M412 Assignment 3 Solutions

1. [10 pts] Use the method of characteristics to solve the PDE

Uy — Uy + 2y =0
u(x,y) = xy on the line z + 2y = 1.

Solution. In this case, set U(t) = u(x(t),y(¢t)) and choose

dzx

E:h 2(0)=xzg=>z=t+1x0

d

d_g;:_l; y(0) =yo =y =—t+yo

i 2y(t) =2(t —yo); U(0) = zoyo = U(t) = (t —yo)” + Toyo — Yo-

Using xg + 2y = 1 and the expressions above to eliminate ¢, zg, and g, we find

u(z,y) = (1 — 2 —y)(=2 + 3z + 3y) + 3°.

2. [10 pts] For the PDE

ug + f(u), =0
u(O,x) :g(x)v

use the method of characteristics to show that solutions satisfy the implicit relationship
ult, z) = gla — f/(u(t, 2))1).
Solution. First, use the chain rule to re-write this in quasilinear form,
ur + f'(u)u, = 0.

Next, set U(t) = u(t,«(t)) and choose

dx , . B
Py =f'(U); x(0) =z
T —0; U(0) = glawo).

From the second of these equations, we see that U(t) is constant, with U(t) = g(zo) for all . Substituting
this back into the first equation, we have

(t) = f'(g(x0))t + 20 = 20 = 2 = f(g(w0))t = = — f(U))L.

We conclude
u(t,z) = g(xo) = g(x — f'(u(t, z))t).

3. [20 pts] Use the methods of characteristics and diagonalization to solve the PDE system

uy, —uy, —uz, =0, u(0,2) = f(x)

ug, —u1, =0, wu2(0,2) = g(x).



Solution. We write this in system notation

U1 o 1 1
Uu2 t_ 1 0

1
A= < !
has the eigenvalue-eigenvector pairs
1-5 ( 1 ) 1++5 ( 1 )
A 2 and , 5 .
2 Y

In order to diagonalize the system, we construct

N

).

The matrix

(.
)

Introducing the variable transformation

we find

from which we have

()~ 2 ) ()

— 1-v5 ) 1 :

W2/ 0 145 w2/,
1-+5
w1

=0; wi(0,2) = h(zx)

w1, —

2 x
1 5
w2, — —'_2\/_11)2OE =05 w2(07x) = k‘(:[,’),

where the functions h(z) and k(z) will be determined in terms of f(z) and g(x). Solving each of these
equations by the method of characteristics, we find

wy (t, %) = h(z + L _2*/315)
wa(t, z) = k(w4 * +2\/5).

Returning through (1) to variables u; and ug, we conclude

uy(t,x) =h(z + ! _2\/30 +k(x + ! +2\/3)
2 1-+/5 2 1++5
uQ(t,x)fl_\/gh(x—f— 5 t)+1+\/5k(x+ 5 ).
Finally, we solve for h(z) and k(z) in terms of f(x) and g(x), with
F@) = h(x) + k()
2 2
g(x) = - \/gh(x) + Tt \/gk(a:)



We find

3—V5 1
h(z) = r) — —=g(z
(@) = 32 1) = o)
2 1
k(x) = )+ —=g(z
(@) = == (@) + =0(a)
Finally,
3—5 1-5 1 1-V5 2 1+5 1 1+V5
ul(t,x)—5_\/5f(x+ 5 t)—ﬁg(a:—i- 5 t)+5_\/5f(x+ 5 t)+%g(a:+ 5 t)
2 3-+5 1-+5 1 1-+5
us(t.z) = - _\/5[5_\/5f(x+ 51— (et —5 )]
2 2 1+5 1 1+V5
b Tl ) + —=g(z 0]
SRl R e T e — )
4. [10 pts] Haberman Problem 12.4.4.
Solution.
(a) Proceeding as in class, we know that solutions must have the form
u(t,z) = F(x — ct) + Gz + ct)
for some functions F'(z) and G(z). For > 0, we can proceed as in class to find
F@) = 5@ = 5 [ o)
1) =5l =50 | 9)dy
Gla) = 5@+ 5- [ olw)d )
=3 2 J, g\y)ay,

where we have dropped off the constants of integration that cancel upon adding F' and G. The issue is to
determine the behavior of F'(z) and G(z) for < 0. We accomplish this by observing that our boundary
condition uy(t,0) = 0 gives that for x < 0

F'(—ct) + G'(ct) =0 = F'(z) = —G'(—x).
In this way, . .
| Py =- | 6-a)iz = F@) - F0) = 6(-1) - GO)
0 0

or

F(z) = G(—x).

(It’s clear from (2) that F'(0) and G(0) cancel.) For z — ¢t > 0, the arguments of F' and G are both positive,
and we have

u(t,x) =

|~

r+ct
fa—ct)+ fare+ 5 [ g



that is, the usual d’Alembert solution. For = — ¢t < 0, we have, rather,

u(t,z) = F(x —ct) + G(z + ct)
=G(ct —x) + G(z + ct)

ct—x r+ct
flet=a)+ 3 [ atwdu+gheren 5 [ oy

2c

N = N =

x+ct
[Flet—2) + f(z +ct)] + — / o(y)dy.

2c ct—x

Altogether, we have

u(t,x) = {

[f(x —ct) + f(x + ct)] +20fm+;tgydy, x—ct>0

[f(ct —z) + f(z + ct)] +20fm+0t (y)dy, z—ct<O.

N[ o=

(b) If we take

w(0.2) — f(x), x>0
(0.2) {f(—x), <0

and similarly
g(z) x>0
g(—z), x <0,
d’Alembert’s solution becomes precisely u (¢, x) from (a)

In this case, the block
1, 4<x<5

u(0,z) =
(0,2) {O, otherwise

splits into two pieces, each with height 1/2, one moving to the right and the other moving toward the origin.
The piece moving toward the origin bounces off the ¢t-axis in the characteristic plane and after that continues
to move away from the origin.

5. [10 pts] Haberman Problem 12.4.6. (The solution to this one is in the back.) The solution process is
almost precisely as in Problem 12.4.4, except that the condition u,(t,0) = h(t) gives

F'(=ct) + G'(ct) = h(t),

from which we see that for z < 0,

Fl(z) = —G'(—2) + h(—%).

Integrating from 0 to z, we have

“Faydy=— [ @y + [ n-Ddt= Fa) = [ h(-Yydy,
0 0 0 c 0 c

where we have used that G(—z) is 0 for 2 > 0. In order to get the text’s form, set t = —£.



