# M-Cycles for Systems of Difference Equations, II 

MATH 469, Texas A\&M University

Spring 2020

## Stability of M-Cycles

Example 2. Let's return to our non-dimensionalized predator-prey model

$$
\begin{aligned}
& y_{1_{t+1}}-y_{1_{t}}=a y_{1_{t}}\left(1-y_{1_{t}}\right)-y_{1_{t}} y_{2_{t}} \\
& y_{2_{t+1}}-y_{2_{t}}=-r y_{2_{t}}+\delta y_{1_{t}} y_{2_{t}}, \quad \delta=c K .
\end{aligned}
$$

I.e., this is $\vec{y}_{t+1}=\vec{f}\left(\vec{y}_{t}\right)$, with

$$
\vec{f}(\vec{y})=\binom{(1+a) y_{1}-a y_{1}^{2}-y_{1} y_{2}}{y_{2}-r y_{2}+\delta y_{1} y_{2}},
$$

and we will use the parameter values we obtained from the hare-lynx data, $a=1.4974, r=.5820$, and $\delta=1.9675$. (Also $c=.0239, K=82.3206$, and $b=.0425$.)

## Stability of M-Cycles

We've already seen that this system doesn't have any stable fixed points for these parameter values, and the natural next step is to look for m-cycles. Our first question is: What value of $m$ should we be working with?

To answer this, let's look at two plots of solutions, initialized by $y_{1_{0}}=\frac{30}{K}$ and $y_{2_{0}}=4 b$ (because of the non-dimensionalization). First, we solve the model forward for 100 years, then in the next plot we'll zoom in on the final years.

## Stability of M-Cycles



Figure: Predator-prey populations for 100 years.

## Stability of M-Cycles



Figure: Predator-prey populatons for the final years.

## Stability of M-Cycles

We see that we should be looking for a 10-cycle. Let's think about this.

If we wanted to find a 2 -cycle for this system, we would need to solve

$$
\hat{y}=\vec{f}^{2}(\hat{y})=\vec{f}(\vec{f}(\hat{y}))
$$

Here,

$$
\vec{f}(\vec{y})=\binom{(1+a) y_{1}-a y_{1}^{2}-y_{1} y_{2}}{y_{2}-r y_{2}+\delta y_{1} y_{2}},
$$

SO

$$
\vec{f}(\vec{f})=\binom{(1+a) f_{1}-a f_{1}^{2}-f_{1} f_{2}}{f_{2}-r f_{2}+\delta f_{1} f_{2}} .
$$

## Stability of M-Cycles

If we substitute our expressions for $f_{1}$ and $f_{2}$, we obtain
$(1+a)\left((1+a) y_{1}-a y_{1}^{2}-y_{1} y_{2}\right)-a\left((1+a) y_{1}-a y_{1}^{2}-y_{1} y_{2}\right)^{2}-\left((1+a) y_{1}-a y_{1}^{2}-y_{1} y_{2}\right)\left(y_{2}-r y_{2}+\delta y_{1} y_{2}\right)$
$(1-r)\left(y_{2}-r y_{2}+\delta y_{1} y_{2}\right)+\delta\left((1+a) y_{1}-a y_{1}^{2}-y_{1} y_{2}\right)\left(y_{2}-r y_{2}+\delta y_{1} y_{2}\right)$
This is only for a 2-cycle!
Nonetheless, we can find the 10-cycle numerically by solving

$$
\hat{y}=\vec{f}^{10}(\hat{y})
$$

The values are as follows:

| prey | .26 | .49 | .77 | .83 | .61 | .31 | .09 | .05 | .07 | .13 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| pred | .21 | .20 | .27 | .53 | 1.08 | 1.73 | 1.79 | 1.07 | .56 | .31 |

I.e., $\hat{y}_{1}=\binom{.26}{.21}, \hat{y}_{2}=\binom{{ }^{49}}{.20}$, etc.

## Stability of M-Cycles

We've already seen in a previous lecture that the Jacobian matrix in this case is

$$
\vec{f}^{\prime}\left(y_{1}, y_{2}\right)=\left(\begin{array}{cc}
1+a-2 a y_{1}-y_{2} & -y_{1} \\
\delta y_{2} & 1-r+\delta y_{1}
\end{array}\right) .
$$

In order to check the stability of this 10 -cycle, we need to compute the eigenvalues of

$$
\vec{f}^{\prime}\left(\hat{y}_{10}\right) \vec{f}^{\prime}\left(\hat{y}_{9}\right) \vec{f}^{\prime}\left(\hat{y}_{8}\right) \vec{f}^{\prime}\left(\hat{y}_{7}\right) \vec{f}^{\prime}\left(\hat{y}_{6}\right) \vec{f}^{\prime}\left(\hat{y}_{5}\right) \vec{f}^{\prime}\left(\hat{y}_{4}\right) \vec{f}^{\prime}\left(\hat{y}_{3}\right) \vec{f}^{\prime}\left(\hat{y}_{2}\right) \vec{f}^{\prime}\left(\hat{y}_{1}\right) .
$$

We can compute this numerically, and we find

$$
\left(\begin{array}{cc}
1.1829 & .7600 \\
-.4624 & -.3224
\end{array}\right)
$$

Computing the eigenvalues of this matrix in the usual way, we get $\lambda_{1}=-.0335, \lambda_{2}=.8940$. We can conclude that this 10 -cycle is asymptotically stable.

## Delay Difference Systems

As with single difference equations, it may be the case with systems that the number of individuals in the next generation of a population is determined by the number of individuals in several previous generations.

In such cases, we can use a delay difference system

$$
\begin{equation*}
\vec{y}_{t+1}=\vec{f}\left(\overrightarrow{y_{t}}, \overrightarrow{y_{t-1}}, \ldots, \overrightarrow{y_{t-T}}\right) \tag{}
\end{equation*}
$$

initialized by $T+1$ vectors, $\overrightarrow{y_{0}}, \overrightarrow{y_{1}}, \ldots, \overrightarrow{y_{T}} \in \mathbb{R}^{n}$.
Similarly as we did with single equations, we can express (*) as a first-order system. We do this by setting

$$
\vec{Y}_{1_{t}}=\vec{y}_{t}, \vec{Y}_{2_{t}}=\vec{y}_{t-1}, \ldots, \vec{Y}_{T+1_{t}}=\vec{y}_{t-T}
$$

## Delay Difference Systems

From the previous slide,

$$
\vec{Y}_{1_{t}}=\overrightarrow{y_{t}}, \vec{Y}_{2_{t}}=\vec{y}_{t-1}, \ldots, \vec{Y}_{T+1_{t}}=\vec{y}_{t-T}
$$

With these choices, we can express $\left(^{*}\right)$ as

$$
\begin{gathered}
\vec{Y}_{1_{t+1}}=\vec{y}_{t+1}=\vec{f}\left(\vec{Y}_{1_{t}}, \vec{Y}_{2_{t}}, \ldots, \vec{Y}_{T+1_{t}}\right) ; \quad \vec{Y}_{1_{T}}=\vec{y}_{T} \\
\vec{Y}_{2+1}=\vec{y}_{t}=\vec{Y}_{1_{1}} ; \quad \vec{Y}_{2_{T}}=\vec{y}_{T-1} \\
\vec{Y}_{3_{t+1}}=\vec{y}_{t-1}=\vec{Y}_{2_{t}} ; \quad \vec{Y}_{3_{T}}=\vec{y}_{T-2} \\
\vdots \\
\vec{Y}_{T+1_{t+1}}=\vec{y}_{t-(T-1)}=\vec{Y}_{T_{t}} ; \quad \vec{Y}_{T+1_{T}}=\vec{y}_{0} .
\end{gathered}
$$

Each of the vectors $\vec{Y}_{1_{t}}, \vec{Y}_{2_{t}}, \ldots, \vec{Y}_{T+1_{t}}$ has length $n$, so this is a system with $(T+1) \times n$ equations.

## Delay Difference Systems

Notice particularly that the system for $\vec{Y}_{1_{t}}, \vec{Y}_{2_{t}}, \ldots, \vec{Y}_{T+1_{t}}$ is not a delay system, so it can be analyzed by the techniques we've been discussing in this section.

