
M412 Assignment 3 Solutions

1. [10 pts] Use the method of characteristics to solve the PDE

ux − uy + 2y =0
u(x, y) = xy on the line x + 2y = 1.

Solution. In this case, set U(t) = u(x(t), y(t)) and choose

dx

dt
=1; x(0) = x0 ⇒ x = t + x0

dy

dt
= − 1; y(0) = y0 ⇒ y = −t + y0

dU

dt
= − 2y(t) = 2(t − y0); U(0) = x0y0 ⇒ U(t) = (t − y0)2 + x0y0 − y2

0 .

Using x0 + 2y0 = 1 and the expressions above to eliminate t, x0, and y0, we find

u(x, y) = (1 − x − y)(−2 + 3x + 3y) + y2.

2. [10 pts] For the PDE

ut + f(u)x = 0
u(0, x) = g(x),

use the method of characteristics to show that solutions satisfy the implicit relationship

u(t, x) = g(x − f ′(u(t, x))t).

Solution. First, use the chain rule to re-write this in quasilinear form,

ut + f ′(u)ux = 0.

Next, set U(t) = u(t, x(t)) and choose

dx

dt
= f ′(U); x(0) = x0

dU

dt
=0; U(0) = g(x0).

From the second of these equations, we see that U(t) is constant, with U(t) = g(x0) for all t. Substituting
this back into the first equation, we have

x(t) = f ′(g(x0))t + x0 ⇒ x0 = x − f ′(g(x0))t = x − f ′(U(t))t.

We conclude
u(t, x) = g(x0) = g(x − f ′(u(t, x))t).

3. [20 pts] Use the methods of characteristics and diagonalization to solve the PDE system

u1t − u1x − u2x = 0, u1(0, x) = f(x)
u2t − u1x = 0, u2(0, x) = g(x).
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Solution. We write this in system notation(
u1

u2

)
t

=
(

1 1
1 0

)(
u1

u2

)
x

.

The matrix

A =
(

1 1
1 0

)
has the eigenvalue-eigenvector pairs

1 −√
5

2
,

(
1
2

1−√
5

)
and

1 +
√

5
2

,

(
1
2

1+
√

5

)
.

In order to diagonalize the system, we construct

P =
(

1 1
2

1−√
5

2
1+

√
5

)
.

Introducing the variable transformation (
u1

u2

)
= P

(
w1

w2

)
, (1)

we find (
w1

w2

)
t

=

(
2

1−√
5

0
0 2

1+
√

5

)(
w1

w2

)
x

,

from which we have

w1t −
1 −√

5
2

w1x =0; w1(0, x) = h(x)

w2t −
1 +

√
5

2
w2x =0; w2(0, x) = k(x),

where the functions h(x) and k(x) will be determined in terms of f(x) and g(x). Solving each of these
equations by the method of characteristics, we find

w1(t, x) =h(x +
1 −√

5
2

t)

w2(t, x) = k(x +
1 +

√
5

2
).

Returning through (1) to variables u1 and u2, we conclude

u1(t, x) = h(x +
1 −√

5
2

t) + k(x +
1 +

√
5

2
)

u2(t, x) =
2

1 −√
5
h(x +

1 −√
5

2
t) +

2
1 +

√
5
k(x +

1 +
√

5
2

).

Finally, we solve for h(x) and k(x) in terms of f(x) and g(x), with

f(x) = h(x) + k(x)

g(x) =
2

1 −√
5
h(x) +

2
1 +

√
5
k(x).
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We find

h(x) =
3 −√

5
5 −√

5
f(x) − 1√

5
g(x)

k(x) =
2

5 −√
5
f(x) +

1√
5
g(x).

Finally,

u1(t, x) =
3 −√

5
5 −√

5
f(x +

1 −√
5

2
t) − 1√

5
g(x +

1 −√
5

2
t) +

2
5 −√

5
f(x +

1 +
√

5
2

t) +
1√
5
g(x +

1 +
√

5
2

t)

u2(t, x) =
2

1 −√
5

[3 −√
5

5 −√
5
f(x +

1 −√
5

2
t) − 1√

5
g(x +

1 −√
5

2
t)
]

+
2

1 +
√

5

[ 2
5 −√

5
f(x +

1 +
√

5
2

t) +
1√
5
g(x +

1 +
√

5
2

t)
]
.

4. [10 pts] Haberman Problem 12.4.4.

Solution.

(a) Proceeding as in class, we know that solutions must have the form

u(t, x) = F (x − ct) + G(x + ct)

for some functions F (x) and G(x). For x > 0, we can proceed as in class to find

F (x) =
1
2
f(x) − 1

2c

∫ x

0

g(y)dy

G(x) =
1
2
f(x) +

1
2c

∫ x

0

g(y)dy, (2)

where we have dropped off the constants of integration that cancel upon adding F and G. The issue is to
determine the behavior of F (x) and G(x) for x < 0. We accomplish this by observing that our boundary
condition ux(t, 0) = 0 gives that for x < 0

F ′(−ct) + G′(ct) = 0 ⇒ F ′(x) = −G′(−x).

In this way, ∫ x

0

F ′(y)dy = −
∫ x

0

G′(−x)dx ⇒ F (x) − F (0) = G(−x) − G(0),

or
F (x) = G(−x).

(It’s clear from (2) that F (0) and G(0) cancel.) For x− ct > 0, the arguments of F and G are both positive,
and we have

u(t, x) =
1
2
[f(x − ct) + f(x + ct)] +

1
2c

∫ x+ct

x−ct

g(y)dy,
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that is, the usual d’Alembert solution. For x − ct < 0, we have, rather,

u(t, x) = F (x − ct) + G(x + ct)
= G(ct − x) + G(x + ct)

=
1
2
f(ct − x) +

1
2c

∫ ct−x

0

g(y)dy +
1
2
f(x + ct) +

1
2c

∫ x+ct

0

g(y)dy

=
1
2
[f(ct − x) + f(x + ct)] +

1
2c

∫ x+ct

ct−x

g(y)dy.

Altogether, we have

u(t, x) =

{
1
2 [f(x − ct) + f(x + ct)] + 1

2c

∫ x+ct

x−ct
g(y)dy, x − ct > 0

1
2 [f(ct − x) + f(x + ct)] + 1

2c

∫ x+ct

ct−x
g(y)dy, x − ct < 0.

(b) If we take

u(0, x) =

{
f(x), x > 0
f(−x), x < 0

and similarly

ut(0, x) =

{
g(x), x > 0
g(−x), x < 0,

d’Alembert’s solution becomes precisely u(t, x) from (a).

In this case, the block

u(0, x) =

{
1, 4 < x < 5
0, otherwise

splits into two pieces, each with height 1/2, one moving to the right and the other moving toward the origin.
The piece moving toward the origin bounces off the t-axis in the characteristic plane and after that continues
to move away from the origin.

5. [10 pts] Haberman Problem 12.4.6. (The solution to this one is in the back.) The solution process is
almost precisely as in Problem 12.4.4, except that the condition ux(t, 0) = h(t) gives

F ′(−ct) + G′(ct) = h(t),

from which we see that for x < 0,
F ′(x) = −G′(−x) + h(−x

c
).

Integrating from 0 to x, we have∫ x

0

F ′(y)dy = −
∫ x

0

G′(−y)dy +
∫ x

0

h(−y

c
)dt ⇒ F (x) =

∫ x

0

h(−y

c
)dy,

where we have used that G(−x) is 0 for x > 0. In order to get the text’s form, set t̄ = − y
c .
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