M412 Assignment 9, due Monday December 5

1. [10 pts] Use separation of variables to show that solutions to the quarter-plane problem

$$
\begin{aligned}
u_{t} & =u_{x x} ; \quad t>0,0<x<\infty \\
u(t, 0) & =0 \\
\mid u(t,+\infty) & \mid \text { bounded } \\
u(0, x) & =f(x), \quad 0<x<\infty,
\end{aligned}
$$

can be written in the form

$$
u(t, x)=\int_{0}^{\infty} C(\omega) e^{-\omega^{2} t} \sin \omega x d \omega
$$

for some appropriate constant $C(\omega)$.
2. [20 pts] Show that the coefficient $C(\omega)$ from Problem 10 satisfies

$$
C(\omega)=\frac{2}{\pi} \int_{0}^{\infty} f(x) \sin \omega x d x
$$

$(C(\omega)$ is called the Fourier sine transform of f.)
3. [5 pts] Haberman 10.3.3.
4. [5 pts] Haberman 10.3.7.
5. In this problem, we will combine three problems from Haberman to solve the PDE

$$
\begin{aligned}
u_{t} & =k u_{x x x} \\
u(0, x) & =f(x)
\end{aligned}
$$

5a. [5 pts] Haberman 10.3.8.
5b. [10 pts] Haberman 10.4.6. Proceed here by taking a Fourier transform of the equation for $y(x)$ and using (5a).
5c. [10 pts] Haberman 10.4.7, Parts (a), (b), and (c). In Part (a), Haberman is only asking that you show

$$
u(t, x)=\mathcal{F}^{-1}\left[\hat{f}(\omega) e^{i k \omega^{3} t}\right]
$$

In Part (b), you will write this as a convolution, while in Part (c) you will need to compute

$$
\mathcal{F}^{-1}\left[e^{i k \omega^{3} t}\right]
$$

in terms of the Airy function $A i(x)$ from Part (5b). In this last calculation, you will want to make the change of variables

$$
z=-(3 k t)^{1 / 3} \omega
$$

You can check your final answer in the back of Haberman.

