M-Cycles for Systems of Difference Equations, I

MATH 469, Texas A\&M University

Spring 2020

Identifying M-Cycles

For a system of n difference equations

$$
\vec{y}_{t+1}=\vec{f}\left(\vec{y}_{t}\right)
$$

we say that a collection of m distinct vectors $\left\{\hat{y}_{k}\right\}_{k=1}^{m}\left(\hat{y}_{k} \in \mathbb{R}^{n}\right.$ for each $k=1,2, \ldots, m$) is an m-cycle if

$$
\begin{aligned}
\hat{y}_{2} & =\vec{f}\left(\hat{y}_{1}\right) \\
\hat{y}_{3} & =\vec{f}\left(\hat{y}_{2}\right) \\
& \vdots \\
\hat{y}_{m} & =\vec{f}\left(\hat{y}_{m-1}\right) \\
\hat{y}_{1} & =\vec{f}\left(\hat{y}_{m}\right) .
\end{aligned}
$$

Identifying M-Cycles

Recall our notation for the composition of functions,

$$
\begin{aligned}
\vec{f}^{2}(\vec{y}) & =\vec{f}(\vec{f}(\vec{y})) \\
\vec{f}^{3}(\vec{y}) & =\vec{f}(\vec{f}(\vec{f}(\vec{y})))
\end{aligned}
$$

For $m=3$, we can write

$$
\hat{y}_{1}=\vec{f}\left(\hat{y}_{3}\right)=\vec{f}\left(\vec{f}\left(\hat{y}_{2}\right)\right)=\vec{f}\left(\vec{f}\left(\vec{f}\left(\hat{y}_{1}\right)\right)\right)=\vec{f}^{3}\left(\hat{y}_{1}\right)
$$

and more generally

$$
\hat{y}_{1}=\vec{f}\left(\hat{y}_{m}\right)=\vec{f}\left(\vec{f}\left(\hat{y}_{m-1}\right)\right)=\cdots=\vec{f}^{m}\left(\hat{y}_{1}\right) .
$$

Identifying M-Cycles

Likewise, for each $k=1,2, \ldots, m$,

$$
\hat{y}_{k}=\vec{f}^{m}\left(\hat{y}_{k}\right) .
$$

We see that each vector in the m-cycle is a fixed point for the difference equation

$$
\vec{x}_{t+1}=\vec{f}^{m}\left(\vec{x}_{t}\right)
$$

Identifying M-Cycles

Example. Find all 2-cycles for the system of difference equations

$$
\vec{y}_{t+1}=\vec{f}\left(\vec{y}_{t}\right)
$$

where

$$
\vec{f}\left(y_{1}, y_{2}\right)=\binom{y_{2}^{2}}{y_{1}} .
$$

Recall that we found in a previous lecture that the fixed points for this system are $\binom{0}{0}$ and $\binom{1}{1}$. For the 2-cycles, we need to look for fixed points of the difference equation

$$
\vec{x}_{t+1}=\vec{f}^{2}\left(\vec{x}_{t}\right)=\vec{f}\left(\vec{f}\left(\vec{x}_{t}\right)\right)
$$

l.e., if $\hat{y}=\binom{y_{1}}{y_{2}}$ is one of the two vectors in a 2-cycle, it will satisfy

$$
\hat{y}=\vec{f}(\vec{f}(\hat{y})) .
$$

Identifying M-Cycles

From the previous slide,

$$
\begin{equation*}
\hat{y}=\vec{f}(\vec{f}(\hat{y})) \tag{}
\end{equation*}
$$

We can compute

$$
\vec{f}(\vec{f})=\vec{f}\left(f_{1}, f_{2}\right)=\binom{f_{2}^{2}}{f_{1}}=\binom{y_{1}^{2}}{y_{2}^{2}} .
$$

We see that $\left({ }^{*}\right)$ can be expressed as

$$
\binom{y_{1}}{y_{2}}=\binom{y_{1}^{2}}{y_{2}^{2}} .
$$

This is the same equation in each component. For the first,

$$
y_{1}=y_{1}^{2} \Longrightarrow y_{1}\left(1-y_{1}\right)=0 \Longrightarrow y_{1}=0,1
$$

and likewise for y_{2}.

Identifying M-Cycles

In this case, any combination of the values for y_{1} and y_{2} will be a fixed point for $\vec{x}_{t+1}=\vec{f}^{2}\left(\vec{x}_{t}\right)$, so we have a total of four:

$$
\binom{0}{0}, \quad\binom{0}{1}, \quad\binom{1}{0}, \quad\binom{1}{1} .
$$

Keep in mind that fixed points for $\vec{y}_{t+1}=\vec{f}\left(\vec{y}_{t}\right)$ are also fixed points for $\vec{x}_{t+1}=\vec{f}^{2}\left(\vec{x}_{t}\right)$. From this, we can eliminate $\binom{0}{0}$ and $\binom{1}{1}$ from consideration, and conclude that the 2-cycle is

$$
\left\{\hat{y}_{1}, \hat{y}_{2}\right\}=\left\{\binom{0}{1},\binom{1}{0}\right\} .
$$

Stability of M-Cycles

Before discussing the stability of m-cycles, we need one more result from multidimensional calculus.

First, recall that if f and g are both functions taking real values to real values, then the usual chain rule is

$$
\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) g^{\prime}(x)
$$

We need to extend this to the case of vector-valued functions of vector variables.

Theorem (Multidimensional Chain Rule). Suppose $\vec{g}: \mathbb{R}^{\prime} \rightarrow \mathbb{R}^{n}$ is differentiable at a point $\vec{x} \in \mathbb{R}^{\prime}$, and $\vec{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is differentiable at $\vec{g}(\vec{x}) \in \mathbb{R}^{n}$. Then

$$
\vec{f}(\vec{g}(\vec{x}))^{\prime}=\vec{f}^{\prime}(\vec{g}(\vec{x})) \vec{g}^{\prime}(\vec{x})
$$

Stability of M-Cycles

From the previous slide,

$$
\vec{f}(\vec{g}(\vec{x}))^{\prime}=\vec{f}^{\prime}(\vec{g}(\vec{x})) \vec{g}^{\prime}(\vec{x}) .
$$

Here, $\vec{f}^{\prime}(\vec{g}(\vec{x}))$ is an $m \times n$ matrix, and $\vec{g}^{\prime}(\vec{x})$ is an $n \times I$ matrix, so $\vec{f}(\vec{g}(\vec{x}))^{\prime}$ is an $m \times I$ matrix.

Now, suppose $\left\{\hat{y}_{k}\right\}_{k=1}^{m}$ is an m-cycle for the difference system

$$
\begin{equation*}
\overrightarrow{y_{t+1}}=\vec{f}\left(\overrightarrow{y_{t}}\right) \tag{}
\end{equation*}
$$

By the same argument we used for single equations, the m-cycle $\left\{\hat{y}_{k}\right\}_{k=1}^{m}$ will be asymptotically stable as a solution of $\left(^{*}\right)$ if and only if each vector \hat{y}_{k} in the m-cycle is asymptotically stable as a fixed point of

$$
\begin{equation*}
\vec{x}_{t+1}=\vec{f}^{m}\left(\vec{x}_{t}\right) . \tag{**}
\end{equation*}
$$

Stability of M-Cycles

As a reminder of why this is the case, let's think about $m=2$. If $\left\{\hat{y}_{1}, \hat{y}_{2}\right\}$ is an asyptotically stable 2-cycle for $\vec{y}_{t+1}=\vec{f}\left(\vec{y}_{t}\right)$, then as t gets large solutions to $\vec{y}_{t+1}=\vec{f}\left(\vec{y}_{t}\right)$ will approach the sequence

$$
\hat{y}_{1}, \hat{y}_{2}, \hat{y}_{1}, \hat{y}_{2}, \ldots
$$

Solutions of $\vec{x}_{t+1}=\vec{f}^{2}\left(\vec{x}_{t}\right)$ will skip every other term, so will approach either the sequence

$$
\hat{y}_{1}, \hat{y}_{1}, \ldots
$$

or the sequence

$$
\hat{y}_{2}, \hat{y}_{2}, \ldots,
$$

depending on the initial vector \vec{y}_{0}. We see that if $\left\{\hat{y}_{1}, \hat{y}_{2}\right\}$ is an asyptotically stable 2-cycle for $\vec{y}_{t+1}=\vec{f}\left(\vec{y}_{t}\right)$, then both \hat{y}_{1} and \hat{y}_{2} are asymptotically stable fixed points for $\vec{x}_{t+1}=\vec{f}^{2}\left(\vec{x}_{t}\right)$, and we can turn the argument around to get the implication in the other direction.

Stability of M-Cycles

We also see from this that if one vector in the m-cycle is asymptotically stable as a fixed point of $\vec{x}_{t+1}=\vec{f}^{m}\left(\vec{x}_{t}\right)$, then the rest must be as well. Finally, the same argument can be made for stability and instability.

Stability of M-Cycles

This means that we have the following condition for stability of the m -cycle $\left\{\hat{y}_{k}\right\}_{k=1}^{m}$ as a solution of

$$
\begin{equation*}
\vec{y}_{t+1}=\vec{f}\left(\vec{y}_{t}\right) . \tag{}
\end{equation*}
$$

For any \hat{y}_{k} in the m-cycle $\left\{\hat{y}_{k}\right\}_{k=1}^{m}$, let $\left\{\lambda_{j}\right\}_{j=1}^{n}$ denote the eigenvalues of the Jacobian matrix $\vec{f}^{m}\left(\hat{y}_{k}\right)$.
(i) If $\left|\lambda_{j}\right|<1$ for all $j=1,2, \ldots, n$, then the m-cycle $\left\{\hat{y}_{k}\right\}_{k=1}^{m}$ is asymptotically stable.
(ii) If $\left|\lambda_{j}\right|>1$ for any $j \in\{1,2, \ldots, n\}$ then the m-cycle $\left\{\hat{y}_{k}\right\}_{k=1}^{m}$ is unstable.
(iii) If $\left|\lambda_{j}\right| \leq 1$ for all $j=1,2, \ldots, n$ and $\left|\lambda_{j}\right|=1$ for at least one $j \in\{1,2, \ldots, n\}$, then this criterion for stability is inconclusive (stability is determined by the nonlinear terms).

Stability of M-Cycles

In order to check this stability condition, we need to compute $\vec{f}^{m}\left(\hat{y}_{k}\right)$. Let's start with $m=2$, in which case we have

$$
\vec{f}^{2}(\vec{y})=\vec{f}(\vec{f}(\vec{y})) \Longrightarrow \vec{f}^{2 \prime}(\vec{y})=\vec{f}^{\prime}(\vec{f}(\vec{y})) \vec{f}^{\prime}(\vec{y})
$$

If we denote the 2 -cycle by $\left\{\hat{y}_{1}, \hat{y}_{2}\right\}$, then for $\vec{y}=\hat{y}_{1}$ we see that

$$
\vec{f}^{2 \prime}\left(\hat{y}_{1}\right)=\vec{f}^{\prime}\left(\vec{f}\left(\hat{y}_{1}\right)\right) \vec{f}^{\prime}\left(\hat{y}_{1}\right)=\vec{f}^{\prime}\left(\hat{y}_{2}\right) \vec{f}^{\prime}\left(\hat{y}_{1}\right) .
$$

In particular, $\vec{f}^{\prime \prime}\left(\hat{y}_{1}\right)$ is just the product of two Jacobian matrices, one evaluated at \hat{y}_{1} and the other evaluated at \hat{y}_{2}.

Notice that if we use $\vec{y}=\hat{y}_{2}$, we get

$$
\vec{f}^{\prime \prime}\left(\hat{y}_{2}\right)=\vec{f}^{\prime}\left(\vec{f}\left(\hat{y}_{2}\right)\right) \vec{f}^{\prime}\left(\hat{y}_{2}\right)=\vec{f}^{\prime}\left(\hat{y}_{1}\right) \vec{f}^{\prime}\left(\hat{y}_{2}\right) .
$$

I.e., either order of matrix multiplication works, even though matrix multiplication isn't commutative.

Stability of M-Cycles

More generally,

$$
\begin{aligned}
\vec{f}^{m \prime}(\vec{y}) & =\vec{f}\left(\vec{f}^{m-1}(\vec{y})\right)^{\prime}=\vec{f}^{\prime}\left(\vec{f}^{m-1}(\vec{y})\right) \vec{f}^{m-1 \prime}(\vec{y}) \\
& =\vec{f}^{\prime}\left(\vec{f}^{m-1}(\vec{y})\right) \vec{f}\left(\vec{f}^{m-2}(\vec{y})\right)^{\prime}=\vec{f}^{\prime}\left(\vec{f}^{m-1}(\vec{y})\right) \vec{f}^{\prime}\left(\vec{f}^{m-2}(\vec{y})\right) \vec{f}^{m-2 \prime}(\vec{y}) \\
& =\cdots=\vec{f}^{\prime}\left(\vec{f}^{m-1}(\vec{y})\right) \vec{f}^{\prime}\left(\vec{f}^{m-2}(\vec{y})\right) \cdots \vec{f}^{\prime}(\vec{y})
\end{aligned}
$$

Using the relations $\hat{y}_{2}=\vec{f}\left(\hat{y}_{1}\right), \hat{y}_{3}=\vec{f}\left(\vec{y}_{2}\right)=\vec{f}\left(\hat{y_{1}}\right), \ldots$,
$\vec{y}_{m}=\vec{f}^{m-1}\left(\hat{y}_{1}\right)$, we see that

$$
\vec{f}^{m \prime}\left(\hat{y}_{1}\right)=\vec{f}^{\prime}\left(\hat{y}_{m}\right) \vec{f}^{\prime}\left(\hat{y}_{m-1}\right) \cdots \vec{f}^{\prime}\left(\hat{y}_{1}\right) .
$$

We would get a similar expression by evaluating at any other \hat{y}_{k} in the cycle.

Stability of M-Cycles

Example 1. Let's check stability for the 2-cycle $\left\{\hat{y}_{1}, \hat{y}_{2}\right\}=\left\{\binom{0}{1},\binom{1}{0}\right\}$ for

$$
\vec{y}_{t+1}=\vec{f}\left(\vec{y}_{t}\right) ; \quad \vec{f}\left(y_{1}, y_{2}\right)=\binom{y_{2}^{2}}{y_{1}} .
$$

The Jacobian matrix is

$$
\vec{f}^{\prime}(\vec{y})=\left(\begin{array}{cc}
0 & 2 y_{2} \\
1 & 0
\end{array}\right)
$$

so that

$$
\vec{f}^{\prime}\left(\hat{y}_{1}\right)=\vec{f}^{\prime}(0,1)=\left(\begin{array}{cc}
0 & 2 \\
1 & 0
\end{array}\right) ; \quad \vec{f}^{\prime}\left(\hat{y}_{2}\right)=\vec{f}^{\prime}(1,0)=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) .
$$

We need to compute

$$
\vec{f}^{2 \prime}\left(\hat{y}_{1}\right)=\vec{f}^{\prime}\left(\hat{y}_{2}\right) \vec{f}^{\prime}\left(\hat{y}_{1}\right)=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 2 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 2
\end{array}\right) .
$$

Stability of M-Cycles

The eigenvalues of this matrix are 0 and 2 , so we can immediately conclude that this 2-cycle is unstable.

That finishes the example, but let's take a look at what would happen if we used \hat{y}_{2} instead of \hat{y}_{1}. We would compute

$$
\vec{f}^{2 \prime}\left(\hat{y}_{2}\right)=\vec{f}^{\prime}\left(\hat{y}_{1}\right) \vec{f}^{\prime}\left(\hat{y}_{2}\right)=\left(\begin{array}{ll}
0 & 2 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right) .
$$

We obtain a different matrix, but the conclusion about stability is the same.

