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Overview

As we discussed while talking about nonlinear systems of difference
equations, nonlinearities typically arise from interactions between
individuals in the same population (e.g., carrying capacity terms) or
interactions between individuals in different populations (e.g.,
predation terms).

These nonlinearities generally take the same form for differential
equations as for difference equations, so all of the models we talked
about during our study of difference equations have counterparts
for differential equations.

Let’s start by looking at some of these.



The Lotka-Volterra Predator-Prey System

We set

y1(t) =# of prey at time t

y2(t) =# of predators at time t.

The Lotka-Volterra predator-prey model is

dy1

dt
= ay1 − by1y2; y1(0) = y10

dy2

dt
= − ry2 + cy1y2; y2(0) = y20 .

We often make adjustments to the right-hand side precisely as we
did for the Lotka-Volterra difference system. For example, we might
add a (GSSM) carrying capacity to the prey equation, along with a
half-saturation constant to the predator equation to obtain the
system on the next slide.



The Lotka-Volterra Predator-Prey System

We get:

dy1

dt
=

a

α
y1(1− (

y1

K1
)α)− by1y2; y1(0) = y10

dy2

dt
= − ry2 +

cy1y2

M + y1
; y2(0) = y20 .



Competition Models

Recall that for competition models, we consider two or more species
that are competing for the same resources. If we have two species
with populations y1(t) and y2(t), a natural competition model is

dy1

dt
= r1y1(1−

y1 + s1y2

K1
); y1(0) = y10

dy2

dt
= r2y2(1−

s2y1 + y2

K2
); y2(0) = y20 .



Mutualistic Models

Mutualistic models arise when two or more species mutually benefit
one another. If we have two species with populations y1(t) and
y2(t), a natural mutualistic model is

dy1

dt
= r1y1(1−

y1

K1
) + b1y1y2; y1(0) = y10

dy2

dt
= r2y2(1−

y2

K2
) + b2y1y2; y2(0) = y20 .



The SIR Model

Recall that the SIR epidemic model involves the following three
populations:

y1(t) =# of susceptible individuals in the population at time t

y2(t) =# of infected/infective individuals in the population at time t

y3(t) =# of recovered/removed individuals in the population at time t.

The SIR model is
dy1

dt
= − ay1y2; y1(0) = y10

dy2

dt
= ay1y2 − by2; y2(0) = y20

dy3

dt
= by2; y3(0) = y30 .

As in the case of difference equations, the first two equations form
a closed system (i.e., y3(t) doesn’t appear in either of them).



Restoration Ecology and Conservation Biology

This example is taken from the paper, “Hopes for the future:
restoration ecology and conservation biology,” by A. P. Dobson, A.
D. Bradshaw, and A. J. M. Baker, in Science 277 (1997) 515-522.

The idea here is to model the progression in which forested land is
taken over for agriculture. Generally speaking, we start with an
initial area of (mostly) uninhabited forest, which gets cleared for
agricultural purposes. Subsequently, when the soil’s nutrients are
depleted and the land becomes difficult to work, it is abandoned.
Eventually, one of three things typically happens to the abandoned
land: (1) it reverts back to forest; (2) with time, its soil recovers,
and it can be used again for agriculture; or (3) it gets converted to
industrial use.

In this article, the authors focus on the first two possibilities.



Restoration Ecology and Conservation Biology

The variables are as follows:

F (t) = area of forest land at time t

A(t) = area of agricultural land at time t

U(t) = area of unused (not forest, not agricultural) land at time t

P(t) = (local) human population at time t



Restoration Ecology and Conservation Biology

The model is as follows:

dF

dt
= − aFP + bU; F (0) = F0

dA

dt
= aFP + cU − fA; A(0) = A0

dU

dt
= fA− (b + c)U; U(0) = U0

dP

dt
= rP(1− P

K (A)
); P(0) = P0,

where K (A) = A
h , with h denoting the amount of agricultural land

required to sustain a single individual. I.e., the equation for the
human population can be expressed as

dP

dt
= rP(1− hP

A
); P(0) = P0.



Restoration Ecology and Conservation Biology

The model is as follows:

dF

dt
= − aFP + bU; F (0) = F0

dA

dt
= aFP + cU − fA; A(0) = A0

dU

dt
= fA− (b + c)U; U(0) = U0

dP

dt
= rP(1− P

K (A)
); P(0) = P0.

First equation: The term −aFP corresponds with conversion of
the land for agricultural purposes. The term bU corresponds with
unused land converting back to its forested state.

Second equation: The term cU corresponds with unused land
re-claimed for agricultural purposes. The term −fA corresponds
with abandoned agricultural land.



Parameter Estimation

As an example of parameter estimation, we’ll fit the Lotka-Volterra
model

dy1

dt
= ay1 − by1y2; y1(0) = y10

dy2

dt
= − ry2 + cy1y2; y2(0) = y20 ,

to the same set of hare-lynx data we used earlier for a version of
the Lotka-Volterra difference system. In this case, we won’t
incorporate a carrying capacity into the prey equation, primarily
because we don’t need it in order to get a good fit to the data. We
recall the data on the next slide.



Parameter Estimation

Year 1900 1901 1902 1903 1904 1905 1906
# Hare 30.0 47.2 70.2 77.4 36.3 20.6 18.1
# Lynx 4.0 6.1 9.8 35.2 59.4 41.7 19.0
Year 1907 1908 1909 1910 1911 1912 1913

# Hare 21.4 22.0 25.4 27.1 40.3 57.0 76.6
# Lynx 13.0 8.3 9.1 7.4 8.0 12.3 19.5
Year 1914 1915 1916 1917 1918 1919 1920

# Hare 52.3 19.5 11.2 7.6 14.6 16.2 24.7
# Lynx 45.7 51.1 29.7 15.8 9.7 10.1 8.6

Table: Hare and Lynx Populations in thousands, 1900-1920.



Parameter Estimation

As usual, we need to begin the process by identifying a relationship
among the variables that’s linear in the parameters. Looking first at
the prey equation, we can divide by y1 to obtain

1
y1

dy1

dt
= a− by2.

Similarly as when we were fitting the logistic model to US
population growth, we would like to plot values of 1

y1
dy1
dt against

values of y2, and fit the values to a regression line.

We can obtain values for dy1
dt with derivative approximation. In this

case, our data has the form {(tk ,Hk , Lk)}21
k=1, corresponding with

the years 1900-1920.

We’ll take t1 = 0 to correspond with 1900, so that our times are
t1 = 0, t2 = 1, t3 = 2, ..., t21 = 20.



Parameter Estimation

Correspondingly, we have the data values (H1, L1) = (30, 4),
(H2, L2) = (47.2, 6.1), (H3, L3) = (70.2, 9.8),
(H4, L4) = (77.4, 35.2) ..., (H19, L19) = (14.6, 9.7) ,
(H20, L20) = (16.2, 10.2), (H21, L21) = (24.7, 8.6).

We’ll use the central difference derivative approximation, so we’ll
only have 19 data points for our derivatives. For these, we compute

(
dy1

dt
)1 =

y1(t2 + h)− y1(t2 − h)

2h
=

70.2− 30
2

= 20.1

(
dy1

dt
)2 =

77.4− 47.2
2

= 15.1

...

(
dy1

dt
)19 =

24.7− 14.6
2

= 5.05.



Parameter Estimation

Keeping in mind that our relation is

1
y1

dy1

dt
= a− by2,

a few points are as follows:

(L2,
1
H2

(
dy1

dt
)1) = (6.1, .4258)

(L3,
1
H3

(
dy1

dt
)2) = (9.8, .2151)

...

(L20,
1

H20
(
dy1

dt
)19) = (10.2, .3117).

The plot associated with these values is given on the next slide. We
find a = .4732 and b = .0240.





Parameter Estimation

For the predator equation, we have

dy2

dt
= −ry2 + cy1y2.

In this case, we divide by y2 to obtain the relation

1
y2

dy2

dt
= −r + cy1.

Proceeding similarly as for the prey equation, we obtain the plot
given on the next slide. We find c = .0234 and r = .7647.

We now have values for our four parameters, so we can numerically
solve the Lotka-Volterra model and plot the result along with our
hare-lynx data. This plot is given following the plot of our fit for
the predator equation.







Parameter Estimation

The values we obtained from our linear fits are a = .4732,
b = .0240, c = .0234, and r = .7646.

We now use these as initial values to carry out the nonlinear
regression. As usual, MATLAB will do most of the work for our
nonlinear regression, so let’s just be clear about what it’s doing.

Given the initial values y1(0) = 30 and y2(0) = 4, we can
numerically solve the Lotka-Volterra system

dy1

dt
= ay1 − by1y2; y1(0) = y10

dy2

dt
= − ry2 + cy1y2; y2(0) = y20 ,

for any set of parameter values a, b, c , and r .



Parameter Estimation

In order to emphasize the role of the parameters, let’s denote the
solution to this system

~y(t; a, b, c, r) =

(
y1(t; a, b, c, r)

y2(t; a, b, c, r)

)
.

Let’s also denote our data values ~yk = (Hk , Lk), for
k = 1, 2, . . . , 21.

For the nonlinear regression, we minimize the SSR

E (a, b, c, r) =
21∑
k=1

|~y(tk ; a, b, c , r)− ~yk |2.

We find a = .5482, b = .0283, c = .0265, and r = .8369. A plot of
our model with these values along with the original data is given on
the next slide. As a reminder, the fit we obtained using difference
equations is given on the subsequent slide.
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