 4<x<5 \\ 0, & \text { otherwise }\end{cases}
$$

splits into two pieces, each with height $1 / 2$, one moving to the right and the other moving toward the origin. The piece moving toward the origin bounces off the t-axis in the characteristic plane and after that continues to move away from the origin.
5. [10 pts] Haberman Problem 12.4.6. (The solution to this one is in the back.) The solution process is almost precisely as in Problem 12.4.4, except that the condition $u_{x}(t, 0)=h(t)$ gives

$$
F^{\prime}(-c t)+G^{\prime}(c t)=h(t)
$$

from which we see that for $x<0$,

$$
F^{\prime}(x)=-G^{\prime}(-x)+h\left(-\frac{x}{c}\right)
$$

Integrating from 0 to x, we have

$$
\int_{0}^{x} F^{\prime}(y) d y=-\int_{0}^{x} G^{\prime}(-y) d y+\int_{0}^{x} h\left(-\frac{y}{c}\right) d t \Rightarrow F(x)=\int_{0}^{x} h\left(-\frac{y}{c}\right) d y
$$

where we have used that $G(-x)$ is 0 for $x>0$. In order to get the text's form, set $\bar{t}=-\frac{y}{c}$.

