Fixed Points and Stability, I

MATH 469, Texas A\&M University

Spring 2020

Non-dimensionalization

As with single difference equations, it's convenient to non-dimensionalize a system of difference equations before analyzing it. Let's see how this works with our predator-prey model

$$
\begin{aligned}
& y_{1_{t+1}}-y_{1_{t}}=a y_{1_{t}}\left(1-\frac{y_{1_{t}}}{K}\right)-b y_{1_{t}} y_{2_{t}} \\
& y_{2_{t+1}}-y 2_{2_{t}}=-r y_{2_{t}}+c y_{1_{t}} y_{2_{t}} .
\end{aligned}
$$

We set

$$
\begin{aligned}
& Y_{1_{t}}=\frac{y_{1_{t}}}{A} \\
& Y_{2_{t}}=\frac{y 2_{t}}{B}
\end{aligned}
$$

where A and B are constants with the dimension of biomass that will be chosen to put the system in a convenient form.

Non-dimensionalization

We substitute $y_{1_{t}}=A Y_{1_{t}}$ and $y_{2_{t}}=B Y_{2_{t}}$ into the system to obtain

$$
\begin{aligned}
& A Y_{1_{t+1}}-A Y_{1_{t}}=a A Y_{1_{t}}\left(1-\frac{A Y_{1_{t}}}{K}\right)-b A B Y_{1_{t}} Y_{2_{t}} \\
& B Y_{2_{t+1}}-B Y_{2_{t}}=-r B Y_{2_{t}}+c A B Y_{1_{t}} Y_{2_{t}}
\end{aligned}
$$

We notice that A can be divided into the first equation, and B can be divided into the second, giving

$$
\begin{aligned}
& Y_{1_{t+1}}-Y_{1_{t}}=a Y_{1_{t}}\left(1-\frac{A Y_{1_{t}}}{K}\right)-b B Y_{1_{t}} Y_{2_{t}} \\
& Y_{2_{t+1}}-Y_{2_{t}}=-r Y_{2_{t}}+c A Y_{1_{t}} Y_{2_{t}}
\end{aligned}
$$

It's natural to choose $A=K$ and $B=\frac{1}{b}$, and this leads to the non-dimensionalized system

$$
\begin{aligned}
& Y_{1_{t+1}}-Y_{1_{t}}=a Y_{1_{t}}\left(1-Y_{1_{t}}\right)-Y_{1_{t}} Y_{2_{t}} \\
& Y_{2_{t+1}}-Y_{2_{t}}=-r Y_{2_{t}}+\delta Y_{1_{t}} Y_{2_{t}}, \quad \delta=c K .
\end{aligned}
$$

Fixed Points

As with single difference equations, we say that \hat{y} is a fixed point for the system of difference equations

$$
\vec{y}_{t+1}=\vec{f}\left(\vec{y}_{t}\right)
$$

if

$$
\hat{y}=\vec{f}(\hat{y})
$$

Notice that in this case \hat{y} is a vector with the same number of components as $\overrightarrow{y_{t}}$.

Example. Find all fixed points for the system

$$
\begin{aligned}
& y_{1_{t+1}}=y_{2_{t}}^{2} \\
& y_{2_{t+1}}=y_{1_{t}} .
\end{aligned}
$$

Fixed Points

For this example, we have

$$
\vec{y}=\binom{y_{1}}{y_{2}} \quad \text { and } \quad \vec{f}(\vec{y})=\binom{y_{2}^{2}}{y_{1}} .
$$

The fixed point equation $\hat{y}=\vec{f}(\hat{y})$ is

$$
\begin{aligned}
& \hat{y}_{1}=\hat{y}_{2}^{2} \\
& \hat{y}_{2}=\hat{y}_{1} .
\end{aligned}
$$

Upon substitution of the second into the first, we see that

$$
\hat{y}_{1}=\hat{y}_{1}^{2} \Longrightarrow \hat{y}_{1}\left(\hat{y}_{1}-1\right)=0 \Longrightarrow \hat{y}_{1}=0,1 .
$$

We conclude that the fixed points are $\binom{0}{0}$ and $\binom{1}{1}$.

Stability of Fixed Points

In order to discuss the stability of fixed points for systems, we need one more review of multivariate differentiation: the case of vector functions of a vector variable.

First, for a vector function of a vector variable $\vec{f}(\vec{y})$, with $\vec{y} \in \mathbb{R}^{n}$ and $\vec{f}(\vec{y}) \in \mathbb{R}^{m}$ (we typically write $\vec{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$), the Jacobian matrix is

$$
\vec{f}^{\prime}(\vec{y})=\left(\begin{array}{cccc}
\frac{\partial f_{1}}{\partial y_{1}} & \frac{\partial f_{1}}{\partial y_{2}} & \cdots & \frac{\partial f_{1}}{\partial y_{n}} \\
\frac{\partial f_{2}}{\partial y_{1}} & \frac{\partial f_{2}}{\partial y_{2}} & \cdots & \frac{\partial f_{2}}{\partial y_{n}} \\
\vdots & \vdots & \vdots & \vdots \\
\frac{\partial f_{m}}{\partial y_{1}} & \frac{\partial f_{m}}{\partial y_{2}} & \cdots & \frac{\partial f_{m}}{\partial y_{n}}
\end{array}\right) .
$$

Notice that $\overrightarrow{f^{\prime}}(\vec{y})$ is an $m \times n$ matrix.

Some Technical Stuff

We say that a function $\vec{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is differentiable at a point $\vec{y} \in \mathbb{R}^{n}$ if the partial derivatives in $\vec{f}^{\prime}(\vec{y})$ all exist at \vec{y}, and

$$
\lim _{|\vec{h}| \rightarrow 0} \frac{\left|\vec{f}(\vec{y}+\vec{h})-\vec{f}(\vec{y})-\vec{f}^{\prime}(\vec{y}) \vec{h}\right|}{|\vec{h}|}=0 .
$$

Equivalently: if there exists a function $\vec{\epsilon}(\vec{h} ; \vec{y})$ so that

$$
\vec{f}(\vec{y}+\vec{h})=\vec{f}(\vec{y})+\vec{f}^{\prime}(\vec{y}) \vec{h}+\vec{\epsilon}(\vec{h} ; \vec{y})
$$

where

$$
\lim _{|\vec{h}| \rightarrow 0} \frac{|\vec{\epsilon}(\vec{h} ; \vec{y})|}{|\vec{h}|}=0
$$

I.e., $|\vec{\epsilon}(\vec{h} ; \vec{y})|=\mathbf{o}(|\vec{h}|)$.

Back to Stability

Let \hat{y} denote a fixed point for

$$
\begin{equation*}
\vec{y}_{t+1}=\vec{f}\left(\vec{y}_{t}\right) \tag{*}
\end{equation*}
$$

and set

$$
\begin{equation*}
\overrightarrow{y_{t}}=\hat{y}+\overrightarrow{z_{t}} . \tag{**}
\end{equation*}
$$

We want to determine whether \vec{y}_{t} approaches \hat{y} as $t \rightarrow \infty$ (asymptotic stability), and this means we want to determine whether \vec{z}_{t} approaches 0 as $t \rightarrow \infty$. If we substitute $\left({ }^{* *}\right)$ into $\left({ }^{*}\right)$, we get:

$$
\begin{aligned}
\hat{y}+\vec{z}_{t+1} & =\vec{f}\left(\hat{y}+\vec{z}_{t}\right) \\
& =\vec{f}(\hat{y})+\vec{f}^{\prime}(\hat{y}) \overrightarrow{z_{t}}+\vec{\epsilon}\left(\overrightarrow{z_{t}} ; \hat{y}\right) .
\end{aligned}
$$

Back to Stability

Since $\hat{y}=\vec{f}(\hat{y})$ and $\vec{\epsilon}\left(\vec{z}_{t} ; \hat{y}\right)$ is smaller than $\overrightarrow{z_{t}}$, we have the approximate equation

$$
\begin{equation*}
\vec{z}_{t+1} \cong \overrightarrow{f^{\prime}}(\hat{y}) \vec{z}_{t} . \tag{***}
\end{equation*}
$$

This is a linear system of difference equations, and we know how to solve such equations.

Let $\left\{\lambda_{j}\right\}_{j=1}^{n}$ denote the eigenvalues of $\vec{f}^{\prime}(\hat{y})$, and for simplicity assume these eigenvalues are distinct. In this case, we can associate them with a linearly independent collection of eigenvectors $\left\{\vec{v}_{j}\right\}_{j=1}^{n}$. We've seen that we can solve (***) with

$$
\vec{z}_{t}=\sum_{j=1}^{n} c_{j} \lambda_{j}^{t} \vec{v}_{j}
$$

for some collection of constants $\left\{c_{j}\right\}_{j=1}^{n}$.

Back to Stability

From the previous page,

$$
\vec{z}_{t}=\sum_{j=1}^{n} c_{j} \lambda_{j}^{t} \vec{v}_{j}
$$

If the eigenvalues $\left\{\lambda_{j}\right\}_{j=1}^{n}$ all satisfy $\left|\lambda_{j}\right|<1$ (possibly complex modulus), then \hat{y} must be asymptotically stable. If $\left|\lambda_{j}\right|>1$ for any j, then \hat{y} must be unstable. If $\left|\lambda_{j}\right|=1$, stability will be determined by the nonlinear terms. In particular, stability is not determined by this criterion.

This criterion is valid even if the eigenvalues of $\vec{f}^{\prime}(\hat{y})$ are not distinct.

Easy Example

Let's return to our example

$$
\vec{y}_{t+1}=\vec{f}\left(\vec{y}_{t}\right)
$$

where

$$
\vec{f}(\vec{y})=\binom{y_{2}^{2}}{y_{1}} .
$$

Recall that we've already found the fixed points to be $\binom{0}{0}$ and $\binom{1}{1}$. In order to write down the Jacobian matrix, we need to compute

$$
\begin{array}{ll}
\frac{\partial f_{1}}{\partial y_{1}}=0 ; & \frac{\partial f_{1}}{\partial y_{2}}=2 y_{2} \\
\frac{\partial f_{2}}{\partial y_{1}}=1 ; & \frac{\partial f_{2}}{\partial y_{2}}=0
\end{array}
$$

This gives

$$
\vec{f}^{\prime}(\vec{y})=\left(\begin{array}{cc}
0 & 2 y_{2} \\
1 & 0
\end{array}\right)
$$

Easy Example

For $\hat{y}=\binom{0}{0}$, we have

$$
\vec{f}^{\prime}(0,0)=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

The eigenvalues of this matrix are $\lambda_{1}=\lambda_{2}=0$ (repeated), so this fixed point is asymptotically stable.
For $\hat{y}=\binom{1}{1}$, we have

$$
\vec{f}^{\prime}(1,1)=\left(\begin{array}{ll}
0 & 2 \\
1 & 0
\end{array}\right)
$$

In this case, we compute

$$
\operatorname{det}\left(\begin{array}{cc}
-\lambda & 2 \\
1 & -\lambda
\end{array}\right)=\lambda^{2}-2=0 \Longrightarrow \lambda= \pm \sqrt{2}
$$

Since $\sqrt{2}>1$, we can conclude that this fixed point is unstable.

