M412 Assignment 4 Solutions

Two errors in the Practice Problems for Exam 2 have been brought to my attention. In Problem 3, f(x)
should be given explicitly as 22. Also, in the solution to Problem 3, the value of v should be 2.

1. [10 pts, 5 pts each] Haberman Problem 1.4.1, Parts (f) and (g).

Solutions. For Part (f), the equilibrium solution @(x) satisfies

Upe = — T
u(0) =
g (L) =0,
for which ) 1
(z) = —Ex‘l + §L3x +T.
For Part (g), we have
Ugg =0
w(0) =T
a, (L) +u(L) =0,
for which
_ T
a(x) AL
2. [10 pts] Haberman Problem 1.4.5.
Solution. In this case,
Ugy =0
u(0) =T
Ug (0) =T
a(L) =T,

where T; and T5 are known and T is to be determined. (The text does not suggestion a notation for the
constants labeled 77 and T, so anything is acceptable.) Using only the initial conditions, we find

’l_l,({E) =Thxr + 1.

Setting 4(L) = T, this gives
T=T,L+T.

3. [10 pts, 5 pts each] Haberman Problem 1.4.7, Parts (a) and (c).

Solution. For Part (a), the equilibrium solution satisfies



Integrating @(x) once, we have
Uy (z) = —x 4+ C1,

for which our two conditions determine first C; = 1 and second
8=1-L.
In order to find the solution, we must integrate a second time
a(x) = —%mQ +xz+ Co.

In order to determine the constant C5, we integrate the full equation,

L L L
/ utd:c:/ umdx—l—/ de =u,(t,L) —u,(t,0)+ L= -1+ L =0.
0 0 0

We have, then,
L

d L L L
el dr = dr = dr = dx.
udx 0:>/0 u(t, z)dx /0 u(0, x)dx /0 fz)dx

Since this remains true for all solutions, there must hold
L L
/ w(z)de = / f(z)dx.
0 0

L L 1. 1
/ ﬂ(x)dx:/ ——2? t x4 Codr = —= L3+ - L* + O, L,
o , 2 6 2

Finally,

so that .
1 1 1
= de+ ~L* - ~L.
Cy L/o f(z)dz + 5 5

We conclude

_ 1, 1 [F 1., 1
u(m):—ix —|—x+z | f(x)dx—f—gL _iL'

The physical interpretation is that the internal heat production must match the flow caused by a different
amount of heat flowing into the bar than out.

For (c), equilibrium solutions satisfy

amxzﬁ_l‘

U,(0) =0
i, (L) =0,
from which we deduce
f=5L
and 1 1 1 1
— — Ly — = 2 — " 2_ .3 .
Uy () slr -2 = u(x) 1L g +Cs



Proceeding as in Part (a), we find
L Ly o1, 1 [k 1,1,
/0 f(x)d:r,:/o 1L — 5" +C2d$:>02:z/0 f(ff)dfﬂ—ﬁL + 57"
and finally
1

o 1, 1 fF L3
ﬂ(m):ZLx — ¢ +Z/O f(x)dx—ﬂL.

4. [10 pts] Haberman Problem 1.4.10.

Solution. Assuming ¢ = p =1 (that is, that we have not arrived at this form of the problem through some
scaling of the independent variables), the total thermal energy is

L
total thermal energy :/ u(t, x)dx.
0

Integrating the full equation, we have

L L L
/ w(t, z)dx = / Uy (t, 2)dx + / 4dx = uy(t, L) — uy(t,0) + 4L = 1+ 4L.
0 0 0

In this case,
L

dt Jo

Evaluating at t = 0, we conclude

L
u(t,z)de =1+ 4L = / u(t,z)dx = (1 +4L)t + C.
0

L L
/u(t,x)dx=(1+4L)t+/ F(@)da.
0 0

5. [10 pts] Haberman Problem 1.4.12. (See Haberman’s equation (1.2.11) for precisely what he means by a
conservation law.)

Solution. For Part (a), integrate the full equation to obtain

L L
/ wdr = k/ Ugrdr = kuy(t, L) — kuy(t,0) = a — 3.
0 0
By conservation law, Haberman means the expression
L
), u(t,x)dx = a — .
For Part (b), integrate as in Problem 1.4.10 to get

/OL u(t,z)dr = (a — B)t + /OL f(z)dz.

For Part (c), we see from Part (b) that all solutions will continue to change in time unless

a=0.



In this case, we have the equilibrium equation

Uge =0
5 (0) = —a/k
ﬂI(L) = - a/k7
from which
Uy (z) = —a/k

Integrating again, we have

where by conservation

L L L
o 1 «a
_— = = — —L
/0 kx+0da: /0 f(x)dz = C L/o f(x)dx—i-% ,
and finally

L
a(zr) = ——x+ _/0 f(z)dx + %L.

6. [10 pts] For the PDE

Up =Ugy +y7T — 1
ug(t,0) =0
ug(t,1) =0

u(0, ) = 22,
determine the value of v for which an equilibrium solution exists, and find the equilibrium solution.

Solution. Equilibrium solutions satisfy

from which we find 1
Uy(z) = —57332 +x+ Cy.

The condition %,(0) = 0 sets Cy = 0, while the condition @;(1) = 0 gives
1
0:_§7+1:>'y:2.

Integrating again, we have

1 1
a(z) = —§m3 + §m2 + Cs.

In order to determine C' we observe similarly as in previous problems that fol u(t, x)dx is constant for all ¢,
so that
1

1 1
1, 1, /2 1 1

—= - Codr = dr = - = Cy = - :

/0 r° + —x° + Coaax Oxx3 2 5 6 1

3 2

W=
—



We conclude ) 1 1
N Lt g Lo 1
a(x) = 3% +2m +4.

7. [10 pts] Solve the PDE in Problem 6 for all time.

Solution. In order to solve this PDE for all time, we define the new variable v(t,z) = u(t,z) — a(z), where
u(t, x) solves the original problem (stated in Problem 6), and u(x) is the equilibrium solution from Problem
6. Upon substitution of u(t,z) = v(t, z) + u(x) into the original problem, we find that v(¢, ) solves

UVt = Vzg
v (£,0) =0
vy (¢,1) =0

1 1 1 1
v(0,2) =2% — (—za® + z2? + ) = —2® +

1, 1
3 2 =30 ter g

This equation for v(¢, z) can be solved by separation of variables, and we find

o0
v(t,x) =Ao + Z Ane ™t cosnr,

n=1
1
1 1 1
AO = /O §$3 + 51’2 — de
1
1, 1 1
A, :2/0 (§x3 + §x2 - Z)Cosmrx.
For Ay,
1 1 1
Ag=—+=-—=-=0.
o=ptg 70
For A,,, integrate by parts
2 n 4 n 2 n
n = 71271'2(_1) n47r4( (_1) )+7’l27T2 (_1) .

Combining these observations, we conclude

(o)
4 n 4 n 777,271'2
u(t,z) = Z [W(_l) + W(l —(=1D")]e Pcosnmz
n=1
1, 1, 1
+ 37 +2x +4.



