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The Logistic Model

Let’s fit the logistic model

dy

dt
= ry(1− y

K
); y(0) = y0

to the same US population data we used for the discrete logistic
model (census numbers for the years 1790-2010, though omitting
2010 for the current calculation).

Recall that we can write the exact solution to this equation as

y(t) =
y0K

y0 + (K − y0)e−rt
.

This is clearly nonlinear in the parameters r and K .

In order to start with a linear fit, notice that we can express our
equation as

1
y

dy

dt
= r − r

K
y .



Derivative Approximation

From the previous slide,

1
y

dy

dt
= r − r

K
y .

The idea will be to plot values of 1
y
dy
dt versus values of y , but our

data has the form {(tk , yk)}Nk=1, so we don’t immediately have
values for 1

y
dy
dt .

In order to approximate y ′(t) from the data, we recall that if y is
differentiable at a value t, then there exists a function ε(h; t) so
that

y(t + h) = y(t) + y ′(t)h + ε(h; t),

where
lim
h→0

ε(h; t)

h
= 0.



Derivative Approximation

From the previous slide,

y(t + h) = y(t) + y ′(t)h + ε(h; t). (*)

Solving (*) for y ′(t), we find

y ′(t) =
y(t + h)− y(t)

h
− ε(h; t)

h
.

For h sufficiently small, ε(h;t)
h will be small, and we will have the

forward difference derivative approximation

y ′(t) ∼=
y(t + h)− y(t)

h
.

If y is differentiable to higher orders in t, then we can use a Taylor
series to say more about how good this approximation is.



Derivative Approximation

The first three terms in a Taylor expansion for y(t + h) are

y(t + h) = y(t) + y ′(t)h +
1
2
y ′′(t)h2 + . . . .

We can solve again for y ′(t) to get

y ′(t) =
y(t + h)− y(t)

h
− 1

2
y ′′(t)h + . . . ,

and we see that the error in the forward difference approximation of
y ′(t) is proportional to h.

Notation. We write
f (h) = O(h)

(read: “big O of h”) if there exists a constant C so that

|f (h)| ≤ C |h|,
for all h sufficiently small.



Derivative Approximation

With this notation, we can write the forward difference derivative
approximation as

y ′(t) =
y(t + h)− y(t)

h
+ O(h).

We refer to this as a first order derivative approximation.

Proceeding similarly, we can derive higher order derivative
approximations. Let’s derive a second order approximation, which is
what we’ll use for this example. For this, we consider higher order
Taylor expansions,

y(t + h) = y(t) + y ′(t)h +
1
2
y ′′(t)h2 +

1
6
y ′′′(t)h3 + . . .

y(t − h) = y(t)− y ′(t)h +
1
2
y ′′(t)h2 − 1

6
y ′′′(t)h3 + . . .



Derivative Approximation

If we subtract the second equation from the first, we get

y(t + h)− y(t − h) = 2y ′(t)h +
1
3
y ′′′(t)h3 + . . . .

Solving once again for y ′(t), we see that

y ′(t) =
y(t + h)− y(t − h)

2h
− 1

6
y ′′′(t)h2 + . . .

In this case, the error is O(h2), so this is a second-order derivative
approximation. This is called the central difference derivative
approximation.

Returning to our data {(tk , yk)}Nk=1, if we take 1790 to correspond
with t1 = 0, then we have t1 = 0, t2 = 10, t3 = 20, ..., t22 = 210
(t22 corresponds with 2000), with corresponding populations (in
millions) y1 = 3.93, y2 = 5.31, y3 = 7.24, y4 = 9.64, ...,
y20 = 249.63, y21 = 281.42, y22 = 308.75.



Derivative Approximation

Since our approximation of y ′(t) requires both the previous data
point and the subsequence data point, we can only obtain
approximations at the times {tk}21

k=2. These approximations are
(here, h = 10):

y ′(t2) ∼=
y(t2 + 10)− y(t2 − 10)

2 · 10
=

y3 − y1

20
=

7.24− 3.93
20

= .1655

y ′(t3) ∼=
y4 − y2

20
=

9.64− 5.31
20

= .2165

...

y ′(t21) ∼=
y22 − y20

20
=

308.75− 249.63
20

= 2.9560.

Let’s denote these values {y ′k}21
k=2. I.e., y

′
2 = .1655, y ′3 = .2165,

etc.



The Linear Fit

Recall that the relation we want to fit is

1
y

dy

dt
= r − r

K
y .

We have 20 data points:

(y2,
1
y2

y ′2) = (5.31,
1

5.31
.1655) = (5.31, .0312)

(y3,
1
y3

y ′3) = (7.24,
1

7.24
.2165) = (7.24, .0299)

...

(y21,
1
y21

y ′21) = (281.42,
1

281.42
2.956) = (281.42, .0105).

A scatter plot of these points is given on the next slide.





The Linear Fit

The slope and intercept of the regression line are respectively
−.00009108 and .0286. We see that r = .0286 and

K = − .0286
.00009108

= 314.0097.

We can incorporate these values into our model, and check the
result against our data. A plot of this fit is given on the next slide.





The Nonlinear Fit

We can now use the parameter values obtained by linear regression
as initial approximations for the parameter values that we’ll find
with nonlinear regression. For the nonlinear regression, we’ll view y0
as a third parameter, and we’ll use the first census count of 3.93
million as an initial approximation.

In order to emphasize the dependence of our solution y(t) on the
parameter values, let’s write

y(t; r ,K , y0) =
y0K

y0 + (K − y0)e−rt
.

For the nonlinear fit, we need to minimize the SSR

E (r ,K , y0) =
22∑
k=1

(yk − y(tk ; r ,K , y0))
2.

We do this with MATLAB, and we find r = .0215, K = 445.9715,
and y0 = 7.7463. A plot of this fit is given on the next slide.




