M412 Practice Problems for Final Exam

1. Solve the PDE
us + t3ux =u
u(t,0)=t, t>0
u(0,2) =1—e"%, x>0.
2. Solve the PDE

Ut :czum; z>0,t>0

u(0,z) =f(z); x>0
ui(0,2) =g(x); x>0
ug(£,0) =t; >0

3. Solve the PDE
Ugy + Uyy =0
u(z,0) =0, wu(z,2)=0
u(0,y) = 0, wu(l,y)=2.

4. Solve the PDE

Up =Upy + € sin 3ma
u(t,0) =0, wu(t,1)=0
u(0,x) =sinmz.
5. For the PDE in Problem 4, find an equilbrium solution and show that it matches the limit as ¢ — oo of
your solution to Problem 4.

6. For the PDE

U = Ugy +tsIinT

ug(t,0) = —1
ug(t,m) =0
u(0,x) = cosz,
find the total energy i
/ u(t, z)dzx.
0

7. Use separation of variables to show that solutions to the quarter-plane problem

Ut =Ugz; t>0,2>0

ug(t,0) =0
|u(t, +00)| bounded
u(0,z) = f(x)



can be written in the form

u(t,x):/ C(w)e‘“ztcoswmdw,
0

for some appropriate constant C'(w).

8. Use the method of Fourier tranforms to solve the first order equation

Ut = Uy

u(0, ) = f ().

9. [This question appeared on Exam 3.] Use Fourier’s Theorem to prove that if a function f(z) is piecewise
smooth on an interval [0, L], then the Fourier cosine series for f(x) converges for all z € (0, L) to

() : f(z) if f is continuous at the point x
(ii) : =(f(27) + f(z1)) if f has a jump discontinuity at the point x

What does the Fourier cosine series converge to at the endpoints z =0 and x = L?

10. We have seen in the homework that if a function f(x) is piecewise smooth on an interval [0, L], then the
Fourier sine series for f(x) converges for all z € (0, L) to

(¢) : f(z) if f is continuous at the point x
(i) i(f(x_) + f(z1)) if £ has a jump discontinuity at the point .

Use this and Problem 9 to prove that if f(x) is continuous on [0, L] and f’(z) is piecewise smooth on the
same interval, then the Fourier cosine series for f(x) can be differentiated term by term.

Solutions
1. For z > %, we have

d ; t
df 3 2(0) = zg = x(t) = T + Zo
du

ikl uw(0)=1—e"" = u(t) = (1 —e ™),
from which we conclude .
u(t,z) = (1 —e @)t
For = < %, we have
dr A 7
du

gl u(to) = to = u(t) = toe' ",
from which we conclude

U(t,x) = (t4 _ 4x)1/4et7(t474z)1/4.



Combining these,

1 4\ 1/4 tf(t474z)1/47 <
U;(t, ZL‘) = {( x) N r -

(1 —e*(“’*%))et, x>

NSNS

2. We write solutions in the form
u(t,z) = Fx — ct) + G(z + ct),

where for x > 0, we have

Gla) =31 + 5 [ gway

This entirely determines the solution for x — ¢t > 0. For x — ¢t < 0, we need to evaluate F' at negative
numbers. In order to do this, we notice that our final condition gives

t = F'(—ct) + G'(ct).

Setting z = —ct, we find
Fl(z) = -2 — G'(~a).

c
We compute, now,

[ Fwiy= [ Y- @y = @ - FO) = -5+ 6-0) - G0)
0 0 c

2c

It’s clear from our expressions for F' and G that (assuming our solution is continuous) F(0) = G(0), from
which we conclude

F(z) = ~50 + G(—x)
In this we, for x — ¢t < 0,
Flo—ct) = - & ;CCt) +G(ct — )
We have, then
ult. z) = {%[{@c;co +f@tet)] + £ [ g(y) dy,w - 0
S if =)+ fa+et) + 5 fo T 9wdy+ 5 [y T 9()dy, x—ct <O.

3. Since we have a bounded domain, we proceed by separation of variables, letting u(z,y) = X (z)Y (y), for
which we find
X'"(z) _ Y'"(y)

e+ gy = 0= X (@)Y () + X(@)¥ () = 0= Trf = — 5ol =0

Observe here in particular that we have chosen the sign in front of A so that the variable with both boundary
conditions 0 (Y in this case) will have the standard eigenvalue equation, Y/ + AY = 0. We have, u(z,0) =
0=Y(0) =0, u(z,2) =0=Y(2) =0, and u(0,y) = 0= X(0) = 0. We have, then, the two ODE

Y’ +AY =0; Y(0)=0,Y(2) =0

X"~ AX =0; X(0) = 0.



For the Y (y) equation, we take Y (y) = C1 cos v/Ay+Ca sin v/ Ay, and use the boundary conditions to conclude
Yau(y) = sin %ﬁy n=1,23..

For X (z), we have
X(z) = Cscosh %x + Cysinh %x,

for which our boundary condition X (0) = 0 determines C5 = 0, eliminating one constant of integration. We
finally have our general expansion for u(z,y),

o0
nmw nmw
= E A, sinh —z sin —y.
n Sin 2xsm 2y

n=1

Finally, we employ our last boundary condition, u(1,y) = 2 to obtain the Fourier sine series

2= Z A, smh " sin —y

We have, then

2 4 2 4
A, sinh% = 5/0 2 sin Eydy =~ —cos %y = —E[(—l)" - 1],

where I have explicitly written the fraction % as a reminder that it comes from % Our solution is

> nr—=1] . nmzr . nrw
J? y zz:wsthsm 7y

4. Due to the non-homogeneous term, we must proceed here by eigenfunction expansion. First, we construct
eigenfunctions, X, (x), for the homogeneous problem. Substituting u(t,z) = T'(¢)X (x) into us = Uz, and
considering our boundary conditions, we determine

X"4+AX =0; X(0)=0,X(1)=0,

for which we have X, (x) = sinnmz. We now look for a solution as an expansion of these eigenfunctions

oo
= Z en(t) sinnme.
n=1

Substituting this expansion back into the full non-homogeneous equation, we find
oo
Z ( )+ n27r20n(t)) sinnmr = e 'sin 37x.

The key observation we make here is that this is simply a Fourier sine series with fancy constants, B, =

2.2

ch(t) — n?m?cy(t). Consequently, we have

et n=3

1
¢ (8) + nirlen () =2 /0 ¢~ sin(3ma) sin(nmz)de = {o, n#3.



For initial conditions, we take our initial data

(o)

u(0,2) = sinme = sin7z = Z cn(0) sinnme,

n=1
for which
1, n=1
0, n#1.
We have now an ODE to solve for each n = 1,2, 3..., but we observe that if both ¢}, (¢) + n*n?c,(t) and ¢, (0)

are 0, the ¢, (t) = 0. In this case, the only two expansion coefficients that are not identically 0 are ¢1(¢) and
es(t). For ¢q(t), we have

cn(0) = 2/0 sin(mz) sin(nra)dz = {

A 4me =0; c1(0)=1=ci(t) = et

For c3(t), we have
ey +9m%c3 =e ' c3(0) =0,

which we solve by the integrating factor method. (Recall that for a general linear first order equation
¥ (t) + p(t)y(t) = g(t), the integrating factor is e/ P where the constant of integration can be dropped.)
9n2t

In this case, the integrating factor is simply e *, and we have

1

—t(1-972) C
onz _1°¢ te

(697r2tc3)/ — e97r2te—t = engtcg(t) _

According to our intial condition ¢3(0) = 0, we have

1
C=—.
1— 972
We conclude that 1
_ —on?t  _—t
exlt) = T (e o),
with then
_ Tt -9t —t\ o
u(t,z) =e sin(mx) + T (e — e ") sin(3mx).

5. Our equilibrium equation for u(x) is

Ugy =0

w(0) =0

(1) =0,

which is solved by

Taking a limit as t — oo of our solution to Problem 4, we see that they agree.
6. Integrating the full equation, we have

™

™ ™ T d ™
/ urdx = / Ugzpdx + / tsinzdr = — / u(t, z)dr = ug(t,m) — ug(t,0) —tcosx
0 0 0 dt Jo 0

It follows that e
%/0 u(t,x)dx = 1+ 2t.



Integrating,
/ u(t,r)de =t +t* + C.
0

In order to find C, we use u(0,z) = cosx to compute
/ coszdr =C = C =0.
0

We conclude

/ u(t,x)dr =t + 12,
0

7. Separate variables with u(t,z) = T'(¢t)X (x), and set

T/ X//
_— = — = —)\
T X ’
from which we have the eigenvalue problem
X"+ AX =0
X'(0)=0
X (4+00) bounded.

In this case, all A > 0 are eigenvalues, with associated eigenfunctions
X(z) = cos VAz.

Since the eigenvalues are continuous, we integrate rather than summing, obtaining a general solution of the
form

o0
u(t,z) = / A(N)e M cos vV Azd.
0
Finally, set w = VX to get
u(t, x) :/ A(wQ)e*“’thoswawdw.
0
The stated result follows from the choice

C(w) = 2wA(Ww?).

8. Taking the Fourier transform of this equation, we have
'&t = —iwl
a(t,w) = flw)e ™"

Inverting, we compute

+m . ~ . +m . ~
u(t, x) :/ e T f(w)e ' dw :/ e @) f(w)dw,

where this last expression is the inverse transform of f , evaluated at x + ¢t. That is,

ult,z) = fla+1).



9. Since f(x) is only defined on the interval [0, L], we are free to extend it in any way we like to the full
interval [—L, L], where Fourier’s theorem is valid. We extend it as an even function, so that the extension

fe(z) is defined by
B f(z), 0<z<L
Jele) = {f(—x)7 —-L<z<0.

If f(z) is piecewise smooth on [0, L], then fg(z) is piecewise smooth on [—L, L], and Fourier’s Theorem
states that fg definitely has a convergent Fourier series,

(o)
nmr . nmx
fE(l‘) = AQ + ZAnCOST +BnSIDT.

n=1

We now compute Ag, A, and B, keeping in mind that fE( ) is an even function. We have

1 [TE
1 *L

Anzf fe(x )cos—dx— / fe(x COS—dﬂ?
1 [t

B, =7 fe(x)sin "—Zxdxzo.

In this way, we see that the series for fg(z) is a Fourier cosine series that converges on [—L, L]. If it converges
n [—L, L], it must converge on [0, L], and since f(z) and fg(z) agree there, it converges to f(z).

Last, since fg(z) is an even extension, we have

lim fg(z) = Jim, fe(z)

r—0—
xliril_fE(a?) :%th fe(z),

so that the Fourier cosine series of f(z) converges at z =0 to
lim f(2),
and at x = L to
lim f(z).

x—L—
10. First, under these assumptions, f(z) has a convergent Fourier cosine series (by Problem 9),

nmwx

flz) = Ao—i-ZA co8 ——

n=1

Moreover, f’(z) has a convergent sine series

> nnx
! .
x) = E B, sin —,
L
n=1

with
9 L 9 L L
=2 [ P s =21 ]! 2 [ oy ]
nmw
= - TAYL)

which gives precisely the series that arises by differentiating the Fourier cosine series of f(z) term by term.



