## M412 Assignment 5, due Monday October 17

1. [10 pts] Haberman 2.5.1 (a).
2. [10 pts] Haberman 2.5.1 (c).
3. [15 pts] Haberman 2.5.2.
4. [10 pts] Show that in polar coordinates $(r, \theta)$ the Laplace equation in two space dimensions takes the form

$$
r^{2} u_{r r}+r u_{r}+u_{\theta \theta}=0
$$

Hint: Recall that the relationship between cartesian and polar coordinates is $x=r \cos \theta$ and $y=r \sin \theta$. Set

$$
u(r, \theta):=v(x(r, \theta), y(r, \theta))
$$

where $v(x, y)$ satisfies Laplace's equation in cartesian coordinates,

$$
v_{x x}+v_{y y}=0 .
$$

5. [10 pts] Haberman 2.5.3 (a).
6. [10 pts] Haberman 2.5.5 (a).
