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Overview of Compartment Models

Suppose y(t) denotes the amount of a substance in some
compartment at time t, and that we can determine the rate
(amount per unit time) at which the substance enters the
compartment and the rate at which it exits the compartment.

Then we can express the rate of change of y(t) as an ODE

dy

dt
= incoming rate− outgoing rate.

In some cases, we can have generation or consumption within the
compartment, and this leads to equations of the form

dy

dt
= incoming rate− outgoing rate

+ generation rate− consumption rate.



Respiration

Consider the respiration process (a.k.a., breathing). Let

y(t) = liters of oxygen (O2) in the lungs at time t.

Let rI (t) L/min denote the rate at which air enters the lungs at
time t, and denote by rO(t) L/min the rate at which air exits the
lungs at time t.

Let CO2 denote the volume fraction of O2 in the atmosphere, and
let V (t) denote the volume of air in the lungs at time t.

Finally, let AO2(t) denote the rate at which O2 is consumed by the
body. Then:

dy

dt
= rI (t)CO2 − rO(t)

y(t)

V (t)
− AO2(t).



Respiration

Here,

V (t) = V (0) +
∫ t

0
rI (s)− rO(s)ds.

Some standard values from our reference by Saltzman for a human
are as follows (all constant in time):

rI (t), rO(t) = 5.3 L/min
CO2 = .21 (ratio of volumes, so no units)
V (0) = .35 L

AO2(t) = .25 L/min.

Our equation for y(t) becomes

dy

dt
= 5.3 · .21− 5.3

.35
y − .25

= .86− 15.14y .



Respiration

Let’s denote by ŷ the liters of O2 in the lungs at equilibrium. I.e., ŷ
denotes the value of y so that

dy

dt
= 0.

We see that ŷ solves

0 = .86− 15.14ŷ =⇒ ŷ = .06 L.

We often refer to a value such as ŷ as an equilibrium point. It’s the
analogue to a fixed point in difference equations.



Medication

Suppose M grams of a certain heart medication are injected into a
patient at time 0, and that whenever the drug is present in the
heart its absorption rate out of the bloodstream (and into the heart
tissue) is proportional to the concentration in the heart with
proportionality constant rA L/s. (For this example, we’ll assume
that none of the drug is lost to other body tissue.)

Also suppose blood flows into the patient’s heart with variable rate
rI (t) L/s and out with variable rate rO(t) L/s, and that the volume
of blood in the heart at time 0 is VH(0), and the volume of blood
in the patient’s body (excluding the heart) at time 0 is VB(0).

We’ll develop a model for the amount of drug absorbed into the
heart tissue by time t.



Medication

Let’s define the variables

y(t) = grams of drug in the blood in the heart at time t,

not yet absorbed into the heart tissue
A(t) = grams of drug absorbed into the heart tissue by time t.

Let’s start with A, for which we have

dA

dt
= rA

y(t)

VH(t)
,

where

VH(t) = VH(0) +
∫ t

0
rI (s)− rO(s)ds.



Medication

For y(t), we can write

dy

dt
= rI (t)

M − y(t)− A(t)

VB(t)
− rO(t)

y(t)

VH(t)
− rA

y(t)

VH(t)

= rI (t)
M − y(t)− A(t)

VB(t)
− (rO(t) + rA)

y(t)

VH(t)
,

where

VB(t) = VB(0)−
∫ t

0
rI (s)− rO(s)ds.

We’ve derived a system of ODE

dA

dt
= rA

y(t)

VH(t)
; A(0) = 0

dy

dt
= rI (t)

M − y(t)− A(t)

VB(t)
− (rO(t) + rA)

y(t)

VH(t)
; y(0) = 0.



Medication

Alternatively, we can eliminate y(t) and express this as a single
second-order equation for A(t). For this, we write

dA

dt
= rA

y(t)

VH(t)
,

as
y(t) =

VH(t)

rA

dA

dt
, (*)

and compute
dy

dt
=

V ′H(t)

rA

dA

dt
+

VH(t)

rA

d2A

dt2
.

If we substitute this relation into the equation for y , we obtain

V ′H(t)

rA

dA

dt
+
VH(t)

rA

d2A

dt2
= rI (t)

M − y(t)− A(t)

VB(t)
−(rO(t)+rA)

y(t)

VH(t)
.

Last, we’ll use (*) to eliminate all appearances of y(t).



Medication

This gets us to the system

V ′H(t)

rA
A′(t)+

VH(t)

rA
A′′(t) = rI (t)

M − VH(t)
rA

A′(t)− A(t)

VB(t)

− (rO(t) + rA)

VH(t)
rA

A′(t)

VH(t)
.

The initial conditions are A(0) = 0 and A′(0) = rA
y(0)
VH(0)

= 0. Some
standard values are as follows (constant in time):

rI (t), rO(t) = .07 L/s
VH(t) = .28 L
VB(t) = 4.72 L.

The values of M and rA depend on the medication.



Population Models

In this case, we’ll set

y(t) = # of individuals in a population at time t.

1. The Malthusian model is
dy

dt
= ry ; y(0) = y0,

with solution
y(t) = y0e

rt .

2. The logistic model is
dy

dt
= ry(1− y

K
); y(0) = y0,

with solution
y(t) =

y0K

y0 + (K − y0)e−rt
.



Population Models

3. The Gompertz model is

dy

dt
= −ry ln(y/K ); y(0) = y0,

with solution
y(t) = K (

y0

K
)e

−rt
.

4. The General Single-Species Model (GSSM) is

dy

dt
=

r

a
y(1− (

y

K
)a),

with solution

y(t) =
Ky0

(ya0 + (K a − ya0 )e
−rt)1/a

.



Relations Among the Models

1. The Malthusian model can be viewed as a special case of the
logistic model with K =∞.

2. The logistic model is a special case of the (GSSM) with a = 1.

3. The Gompertz model can be viewed as a special case of the
(GSSM) obtained in the limit a→ 0. I.e.,

lim
a→0

r

a
y(1− (

y

K
)a) = ry lim

a→0

(1− ( y
K )a)

a

L’Hopital
= ry lim

a→0

−( y
K )a ln( y

K )

1
= −ry ln(y/K ).

We see that these models are all special cases of the (GSSM).
Physically, a is a gauge of how rapidly the population approaches
its carrying capacity: the smaller a is, the faster the population
approaches its carrying capacity.




