M412 Assignment 4, due Friday October 7

1. [10 pts] Haberman Problem 1.4.1, Parts (f) and (g).
2. [10 pts] Haberman Problem 1.4.5.
3. [10 pts] Haberman Problem 1.4.7, Parts (a) and (c).
4. [10 pts] Haberman Problem 1.4.10.
5. [10 pts] Haberman Problem 1.4.12. (See Haberman's equation (1.2.11) for precisely what he means by a conservation law.)
6. $[10 \mathrm{pts}]$ For the PDE

$$
\begin{aligned}
u_{t} & =u_{x x}+\gamma x-1 \\
u_{x}(t, 0) & =0 \\
u_{x}(t, 1) & =0 \\
u(0, x) & =x^{2},
\end{aligned}
$$

determine the value of γ for which an equilibrium solution exists, and find the equilibrium solution.
7. [10 pts] Solve the PDE in Problem 6 for all time.

