
M412 Assignment 9 Solutions

1. [10 pts] Use separation of variables to show that solutions to the quarter-plane problem

ut = uxx; t > 0, 0 < x < ∞
u(t, 0) = 0

|u(t, +∞)| bounded
u(0, x) = f(x), 0 < x < ∞,

can be written in the form
u(t, x) =

∫ ∞

0

C(ω)e−ω2t sin ωxdω,

for some appropriate constant C(ω).

Solution. Looking for solutions u(t, x) = T (t)X(x), we find

T ′(t)
T (t)

=
X ′′(x)
X(x)

= −λX,

which gives the eigenvalue problem

X ′′(x) + λX(x) =0
X(0) =0

lim
x→∞ |X(x)| <∞.

We conclude that the eigenvalues are all positive real numbers λ > 0, with associated eigenfunctions Xλ(x) =
sin

√
λx. In this way, the most general solution is

u(t, x) =
∫ ∞

0

A(λ)e−λt sin
√

λxdλ,

where A(λ) is to be determined from the initial condition. In order to put this in the form stated in the
problem, make the change of variable ω =

√
λ, which gives dλ = 2ωdω and consequently

u(t, x) =
∫ ∞

0

A(ω2)e−ω2t sinωx(2ω)dω.

Upon choosing C(ω) = 2ωA(ω2), we arrive at the claimed relationship.

2. [20 pts] Show that the coefficient C(ω) from Problem 1 satisfies

C(ω) =
2
π

∫ ∞

0

f(x) sin ωxdx.

(C(ω) is called the Fourier sine transform of f .)

Solution. First, the initial condition u(0, x) = f(x) gives

f(x) =
∫ ∞

0

C(ω) sin ωxdx.
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For any real number k > 0, multiply both sides of this last expression by sin kx and integrate x from 0 to
∞. We have ∫ ∞

0

f(x) sin kxdx =
∫ ∞

0

sin kx

∫ ∞

0

C(ω) sin ωxdωdx

= lim
L→∞

lim
N→∞

∫ N

0

sinkx

∫ L

0

C(ω) sin ωxdωdx

= lim
L→∞

lim
N→∞

∫ L

0

C(ω)
∫ N

0

sin kx sin ωxdxdω,

where in the second step we have switched the order of integration. (In general, this step requires some
assumptions on C(ω), but since C(ω) is what we are searching for, we assume the steps are valid, keeping in
mind that in principle they should later be verified. Though we won’t carry out the verification here.) We
now employ the trigonometric relationship

sin A sin B =
1
2

cos(A − B) − 1
2

cos(A + B),

to write this last integral as

lim
L→∞

lim
N→∞

∫ L

0

C(ω)
∫ N

0

1
2

cos[(k − ω)x] − 1
2

cos[(k + ω)x]dxdω.

Upon integration over x, this last expression becomes

lim
L→∞

lim
N→∞

∫ L

0

C(ω)
[sin[(k − ω)N ]

2(k − ω)
− sin[(k + ω)N ]

2(k + ω)

]
dω.

For the integration involving
sin[(k + ω)N ]

2(k + ω)
,

we observe that with k > 0 we never have the issue of division by 0, and hence the Riemann–Lebesgue
lemma gives that the limit as N → ∞ of this integral is 0. For the remaining term, we make the change of
variable, z = k − ω, from which we have

lim
L→∞

lim
N→∞

∫ L

0

C(ω)
sin[(k − ω)N ]

2(k − ω)
dω = lim

L→∞
lim

N→∞

∫ k−L

k

C(k − z)
sin[zN ]

2z
(−dz)

= lim
L→∞

lim
N→∞

∫ k

k−L

C(k − z)
sin[zN ]

2z
dz

= lim
L→∞

lim
N→∞

∫ k

k−L

(
C(k − z) − C(k)

) sin[zN ]
2z

dz

+ lim
L→∞

lim
N→∞

∫ k

k−L

C(k)
sin[zN ]

2z
dz.

The Riemann–Lebesgue lemma asserts that the first of these two integrals goes to 0 in the limit as N → ∞.
For the second, we make the change of variable y = zN , from which we observe,

lim
L→∞

lim
N→∞

∫ k

k−L

C(k)
sin[zN ]

2z
dz = lim

L→∞
lim

N→∞

∫ kN

(k−L)N

C(k)
sin[y]
2 y

N

1
N

dy

=C(k)
1
2

∫ +∞

−∞

sin y

y
dy = C(k)

π

2
,
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where in this final equality we have used the integration∫ +∞

−∞

sin y

y
dy = π.

Solving for C(k), we conclude

C(k) =
2
π

∫ ∞

0

f(x) sin kxdx,

which is precisely the relationship we set out to establish, with the independent variable denoted k rather
than ω.

3. [5 pts] Haberman 10.3.3.

Solution. First recall the relationship
(eiθ)∗ = e−iθ,

where ∗ denote complex conjugate. (That is, (α + iβ)∗ = α − iβ. This relationship is straightforward to
prove: (eiθ)∗ = (cos θ + i sin θ)∗ = (cos θ − i sin θ) = e−iθ.) The Fourier transform of f(x) is

F (ω) =
1
2π

∫ +∞

−∞
eiωxf(x)dx.

The complex conjugate of this is

F ∗(ω) =
1
2π

∫ +∞

−∞
e−iωxf(x)dx = F (−ω).

If you’re uncertain about bringing the complex conjugate inside the integration, consider it in the following
way.

F ∗(ω) =
( 1

2π

∫ +∞

−∞
eiωxf(x)dx

)∗

=
( 1

2π

∫ +∞

−∞
(cosωx + i sinωx)f(x)dx

)∗

=
( 1

2π

∫ +∞

−∞
cosωxf(x)dx + i

1
2π

∫ +∞

−∞
sin ωxf(x)dx

)∗

=
( 1

2π

∫ +∞

−∞
cosωxf(x)dx − i

1
2π

∫ +∞

−∞
sin ωxf(x)dx

)∗

=
1
2π

∫ +∞

−∞
e−iωxf(x)dx.

4. [5 pts] Haberman 10.3.7.

Solution. In this case, compute directly,

F−1[F (ω)] =
∫ +∞

−∞
eiωxe−α|ω|dω

=
∫ 0

−∞
e(ix+α)ωdω +

∫ ∞

0

e(ix−α)ωdω

=
1

ix + α
− 1

ix − α
=

(ix − α) − (ix + α)
(ix + α)(ix − α)

=
−2α

−x2 − α2
=

2α

α2 + x2
.
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5. In this problem, we will combine three problems from Haberman to solve the PDE

ut = kuxxx

u(0, x) = f(x).

5a. [5 pts] Haberman 10.3.8.

Solution. Recalling that

F (ω) =
1
2π

∫ +∞

−∞
eiωxf(x)dx,

we differentiate with respect to ω to find

dF

dω
=

1
2π

∫ +∞

−∞
ixeiωxf(x)dx.

The claimed relationship follows from multiplication on both sides of this last expression by i.

5b. [10 pts] Haberman 10.4.6. Proceed here by taking a Fourier transform of the equation for y(x) and using
(5a).

Solution. Taking the Fourier transform of

d2y

dx2
− xy = 0,

we have

F [
d2y

dx2
] −F [xy] = 0.

According to (5a), this gives
−ω2ŷ + iŷ′(ω) = 0,

which can be solved by separation of variables for

ŷ(ω) = Ce−i 1
3ω3

,

for some constant of integration C. Inverting, we have

y(x) =
∫ +∞

−∞
e−iωxCe−i 1

3ω3
dω.

In order to put this in the form Haberman recommends, use Euler’s formula to get

y(x) =C

∫ +∞

−∞
e−iωx−i 1

3ω3
dω

=C

∫ +∞

−∞
cos[ωx +

1
3
ω3] − i sin[ωx +

1
3
ω3]dω

=2C

∫ ∞

0

cos[ωx +
1
3
ω3]dω,

where in the last equality we have observed the integration properties of even and odd functions. Finally,
according to Haberman, we have the initial condition

y(0) =
1
π

∫ ∞

0

cos[
1
3
ω3]dω,
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which provides

C =
1
2π

.

We conclude
y(x) =

1
π

∫ ∞

0

cos[ωx +
1
3
ω3]dω,

typically referred to as the Airy function and denoted Ai(x).

5c. [10 pts] Haberman 10.4.7, Parts (a), (b), and (c). In Part (a), Haberman is only asking that you show

u(t, x) = F−1[f̂(ω)eikω3t].

In Part (b), you will write this as a convolution, while in Part (c) you will need to compute

F−1[eikω3t]

in terms of the Airy function Ai(x) from Part (5b). In this last calculation, you will want to make the change
of variables

z = (3kt)1/3ω.

You can check your final answer in the back of Haberman.

Solution. First, taking a Fourier transform of the equation and its initial conditions, we find

ût = iω3kû

û(0, ω) = f̂(ω),

which is solved by
û(t, ω) = f̂(ω)eikω3t.

By the Fourier Inversion Theorem, this gives

u(t, x) = F−1[f̂(ω)eikω3t].

For Part (b), we note that by the Convolution Theorem,

u(t, x) = F−1[f̂(ω)] ∗ F−1[eikω3t] = f(x) ∗ F−1[eikω3t].

For Part (c), the key is to recognize how F−1[eikω3t] can be written in terms of the Airy equation. We have

F−1[eikω3t] =
∫ +∞

−∞
e−iωx+ikω3tdω,

in which we make the suggested change of variables z = −(3kt)1/3ω, giving

F−1[eikω3
] =

∫ +∞

−∞
e

i x

(3kt)1/3 z−i 1
3 z3 dz

(3kt)1/3

=
2

(3kt)1/3

∫ ∞

0

cos[
−x

(3kt)1/3
z +

1
3
z3]dz

=
2π

(3kt)1/2
Ai(

−x

(3kt)1/3
),
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where Ai(·) is as in Haberman 10.4.6. We conclude

u(t, x) = f(x) ∗ 2π

(3kt)1/2
Ai(

−x

(3kt)1/3
) =

1
(3kt)1/2

∫ +∞

−∞
Ai(

−(x − y)
(3kt)1/3

)f(y)dy

=
1

(3kt)1/2

∫ +∞

−∞
Ai(

y − x

(3kt)1/3
)f(y)dy.
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